
Mitochondria are sources of metabolic sink and arrhythmias

Fadi G. Akar, PhD1,2,* and Brian O’Rourke, PhD2

1 Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY USA
2 Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA

Abstract
Mitochondria have long been recognized for their central role in energy transduction and
apoptosis. More recently, extensive work in multiple laboratories around the world has
significantly extended the role of cardiac mitochondria from relatively static arbitrators of cell
death and survival pathways to highly dynamic organelles that form interactive functional
networks across cardiomyocytes. These coupled networks were shown to strongly affect
cardiomyoyte responses to oxidative stress by modulating cell signaling pathways that strongly
impact physiological properties. Of particular importance is the role of mitochondria in
modulating key electrophysiological and calcium cycling properties in cardiomyocytes, either
directly through activation of a myriad of mitochondrial ion channels or indirectly by affecting cell
signaling cascades, ATP levels, and the over-all redox state of the cardiomyocyte. This important
recognition has ushered a renewed interest in understanding, at a more fundamental level, the
exact role that cardiac metabolism, in general and mitochondria, in particular, play in both health
and disease. In this article, we provide an overview of recent advances in our growing
understanding of the fundamental role that cardiac mitochondria play in the genesis of lethal
arrhythmias.
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INTRODUCTION
Mitochondria are well recognized for their importance in energy production and apoptosis
(Gustafsson & Gottlieb, 2008). They generate ATP through oxidative phosphorylation,
driven by electron transport across the electron transport chain. In addition, mitochondria
generate reactive oxygen species (ROS) which have diverse cell signaling functions (Droge,
2002; Becker, 2004). A key metric of mitochondrial function is the mitochondrial membrane
potential (Δψm) which forms the proton-motive force used to produce ATP (O’Rourke,
2007). In normal hearts, Δψm is tightly regulated such that the production of ATP is
maintained within a physiological range that matches energy production to demand
(O’Rourke, 2007). This limits ROS generation and oxidative stress. In ischemia-reperfusion
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injury, Δψm is disrupted, altering over-all energy and redox balance within cardiac myocytes
(Honda et al., 2005).

Seminal work has extended the role of mitochondria from static arbitrators of cell death and
survival pathways to highly dynamic organelles that form interactive networks across
cardiomyocytes. These coupled networks strongly affect cardiomyocyte responses to
oxidative stress by modulating cell signaling pathways. This important recognition has
ushered a renewed interest in understanding, at a more fundamental level, the exact role that
cardiac mitochondria play in both health and disease (Michelakis, 2008). In this review, we
focus on the role of mitochondrial dysfunction in promoting cardiac electrophysiological
abnormalities at the cellular level and malignant arrhythmias at the tissue-network level.

Mitochondrial Criticality and Metabolic Oscillations
Zorov et al (Zorov et al., 2000; Zorov et al., 2006) advanced the notion of ROS-induced
ROS-release (RIRR) to explain how local ROS injury within a discrete region of a
cardiomyocyte can rapidly accumulate across a critical mass of the mitochondrial network to
cause cellular oxidative stress. In these studies, RIRR was described as a fundamental
mechanism by which cardiac mitochondria respond to elevated ROS levels by stimulating
endogenous ROS production in a regenerative, autocatalytic process that ultimately results
in cellular dysfunction and death (Zorov et al., 2006).

Distinct modes of RIRR have been postulated based on their dependence on various
mitochondrial ion channels (Yang et al.). Specifically, Zorov et al (Zorov et al., 2000; Zorov
et al., 2006) demonstrated a convincing relationship between the destabilization of Δψm
upon mitochondrial oxidation and the induction of the mitochondrial permeability transition
which causes apoptosis (Zorov et al., 2000). On the other hand, studies by Aon et al. (Aon et
al., 2003) provided strong evidence in support of the inner membrane anion channel (IMAC)
as a mediator of RIRR and associated electrophysiological and metabolic instabilities. In
these studies, photo-induced oxidation of a discrete region within the cardiac myocyte
unleashed a regenerative process of RIRR that was dependent on IMAC activation and not
the mPTP. Once a threshold level of ROS was exceeded across a critical mass of the
mitochondrial network (ie mitochondrial criticality), sustained Δψm oscillations were
initiated (Aon et al., 2006; Aon et al., 2009). Similar Δψm oscillations are also generated in
isolated myocytes subjected to oxidative stress via substrate deprivation (Romashko et al.,
1998), ATP depletion (Ryu et al., 2005), diamide (Aon et al., 2007), and respiratory
inhibition (Ryu et al., 2005). Recent evidence using two-photon microscopy confirmed these
cellular data as reversible collapses in Δψm were observed in intact hearts exposed to global
ischemia/reperfusion or diamide administration (Slodzinski et al., 2008). As will be
discussed next, these mitochondrial oscillations can result in cellular electrophysiological
oscillations via cyclical activation of sarcolemmal K-ATP (sarcKATP) channels providing
compelling evidence of a mechanistic link between mitochondrial dynamics and cellular
electrical dysfunction. In what follows, we describe the downstream ionic mediator of
electrical inexcitability caused by mitochondrial dysfunction, followed by a discussion of
key upstream mechanisms that regulate arrhythmias, including mitochondrial ion channels
and the redox state of the cardiomyocyte.

