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Abstract

Shape regression promises to be an important tool to study the relationship between anatomy and
underlying clinical or biological parameters, such as age. In this paper we propose a new method
to building shape models that incorporates regression analysis in the process of optimizing
correspondences on a set of open surfaces. The statistical significance of the dependence is
evaluated using permutation tests designed to estimate the likelihood of achieving the observed
statistics under numerous rearrangements of the shape parameters with respect to the explanatory
variable. We demonstrate the method on synthetic data and provide a new results on clinical MRI
data related to early development of the human head.

1 Introduction

Technologies for shape representation and statistical shape analysis are important for several
problems in medical imaging including image segmentation, quantitative analysis of
anatomy, and group comparisons. A widely used approach is to evaluating shapes is assign
correspondences or landmarks to shapes (curves, or surfaces) and to compare the positions
or configurations of these landmarks. This approach has benefitted in recent years from
methods for the automatic placement of landmarks in a way that captures the statistical
properties of an ensemble of images [1,2,3]. Finding correspondences that minimize
description length [2] or entropy [1] has been shown to generate shape models that
systematically capture the underlying variability of the population and conform,
qualitatively, to the underlying anatomy. This paper extends the method of Cates et al. [1],
which uses an variational formulation of ensemble entropy to position dense collections of
landmarks, or particles.

On the clinical front, quantitative magnetic resonance imaging has significantly advanced
our understanding of brain development during childhood and adolescence. Courchesne et
al. [4] describe differences in growth patterns in autism compared to controls. However,
these studies do not include children below the age of 4 years. Data measured in infants
from birth to 4 years are mostly volumetric measurements, such as intracranial volume and
volumes of brain lobes and subcortical structures [5]. Whereas this selection of previous
work demonstrates very active research towards determining brain growth at early stage of
development, there is little data on modelling head and brain growth across a continuum of
time and almost no work on the study of how development influences shape.

In developmental analyses, such as paediatric neurodevelopment, shape regression gives
aggregate models of growth, with variability. Thus shape analysis promises to give not only
basic insights into the process of development, but also allow comparisons of individuals
against normative models. Of course, precise characterizations of these relationships will
require shape models that can tease apart those aspects of shape variability that are
explained by the underlying variables and those that are not. Likewise, in order to



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Datar et al. Page 2

understand the statistical significance of such relationships we will need a systematic,
unbiased method for testing these correlations. These are the topics addressed in this paper.

2 Methodology

This section gives a brief overview of the particle-system correspondence optimization
method, which is first described in [1]. The general strategy of this method is to represent
correspondences as point sets that are distributed across an ensemble of similar shapes by a
gradient descent optimization of an objective function that quantifies the entropy of the
system. Our proposed extension to this method incorporates a linear regression model into
the correspondence optimization. We also present a new methodology for correspondence
optimization on open surfaces where surface boundaries are defined by arbitrary geometric
constraints—which is important for studying paediatric head shape.

Correspondence Optimization

We define a surface as a smooth, closed manifold of codimension one, which is a subset of
M (e.g., d = 3 for volumes). We sample a surface s C 4 using a discrete set of N points that
are considered random variables Z = (Xg Xp, ..., XN)T X € #+9 drawn from a probability
density function (PDF), p(X). We denote a realization of this PDF with lower case, and thus
we have z = (x1,X, ..., Xy )T, Where z € s~ The probability of a realization x is p(X = x),
which we denote simply as p(x).

The amount of information contained in such a random sampling is, in the limit, the
differential entropy of the PDF, which is

H[X]=- fs p(X)logp(x)dx= — E {logp(X)}, 1)

where E{ } is the expectation. Approximating the expectation by the sample have mean, we

have H[X] = —ﬁz{;ilogp(x,‘) To estimate p(x;), we use a non-parametric Parzen windowing
estimation, modified to scale density estimation in proportion to local curvature magnitude.
The kernel width o is chosen adaptively at each x; to maximize the likelihood of that
position. We refer to the positions x as particles, and a set of particles as a particle system.

Now consider an ensemble £, which is a collection of M surfaces, each with their own set of
particles, i.e., € = z1, ..., zM. The ordering of the particles on each shape implies a

. . .- k .
correspondence among shapes, and thus we have a matrix of particle positions P=X;, with
particle positions along the rows and shapes across the columns. We model zk €N 9 as an
instance of a random variable Z, and minimize a combined ensemble and shape cost
function

0=HZ) - ) H(P"),
: (2)

which favors a compact ensemble representation balanced against a uniform distribution of
particles on each surface. Given the low number of samples relative to the dimensionality of
the space, we use a parametric approach described in [1] for density estimation in the space
of shapes. The entropy cost function Q is minimized using a gradient descent strategy to
manipulate particle positions (and, thus, also correspondence positions). The surface
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constraint is specified by the zero set of a scalar function F (x). This optimization strategy
balances entropy of individual surface samplings with the entropy of the shape model,
maximizing the former for geometric accuracy (a good sampling) and minimizing the latter
to produce a compact model.