Down-stream mediator of metabolic stress: Role of sarcolemmal KATP channels
SarcKATP channels link membrane excitability to metabolism (Nichols, 2006). They are
regulated by intracellular nucleotides, membrane phospholipids, protein kinases and
phosphatases (Nichols, 2006). SarcKATP channel activation can precede cellular ATP
depletion because the open probability of these channels is increased when cofactors like
ADP, pH and Mg2+ begin to rise. SarcKATP channels activate rapidly when mitochondria
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uncouple because the drop in Δψm due to increased proton leak causes the reversal of the
ATP synthase, thus consuming cytoplasmic ATP and decreasing the phosphorylation
potential. Tight coupling between the mitochondrial energy state and sarcKATP channel
activation is facilitated by the high energy phosphoryl transfer reactions of the cytoplasm
(Sasaki et al., 2001).

Due to their abundance in the plasma membrane, the opening of sarcKATP channels causes
rapid action potential shortening, loss of intracellular K+, and reduction in myocyte
excitability (Billman, 2008). In fact, increased K+ conductance through sarcKATP channels
can effectively lock the resting membrane potential close to the equilibrium potential for K+

(Kleber, 1983). Indeed, sarcKATP channel activation accounts for most of the action
potential shortening during ischemia, as evidenced by the ability of KATP channel blockers
(ie, glibenclamide) to prevent the decrease in action potential duration during early ischemia
(Akar et al., 2005).

The dynamic relationship between sarcKATP channel activation and the metabolic status of
the cardiomyocyte was first observed by O’Rourke and colleagues (O’Rourke et al., 1994;
O’Rourke et al., 1995). Following metabolic stress either by substrate deprivation or
increased ADP levels, sarcKATP currents were activated in phase with NADH fluctuations.
In these experiments, sustained Δψm oscillations occurred in phase with cellular
electrophysiological (namely action potential) oscillations that were driven by ‘out-of-phase’
sarcKATP current activation (Aon et al., 2003).

While sarcKATP channel activation is thought to protect the viability of ischemic tissue by
limiting calcium cycling and force generation during periods of reduced energy supply,
increased potassium conductance through these channels predisposes to electrical
dysfunction and arrhythmias (Billman, 1994; Billman et al., 1998; Billman, 2008). The pro-
arrhythmic potential of sarcKATP channel activation during ischemia-reperfusion could be
attributed to increased dispersion of repolarization and shortening of the effective refractory
period, and therefore the cardiac wavelength, at a time when calcium mediated triggers are
known to arise. Moreover, the opening of sarcKATP channels creates a current sink which
can slow or block conduction wavefronts in local regions where the open probability of
sarcKATP channels is high (i.e. where the energetic status of the cell is compromised), a
phenomenon that we previously termed ‘metabolic sink’ (Akar et al., 2005).

This pro-arrhythmic potential of sarcKATP channel activation has been confirmed in
multiple studies. Preventing sarcKATP channel activation by pharmacological blockade of
the channel decreased the incidence of ventricular arrhythmias in rat (Vajda et al., 2007),
rabbit (Fischbach et al., 2004), pig (Wirth et al., 1999), dog (Billman et al., 1998), and man
(Cacciapuoti et al., 1991; Lomuscio et al., 1994; Aronson et al., 2003). On the other hand,
sarcKATP channel blockade with glibenclamide failed to delay the onset of inexcitability
during late ischemia or the initiation of arrhythmias upon reperfusion in the ex vivo perfused
guinea pig heart. In order to understand the factors driving the opening of sarcKATP
channels during metabolic stress, an overview of key mitochondrial ion channels and
bioenergetic properties are discussed below.