Any set of implicitly defined surfaces is appropriate as input to this framework. For this
paper, we use binary segmentations, which contain an implicit shape surface at the interface
of the labeled pixels and the background. To remove aliasing artifacts in these
segmentations, we use the r-tightening algorithm given by Williams et al. [6].
Correspondence optimizations are initialized with the splitting strategy described in [1],
starting with a single particle on each object. We use a Procrustes algorithm, applied at
regular intervals during the optimization, to align shapes with respect to rotation and
translation, and to normalize with respect to scale.

Correspondence with Regression Against Explanatory Variables

With the assumption of a Gaussian distribution in the space of shapes, we can introduce a
generative statistical model

z=u+e, & ~ N(0, Z) ®)

for particle correspondence positions, where u is the vector of mean correspondences, and ¢
is normally-distributed error. Replacing x in this model with a function of an explanatory
variable t gives the more general, regression model

2=f()+EE ~ N(©, D). @

The optimization described in the previous section minimizes the entropy associated with ¢,
which is the difference from the mean. In this paper, we propose to optimize
correspondences under the regression model in Egn. 4 by instead minimizing entropy
associated with ¢, the residual from the model. Considering particle correspondence to be a
linear function of t, given as f (t) = a + bt, we need an estimate of parameters a and b to
compute ¢. We estimate these with a least-squares fit to the correspondence data,

arg min£(a, b):%Z[(a+btk) - zklrz_l [(a+bz) — z¢].
& 3 (5)

b= na— Y > /> - ),

The proposed regression model optimization algorithm then proceeds as follows.
Correspondences are first optimized under the nonregression model (Egn 3) to minimize the
entropy associated with the total error ¢, and to establish an initial estimate for a and b. We
then follow the same optimization procedure as described in Section. 2, but replace the
covariance of the model with the covariance of the underlying residual relative to the

Setting oz — sz () and solving for a and b, we have azﬁ(zkzk - Zkbtk), and
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generative model. We interleave the two estimation problems, and thus the parameters a and
b are re-estimated after each iteration of the gradient descent on the particle positions.

Correspondences on Open Surfaces

To compute correspondence positions on a set of open surfaces, we propose an extension to
the sampling method reviewed in Section. 2. The proposed method is to define the boundary
as the intersection of the surface Swith a set of geometric primitives, such as cutting planes
and spheres. Our goal is to formulate the interactions with these boundaries so that the
positions of these constraints has as little influence as possible on the statistical shape model.

For each geometric primitive, we construct a virtual particle distribution that consists of all
of the closest points on its surface to the particles xj on s. During the gradient descent
optimization, particles x; interact with the virtual particles, and are therefore effectively
repelled from the geometric primitives, and thus from the open surface boundary. The
virtual distributions are updated after each iteration as the particles on S redistribute under
the optimization. Because the virtual particles are allowed to factor into the Parzen
windowing kernel size estimation, particles x; maintain a distance from the boundary
proportional to their density on the surface S. In this way, features near the boundary may
be sampled, but particles are never allowed to lie on the actual boundary itself. One such
configuration is shown in Figure. 1

Permutation Test of Significance

Analysis of variance (ANOVA) is the standard parametric test for testing if the explanatory
variables have a significant effect in a linear regression. The test statistic used is

_ RY(m-1)
(1 -RY/(n-m)’ (6)

where R? is Pearson’s coeffcient of regression, generally defined as g2=1 — $sen ,Where

SS oy is the sum-squared residual error, and SS ot represents total variance in the data. In
general, R? can be related to the unexplained variance of the generated model, and is used to
measure the goodness-of-fit for the regression model. When the residuals of the linear model
are iid Gaussian, the statistic T follows an F distribution with m — 1 and n — m degrees of
freedom under the null hypothesis.

In this case where the outcome variables are correspondence-optimized shape parameters,
the underlying assumptions of the parametric F -test may not hold. Furthermore,
optimization with knowledge of the underlying parameter could lead to optimistic estimates
of significance, because we are explicitly minimizing the residual. To overcome this, we
propose a honparametric permutation test for significance. Permutation tests for regression
work by permuting the values of the explanatory variables. This allows us to compute a
distribution of our test statistic under the null hypothesis that the explanatory variable has no
relationship to the dependent variable. Given data (z;, t;), we generate the kth permuted data
set as (zj, tzk(j)), where = is a permutation of 1, ..., n. For each permutation we compute a
test statistic Ty using (6). Then comparing our unpermuted test statistic T to the distribution
of Ty, we can compute the p-value as the percentage of Ty that are greater than T. Notice,
that for the case of regression-optimized correspondences, described in Section 2, we
perform a the correspondence optimization on each permutation separately, and thus the
results of our permutation test are not biased by the correspondence method.
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3 Results and Discussion

This section details experiments designed to illustrate and validate the proposed method.
First, we present an experiment with synthetically generated tori to illustrate the
applicability of the method and validation based on permutation tests. Next, we present an
application to the study of early growth of head shapes extracted from structural MRI data.