Mitochondrial ion channels as root causes of mitochondrial dysfunction and arrhythmias
The mitochondrial membrane is a highly resistive structure that maintains a large voltage
gradient and proton-motive force, required for electron transport and ATP production
(Brown et al., 2010). Nonetheless, a rich diversity of ion channels and transporters has been
discovered in the inner and outer membranes of mitochondria. Of note to arrhythmia
mechanisms are various ion channels (Figure 1) that modulate Δψm and also promote
apoptosis (mPTP), cellular inexcitability (IMAC), cardioprotection (mitoKATP), and

Akar and O’Rourke Page 3

Pharmacol Ther. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



mitochondrial calcium influx (MCU). The interested reader is referred to excellent reviews
that exclusively cover mitochondrial ion channel targets in a more comprehensive manner
(Peixoto et al.).

Inner Membrane Anion Channel
Anion flux across the inner mitochondrial membrane was observed in early studies in which
anion movement was shown to regulate mitochondrial volume (Azzi & Azzone, 1966, 1967;
Brierley, 1970). Since then, the existence of IMAC has been confirmed in multiple studies
demonstrating its importance in anion efflux from energized mitochondria (Garlid & Beavis,
1986; Beavis, 1992). Although the exact structure and molecular identity of IMAC remain
elusive, the tight regulation of this channel by benzodiazepine compounds (Beavis, 1989)
suggests a strong association between a partially anion selective pore-forming subunit in the
inner membrane and a peripheral benzodiazepine receptor in the outer membrane.

The importance of IMAC in modulating Δψm was first noted when several distinct IMAC
ligands were shown to prevent pathological Δψm oscillations in isolated cardiac myocytes
(Aon et al., 2003). Importantly, blocking Δψm oscillations by targeting the IMAC also
inhibited action potential oscillations and prevented myocyte inexcitability (Aon et al.,
2003). This provided indirect evidence that targeting the IMAC may be an effective strategy
for preventing arrhythmias, at least at the cellular level.

Indeed, IMAC blockade successfully prevented post-ischemic arrhythmias in intact
myocardium (Akar et al., 2005; Brown et al., 2008b; Brown et al., 2010). Optical mapping
of the epicardial surface of guinea pig hearts revealed that IMAC blockade decreased
ischemia-induced action potential shortening and markedly suppressed the incidence of
ventricular tachycardia/fibrillation during the early onset of reperfusion (Akar et al., 2005).
Cardioprotection mediated by IMAC blockade was also observed in isolated rabbit hearts
and accompanied by improved left ventricular function (Brown et al., 2008b). Of notable
clinical interest, reperfusion arrhythmias in both studies were also prevented when the
IMAC blocker was delivered as a bolus injection at the onset of reperfusion (Akar et al.,
2005; Brown et al., 2008b).

Mitochondrial Permeability Transition Pore
The role of the mitochondrial permeability transition pore (mPTP) in ischemia/reperfusion
injury has received considerable attention (Halestrap et al., 2004; Murphy & Steenbergen,
2008; Halestrap, 2009; Halestrap & Pasdois, 2009). It is clear that the opening of the mPTP
plays a significant role in the generation of necrotic and apoptotic cell death, both of which
are involved in the etiology of myocardial infarction (McCully et al., 2004). Administration
of cyclosporin-A or sanglifehrin-A, both blockers of the mPTP, attenuates myocardial
infarction (Weinbrenner et al., 1998; Minners et al., 2000; Hausenloy et al., 2002; Argaud et
al., 2004), left ventricular dysfunction (Griffiths & Halestrap, 1993; Clarke et al., 2002;
Hausenloy et al., 2004; Oka et al., 2008a), cardiomyocyte death (Nazareth et al., 1991;
Duchen et al., 1993; Kim et al., 2006), and ischemia-reperfusion injury (Di Lisa et al., 2001;
Oka et al., 2008b). The translation of these findings was recently supported in a clinical
study, in which administration of cyclosporin-A immediately prior to percutaneous coronary
intervention decreased the extent of short-term injury in a small clinical trial (Piot et al.,
2008).

While the role of the mPTP in cell death is well established, its involvement in the
generation of arrhythmias remains controversial. While some studies showed moderate
protection against arrhythmias, other studies confirmed a lack of protection in rat (Dow et
al., 2009), guinea pig (Akar et al., 2005), and rabbit (Brown et al., 2008b) hearts. Moreover,
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delivery of a cyclosporin-A bolus prior to stenting did not seem to influence the incidence of
ventricular fibrillation in humans (Piot et al., 2008). Lack of protection against arrhythmias
by mPTP blockade is also supported by mechanistic studies in isolated myocytes that
demonstrate that Δψm depolarization caused by substrate deprivation or photo-induced
oxidation is not prevented by cyclosporin-A (Romashko et al., 1998; Huser & Blatter, 1999;
Zorov et al., 2000; Aon et al., 2003). It is very important to note, however, that by
protecting against apoptosis and reducing the size of myocardial infarction following an
ischemic insult, mPTP blockade may suppress scar related arrhythmias that are associated
with healed myocardial infarction. Also, by inhibiting myocyte loss and improving left
ventricular function, this strategy may confer an anti-arrhythmic effect through beneficial
mechano-electrical feedback or by hindering the progression of adverse electrical
remodeling.

MitoKATP Channel
Evidence for a mitochondrial ATP-sensitive potassium (mitoKATP) channel was first
observed in rat liver mitochondria (Inoue et al., 1991), and later confirmed in heart (Paucek
et al., 1992). The opening of mitoKATP channels may underlie the cardioprotective effects
of preconditioning stimuli by partial dissipation of Δψm, reduction in the driving force for
calcium entry into the mitochondrial matrix, inhibition of apoptosis, and overall
improvement in cellular respiration ((O’Rourke, 2000; Gross & Peart, 2003).

Numerous studies have examined the role of mitoKATP channel activation/blockade in
altering infarct size (Takashi et al., 1999; O’Rourke, 2004). In general, mitoKATP channel
blockade with 5-hydroxydecanoate (5-HD) abolished the ability of the cardioprotective
stimulus to reduce infarct size (Takashi et al., 1999). While these studies have yielded
important mechanistic insights, it is noteworthy that mitoKATP channel opening also fails to
evoke a cardioprotective response when repetitive preconditioning stimuli, such as multiple
cycles of ischemia/reperfusion (Schwartz et al., 2002) or chronic exercise (Brown et al.,
2005) are administered prior to the main insult, confounding the translation of this strategy
to clinical use.

Few studies have examined the role of mitoKATP channels in the genesis of cardiac
arrhythmias. A protective role for mitoKATP channel activation against arrhythmias has been
inferred by experiments demonstrating that mitoKATP channel blockers consistently
abolished the anti-arrhythmic phenotype provided by preconditioning stimuli, such as
ischemic preconditioning (Vegh & Parratt, 2002; Rajesh et al., 2004), adenosine (Headrick
et al., 2003), delta opioid agonists (Fryer et al., 2000; Fischbach et al., 2003), estrogen (Das
& Sarkar, 2006), 3-nitropropionic acid (Basgut et al., 2008), nitroglycerin (Baharvand et al.,
2009), noradrenaline (Imani et al., 2008), or endothelin receptor agonists (Das et al., 2007).
It is important to note, however, that mitoKATP channel blockade during other
preconditioning stimuli; namely, bradykinin (Driamov et al., 2004), low-flow ischemia
(Driamov et al., 2004), peroxynitrite (Kiss et al., 2008), and estradiol (Tsai et al., 2002)
failed to attenuate the anti-arrhythmic protection of these stimuli.

Studies investigating the efficacy of direct mitoKATP channel activation on the suppression
of post-ischemic arrhythmias have yielded discrepant results (Schwartz et al., 2002;
Headrick et al., 2003). One putative explanation for the discordant findings is that various
pharmacological agents used to open mitoKATP channels are confounded by non-specific
action. In fact, the non-specificity of mitoKATP channel openers (such as diazoxide) and
blockers (such as 5-HD) has received considerable attention in recent years (Hanley et al.,
2003; Suzuki et al., 2003; O’Rourke, 2004; Brown et al., 2005; Hanley et al., 2005).
Moreover, mitoKATP channel activity is largely dependent on complex signaling cascades,
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including phosphorylation by protein kinase C (Ohnuma et al., 2002), which may be
differentially altered in various studies.