To illustrate and validate the proposed methods, we performed two experiments on sets of
40 synthetically generated tori, parameterized by the small radius r and the large radius R.
The values for the shape parameters were chosen as independent functions of a uniformly
distributed explanatory variable t. The definition of R2, used to compute the test statistic as
explained in Section. 2, is extended to include the two independent variables for this
experiment:

Rzzl _ (SS”,),-F(SS‘.”-)R )
(SS mr)r+(SStoI)R (7)

We examine sets of time-dependent shapes with p-values {0.01, 0.1} in order to examine the
performance of the system with and without significance. To construct these example data
sets, we use the value for the statistic T (look up from the F -distribution) to generate a target
R2. The values of r and R are chosen such that the R? of the generated set is approximately
equal to the target R? for that experiment. Along with explicit correspondences generated
from the standard torus parametrization, we use the correspondence methods from Section.
2, optimization with and without an underlying regression model, to optimize
correspondences using 256 particles on each shape. An analysis of the resulting models
showed that all three sets of correspondences exhibited two pure modes of variation.

Synthetic Data (Tori)

Here we present the results of the statistical analysis of the tori test data using permutation
tests consisting of 1000 permutations of the explanatory variable t. For the correspondences
we compute the test statistics using the two dominant modes from a PCA on the set of
correspondences. The procedure described in Section. 2 is then applied to get the
corresponding p-values. Table. 1 shows the results of the two permutation tests for the
explicit correspondences, and correspondences generated using the proposed methods. A
comparison of the parametric p-value with the p-values obtained by the permutation tests
confirms that the proposed methods preserve the relationship between the explanatory
variable and the dependent variables. The correspondence-based approaches, particularly
with the regression model, show greater significance than the parametric case. This might be
an inherent property of the statistic or it could be an artifact due to the limited number of
example datasets and the limited number of permutations. Future work will include more
datasets, more permutations, and a bootstrapping procedure to analyze variability of the p-
values computed by the various methods.

Head Shape Regression

The proposed regression-based correspondence method is also used to study the growth of
head shape from structural MRI data obtained from clinical studies spanning the age range
from neonate to 5 year old. The 40 cases include 1.5T, T1-weighted MRI scans with
resolutions of Imm x1mm x1mm and 0.4mm x0.4mm x3.6mm. The scans are preprocessed
and segmented to obtain the head surfaces, which are input to the optimization process.
Manually placed landmarks on the bridge of the nose and the openings of the left and right
ear canals define a cutting plane and a pair of spheres that we use as constraints, as in
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Section. 2, to repel the correspondences from the neck, face, and ears, in order to restrict the
analysis to the cranium, which is most interesting from a neurological point of view. Figure.
1 shows the particle system distributed across one of the head shapes after optimizing 500
particles.

Head size, measured in volume or circumference is well known to correlate with age. This is
confirmed by the linear regression plot (size versus log of age) with p < 2 x 10716, shown in
Figure. 2. Next, the shapes were preprocessed using methods mentioned in Section. 2 to
remove the effects of size. Changes in head shape along the linear regression line (shape
versus log of age) are shown in Figure. 3. Note the relative lengthening of the head, and the
narrowing at the temples with increasing age. These shape changes are consistent with
clinical observations that neonatal brain growth proceeds more rapidly in the forebrain.
These results tie head shape to age in the paediatric setting.

The permutation tests for both the proposed methods for this example showed that none of
1000 permutations gave a better correlation than the input data. While this p = 0 result is not
conclusive, it does give strong evidence for significance. Future work will include more
permutations to more accurately evaluate the significance.

The experiments were run on a 2GHz processor with run times of approximately 15 minutes
for the tori (256 particles) and 40 minutes for the head shapes (500 particles). The
permutation tests (1000 permutations) were run as parallel processes on a 16-processor
machine.

4 Conclusion

This paper describes a method for shape regression that accounts for explanatory variables
in the placement of correspondences and allows for open surfaces with arbitrary geometric
constraints, and presents a mechanism for hypothesis testing of the role of underlying
variables in shape. Results from a study of head shape growth indicate that the proposed
method can be applied to quantitative characterization of the relationship between age and
head shape in young children. Such analysis will generate data beyond the currently
established standard of head circumference measurements as an index of growth. Moreover,
it will generate normative data as a continuous growth model of shape, which can be useful
in building optimal MRI head coils for young infants. The continuous shape model could
also find use in population studies where two groups are compared with respect to growth
trajectory rather than differences at individual time points.
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Fig 1.
Particle system with geometric primitives defining the boundary
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Fig 2.
Changes in head size with age
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Fig 3.
Overview of head shape regression: Changes in head shape with age
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Table 1

Results of permutation tests (1000 permutations)

Correspondence Type
p-value (theory) p-value(parametric)
Explicit Min.  Entropy  Regression-based

0.01 0.011 0.011 0.007 0.004
0.1 0.095 0.095 0.067 0.066
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