While the preconditioning literature provides interesting mechanistic insights regarding anti-
arrhythmic strategies administered before index ischemia, the clinical relevance of these
strategies should be put into question. To the clinician, arrhythmia suppression must often be
attempted after, not before, the onset of the ischemic insult. Targeting mitoKATP channels
after the onset of metabolic stress seemed promising based on cellular studies, in which the
administration of mitoKATP channel openers effectively inhibited ongoing Δψm oscillations
that were evoked by halting respiration (Ryu et al., 2005). This strategy also improved
cellular survival and mitochondrial integrity during cellular reoxygenation (Ozcan et al.,
2007). Despite these encouraging cellular findings, post-ischemic administration of
mitoKATP channel openers failed to decrease the incidence of arrhythmias (Das & Sarkar,
2005).

Mitochondrial Calcium Uniporter
Although altered intracellular calcium cycling and cytosolic calcium overload are well
established sources of arrhythmia triggers and beat-to-beat repolarization abnormalities
(Wilson et al., 2006), the role of mitochondrial calcium fluxes in the generation of
arrhythmias remains unclear. Mitochondrial calcium homeostasis is achieved by balanced
calcium influx into the matrix via the mitochondrial calcium uniporter (MCU) and efflux out
of the matrix through the mitochondrial sodium–calcium exchanger. MCU blockade with
ruthenium compounds has shown some promise in suppressing the incidence of arrhythmias.
Specifically, pre-ischemic administration of both ruthenium red and Ru360 decreased the
incidence of ventricular fibrillation upon reperfusion in rats (Garcia-Rivas Gde et al., 2006).
Moreover, both compounds converted ongoing ventricular fibrillation to ventricular
tachycardia when administered after the onset of arrhythmias, although neither compound
led to sinus rhythm (Kawahara et al., 2003).

Mechanisms by which MCU blockade protects against arrhythmias are not well understood
but may involve a decrease in the open channel probability of the mPTP by maintaining
relatively low matrix calcium concentrations (Garcia-Rivas Gde et al., 2006). While this is
largely expected to confer an anti-apoptotic effect, it seems unlikely to play a major role in
arrhythmogenesis since blockers of the mPTP have not been particularly effective in
preventing arrhythmias, as discussed previously. Indeed, these findings are supported by
cellular experiments in which the reversible collapse in Δψm induced during RIRR was not
prevented by either ruthenium red (Romashko et al., 1998) or Ru360 (Zorov et al., 2000).

The exact role of the mitochondrial calcium uniporter in arrhythmogenesis remains unclear
because of major confounding effects of the ruthenium compounds on intracellular calcium
fluxes (Griffiths, 2000). For example, Ruthenium red blocks calcium entry through L-type
calcium channels (Vassilev et al., 1987) and release from the sarcoplasmic reticulum (Gupta
et al., 1989), suggesting that the anti-arrhythmic efficacy of this compound may be related to
its prevention of intracellular calcium overload and not to its primary mitochondrial target
(Griffiths & Rutter, 2009). Ru360 appears to be more specific for the MCU, but whole heart
experiments are confounded by permeability issues, with some investigators showing
successful drug entry into myocytes (Kawahara et al., 2003) and others arguing against it
(Robert et al., 2001; Bell et al., 2006). Consistent with their ability to reduce cytosolic
calcium transients, both ruthenium compounds are potent negative inotropes at
concentrations that protect against arrhythmias (Gupta et al., 1988; Kimura et al., 2005), an
undesirable side effect when the overall purpose of administering the compound is to
improve cardiac function. Future research using novel compounds that lack these
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pleiotropic/permeability issues will provide better insights into the role of the MCU in post-
ischemic arrhythmias.

Anti-oxidant depletion as a mechanism of mitochondrial dysfunction and arrhythmias
Oxidative stress in cardiomyocytes is caused by either increased ROS production and/or
reduced scavenging capacity. In fact, myocardial Glutatione (GSH), a main anti-oxidant
defense system in myocytes, is a key regulator of RIRR and mitochondrial stability.
Interestingly, depletion of the intracellular antioxidant GSH pool with diamide effectively
triggers Δψm oscillations that are similar in nature to those generated by photo-induced
oxidation of the myocyte (Aon et al., 2007). These observations were extended to the level
of the whole heart, in which diamide treatment of ex vivo perfused hearts resulted in
heterogeneous ROS production, Δψm depolarization (Slodzinski et al., 2004) and ventricular
fibrillation (Brown et al., 2008a). Interestingly, reduced-to-oxidized glutathione ratio (GSH/
GSSG) in whole heart homogenates following diamide administration was similar to that in
isolated cells undergoing RIRR and Δψm oscillations (Aon et al., 2007). These findings are
corroborated by human data, where low GSH/GSSG ratios were observed in human heart
samples from patients with heart failure (Damy et al., 2009) and type 2 diabetes (Anderson
et al., 2009), both important risk factors for cardiac arrhythmias and sudden death.
Consistent with this notion, administration of N-acetylcycsteine significantly decreased the
incidence of cardiac arrhythmias in patients following cardiac surgery (Ozaydin et al.,
2008). While promising, N-acetylcycsteine itself is confounded by limited bioavailability
(Holdiness, 1991) and anaphylactoid-like reactions (Holdiness, 1991). This clearly
highlights the need for alternative compounds that can more effectively and safely restore
GSH levels.

Finally, the redox state of the cardiomyocyte can also modulate its excitability properties
through mitochondria-independent mechanisms. For example, increased oxidation has been
shown to directly activate sarcKATP channels (Tokube et al., 1996), alter the inactivation
kinetics of L-type calcium channels, decrease sodium current density (Liu et al., 2010),
increase ryanodine receptor calcium ‘leak’ (Belevych et al., 2009), and modulate the
activation state of mitochondrial inner membrane ion channels. Attempts to improve the
redox status of the cardiomyocyte by scavenging ROS with superoxide dismutase mimetics
(Konya et al., 1992) or mitochondria-targeted anti-oxidant peptides (Cho et al., 2007) were
successful in decreasing the incidence of arrhythmias. Future experiments that optimize
effective delivery of ROS-scavenging agents to mitochondria have clear potential in
abrogating electrical abnormalities caused by metabolic dysfunction.

Spatio-temporal dynamics of mitochondrial function across the intact heart
As mentioned above, Δψm depolarization is triggered by opening of mitochondrial ion
channels under conditions of oxidative stress (Weiss et al., 2003; O’Rourke, 2007; Brown et
al., 2010). Specifically, during metabolic insults, increased mitochondrial ROS production
from complex III of the electron transport chain triggers the opening of IMAC and/or mPTP
(Weiss et al., 2003). This results in ROS release from mitochondria and Δψm depolarization.
In isolated cardiomyocytes, ROS diffusion within the cytosol triggers further ROS release
from neighboring mitochondria, initiating a feedback cycle of RIRR and Δψm depolarization
(Zhou et al.,; Zorov et al., 2000; Aon et al., 2003; Brady et al., 2004).

Despite major advances in our understanding of mitochondrial biochemistry at the
subcellular/molecular levels, the pathophysiological consequences of mitochondrial
dysfunction at the level of the intact heart remained unclear. Since mitochondrial function of
individual cells is highly influenced by network properties, it is critical to investigate
mitochondrial function within the milieu of the intact heart (Weiss et al., 2006). We recently
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found that the metabolic substrate of the heart during the early onset of ischemia is spatially
and temporally heterogeneous (Lyon et al., 2010b). These spatio-temporal heterogeneities in
mitochondrial function may ultimately dictate myocardial excitability and contribute to the
formation of zones of conduction block by heterogeneous activation of surface KATP
channels, as we had previously speculated (Akar et al., 2005).

Δψm depolarization
A semi-quantitative approach of optical Δψm imaging in the ex vivo perfused heart allowed
the identification of waves of Δψm depolarization that actively propagate across the
myocardium with a mean velocity of ~20μm/sec (Figure 2), several orders of magnitude
slower than myocardial action potential propagation (Lyon et al., 2010a). We further
elucidated complex spatio-temporal metabolic instabilities that preceded and accompanied
the formation of these organized waves (Figure 2). Furthermore, we identified at the tissue
level the presence of Δψm ripples prior to mitochondrial collapse during ischemia. These
data suggested patterns of wave behavior spreading across the myocardium ahead of the
main wave of Δψm depolarization, with propagation reflecting the direct interaction between
adjacent cells within the intact ischemic tissue. Although we did not directly image ROS
levels, it is conceivable that ROS diffusion at the interface between depolarized (acting as
ROS sources) and polarized (ROS sinks) regions can drive the propagation of Δψm collapse,
in a manner that extends the notion of RIRR from a subcellular to a multi-cellular
phenomenon. The amplification and propagation of Δψm depolarization across the
electrically coupled syncytium may present novel opportunities to limit injury by potentially
targeting areas of early Δψm collapse that form the origin of the organized propagating
wavefront of mitochondrial dysfunction.

The importance of Δψm kinetics at the tissue level was also highlighted in a recent study in
which cardiac arrhythmias induced by GSH oxidation were effectively inhibited by
preventing Δψm depolarization using IMAC blockade (Brown et al., 2010). Paradoxically,
we also recently found that Δψm depolarization was completely prevented in hypertrophied
hearts that were challenged with short episodes of ischemia (Jin et al., 2010). Protection
against Δψm depolarization in this rat model of ascending aortic banding was not, however,
associated with protection against arrhythmias (Jin et al., 2010).

Finally, in embryonic mouse hearts, Chen et al (Chen et al., 2007) elegantly investigated the
differential effects of inhibiting glycolysis versus oxidative phosphorylation on Δψm
depolarization and arrhythmia propensity. While inhibition of oxidative phosphorylation but
not glycolysis caused a major depolarization in Δψm, both strategies led to comparable
slowing of heart rate, shortening of the action potential duration, blunting of the intracellular
calcium transients, and promotion of arrhythmias (Chen et al., 2007). Of note is the fact that
the developing myocardium is more dependent on glycolysis than is the adult heart.

Δψm Recovery
Prompt reperfusion is required for preventing irreversible cell damage and death.
Unfortunately, restoration of blood flow, in itself, results in additional cardiac damage,
known as reperfusion injury, which results from large bursts of ROS (Bolli et al., 1989).
ROS-mediated oxidative damage is more severe when reperfusion therapy is delayed.
Effective strategies to limit or prevent reperfusion injury have proven elusive. Despite an
improved understanding of the pathophysiology of this process, the vast majority of clinical
trials aimed at preventing reperfusion injury have been quite disappointing. We recently
demonstrated that the successful recovery of Δψm upon reperfusion is indeed highly
dependent on the duration of the preceding ischemic episode. Despite a comparable degree
of Δψm depolarization following 7.5 and 15 minutes of global no-flow ischemia in the rat,
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reperfusion led to recovery of Δψm only following the short (7.5 min) but not longer
episodes of ischemia (Lyon et al., 2010b). Interestingly, sustained Δψm recovery was also
predictive of post-ischemic functional and electrical recovery (Lyon et al., 2010b). These
findings reinforce the notion that reperfusion is a highly complex phenomenon which could
either reverse or exacerbate ischemia mediated changes in Δψm. In fact, additional Δψm
depolarization upon reperfusion following long episodes of ischemia is consistent with ROS
induced damage during this phase (Lyon et al., 2010b). Strategies aimed at promoting rapid
recovery of Δψm during the early (first 5 minutes) phase of reperfusion, potentially by
ischemic or pharmacologic post-conditioning strategies, may be an effective strategy for
avoiding the genesis of ventricular fibrillation (Lyon et al., 2010b).

Metabolic sinks and reperfusion arrhythmias
Spatio-temporal heterogeneities in mitochondrial function may be associated with local
changes in sarcKATP current density which could potentially create areas of depressed
excitability to form conduction block through a mechanism we termed “metabolic sink”
(Akar et al., 2005). The presence of metabolic sinks may promote the genesis of arrhythmias
by shortening the effective refractory period and slowing myocardial conduction in the area
of the sink; thereby, shortening the excitation wavelength. Moreover, presence of
heterogeneous metabolic sinks is expected to promote heterogeneous action potential
repolarization across the tissue. Finally, having a discrete region or dispersed loci of
metabolic sinks may predispose to arrhythmias either by forming unidirectional conduction
block or causing heterogeneous conduction, respectively. In support of the concept of
metabolic sink, IMAC activation using agonists of the mitochondrial benzodiazepine
receptor led to an accelerated shortening of the action potential and an early form of
conduction failure during ischemia. In contrast, IMAC blockade delayed action potential
shortening and the onset of inexcitability (Akar et al., 2005). In this guinea pig model,
sustained ventricular tachyarrhythmias were readily generated upon reperfusion in ~90% of
hearts (Akar et al., 2005). Remarkably, IMAC blockade, which stabilizes Δψm in vitro,
markedly suppressed the formation of these arrhythmias. Indeed, these data suggest that
mitochondrial depolarization is the primary factor driving KATP channel activation in
ischemia and arrhythmias upon reperfusion. The protective effect of IMAC blockade on
electrical and contractile post-ischemic function was further demonstrated in a rabbit model
of ischemia reperfusion injury (Brown et al., 2008b). This anti-arrhythmic effect was not
evident in hearts treated with the mPTP blocker, cyclosporine A, reinforcing IMAC as the
primary mitochondrial mediator of post-ischemic arrhythmias. This concept of metabolic
sinks is strengthened by our Δψm imaging studies, which revealed complex spatio-temporal
dynamics of Δψm properties that were closely related to post-ischemic electrical and
contractile recovery (Lyon et al., 2010a). Finally, the dependence of electrical dysfunction
on Δψm was recently argued in hearts that did not undergo ischemia-reperfusion injury, but
rather, were challenged with diamide-induced glutathione oxidation. Again, IMAC blockade
was effective in preventing both Δψm depolarization and arrhythmias in this model of
metabolic stress (Brown et al., 2010).

Mitochondria as therapeutic targets
Cardiac mitochondria form a compact three dimensional lattice structure that is tightly
packed between myofilaments and surrounding t-tubules. This spatial organization places
mitochondria in close proximity to the major sites of energy consumption (myofilaments)
and excitation-contraction coupling (diads). By being the major source of ROS production,
mitochondria can intricately alter the activity of multiple ion channel, Ca2+ handling and
contractile proteins. Moreover, the generation of metabolic intermediates within
mitochondria provides the reducing equivalents required to maintain the negative redox
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potential of cellular antioxidant pathways. As such, mitochondria clearly represent an
attractive target for altering myocyte function, including electrophysiological properties.

Uncovering mechanisms by which mitochondrial dysfunction predisposes to arrhythmias
will allow us to design novel strategies. Targeting root causes (ie mitochondria) rather than
downstream consequences (cell surface membrane transporters, calcium cycling proteins,
etc) is expected to be advantageous as mitochondria represent a main hub of myocyte
function that controls energetics, cell signaling, calcium handling and electrical function.

The development of effective therapeutic strategies targeting the mitochondrial network is
currently hampered by a lack of solid molecular information regarding the identity of key
mitochondrial ion channels and transporters. For example, none of the proteins involved in
mitochondrial Ca2+ homeostasis have thus far been completely resolved. Pharmacological
studies point us towards promising targets such as the IMAC, mPTP, mitoKATP, and MCU,
but actual mitochondrial structures and macromolecular complexes that mediate changes in
Δψm remain a subject of intensive debate and active investigation. Indeed, this field of
mitochondrial biology is ripe for discovery as powerful proteomic and genomic tools
become more readily available. Meanwhile, integrative multi-scale investigation, involving
complementary in vivo, ex vivo, in vitro, and in silico approaches is essential for
understanding how metabolic failure at the level of the organelle can scale to produce
arrhythmias in the whole heart.
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Figure 1.
Schematic of key energy sensitive ion channels that can promote cell survival, death, or
arrhythmias.
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Figure 2. Spatio-temporal fluctuations of Δψm during global ischemia (Adapted from Figure 4,
Lyon et al. J Mol Cell Cardiol. 2010, PMID: 20624394)
Successive contour maps of normalized Δψm (above) and its first derivative (below)
acquired at 10, 40, 70, and 180 seconds following the onset of global no-flow ischemia in a
representative rat heart. These data illustrate the presence of spatially and temporally
discordant kinetics of Δψm that exist ahead of the main depolarization wave of Δψm
collapse, which actively propagates across the heart. Color scale: a) Δψm contour maps:
baseline (black), depolarization (red), hyperpolarization (yellow); b) δΔψm/δt contour maps:
baseline (black), positive slopes (turquoise), negative slopes (purple).
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