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Abstract
The objective of this research was to examine the capabilities of QSPR (Quantitative Structure
Property Relationship) modeling to predict specific biological responses (fibrinogen adsorption,
cell attachment and cell proliferation index) on thin films of different polymethacrylates. Using 33
commercially available monomers it is theoretically possible to construct a library of over 40,000
distinct polymer compositions. A subset of these polymers were synthesized and solvent cast
surfaces were prepared in 96 well plates for the measurement of fibrinogen adsorption. NIH 3T3
cell attachment and proliferation index were measured on spin coated thin films of these polymers.
Based on the experimental results of these polymers, separate models were built for homo-, co-,
and terpolymers in the library with good correlation between experiment and predicted values. The
ability to predict biological responses by simple QSPR models for large numbers of polymers has
important implications in designing biomaterials for specific biological or medical applications.
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1. Introduction
Following implantation of a biomaterial in the body, protein adsorption occurs within
seconds around the new implanted materials [1]. Cells thus interact with these adsorbed
proteins rather than the biomaterial itself [2, 3]. This initial protein adsorption plays an
important role in determining the biocompatibility of the implant [4, 5]. For example, within
the context of a blood-contacting implant, the level of fibrinogen adsorption is a predictor of
the implant’s tendency to cause thrombosis: When fibrinogen is adsorbed strongly to an
implant surface, the implant has a greater tendency to lead to thrombosis (blood clotting)
than when an implant surface is designed to resist fibrinogen adsorption. Cells may then
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attach and grow further on implanted biomaterials. Some implant applications (for example
contact lenses) require “non-fouling surfaces”, e.g., surfaces that resist protein adsorption
and subsequent attachment and growth of cells. Other applications (for example tissue
engineering scaffolds) require that the implant surfaces support the attachment and
subsequent proliferation of cells. Therefore, the levels of protein adsorption, cellular
attachment, and proliferation on implant surfaces are important design parameters in the
development of new biomaterials for any type of medical implant.

The recent advances in polymer combinatorial chemistry [6, 7] have the potential to
transform biomaterial development and translational use. Beginning with a small number of
monomers, combinatorial parallel synthesis can generate thousands of polymers by varying
the monomers and proportions of the monomers synthesized into homo-, co-, or
terpolymers. These polymer libraries can now be synthesized in high throughput fashion[8]
in sufficient quantity and purity that enables biological and physico-mechanical testing.
Such tests could conceivably screen biomaterials with specific properties tailored for
individual medical applications. However, given the large size of the polymer libraries such
a screening process would be tedious, prone to experimental error, and require tremendous
expense. Consequently, the capability to synthesize libraries of new polymers has now
outpaced the ability to test the properties of the individual polymers for potential
applications. Computational modeling may mitigate such issues by funneling the vast
polymer libraries into a testable subset most likely to fit the specifications for a desired
application.

The Combinatorial Computational Method (CCM) takes advantage of combinatorial
synthesis, rapid screening and computational modeling as a biomaterial invention tool [9]. In
this integrated approach a virtual library is formulated with a number of related monomer
repeat units comprising all possible homo-, co-, and terpolymer combinations. In the place
of comprehensive synthesis and testing of biological or material properties of the entire
library, the semiempirical, quantitative structure property relationship (QSPR) method
[10]may be able to predict particular polymer properties. This method is widely applied in
the pharmaceutical industry to develop predictive models for a property of interest and
ligand based design of compound libraries for virtual screening. To extend this technique to
biomaterials, experimental values are obtained from representative “reference compounds”
and QSPR is used to develop a predictive model that is extended to the larger library of
polymers. Subsequently these predicted values are experimentally validated [11–17].

To test the validity of this method, the methacrylate family of polymers was selected as a
model biomaterial system [18]. Polymethacrylates are extensively used in medicinal and
industrial applications, and numerous methacrylate monomers are commercially available.
For our analysis, 33 methacrylate monomers were selected as the building blocks of the
polymer library (Figure I). In addition to homopolymers synthesized from the individual
monomers, numerous combinations for co- and ter- polymers are possible by varying the
proportions of the different monomers. For this work, co-polymers of all 33 monomers were
selected in the defined ratios of 50:50, 25:75, and 75:25, leading to more than three thousand
possible copolymers. Terpolymer blends of 33:33:33 were also included, leading to more
than forty thousand polymer combinations in the virtual polymer library.

A subset of 130 homo-, co- and terpolymers were chosen for synthesis and evaluation of
protein adsorption and cell-material interactions. Experimental data within a certain range of
cutoff value for standard deviation were considered “usable” for modeling. To build the
model for the virtual polymer library an Artificial Neural Network (ANN) is constructed
based on usable data collected for the 130 methacrylate polymers together with
computational data of physicochemical polymer properties. The novelty in this approach is
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that the method makes the calculation of descriptors for any composition of co- and
terpolymers easier, as the descriptors are calculated from linear combinations of the
homopolymer descriptors. This process avoids the need to recalculate descriptors for each
possible composition of co and terpolymers and provides enormous flexibility and
extendibility of the model.

The end goal is to develop an integrated flexible computational model capable of predicting
complex interactions of proteins and cells with polymer surfaces. This is accomplished by
rank ordering the polymers based on their computationally calculated properties, aiming to
predict values and identify trends as close as possible to the measured values obtained in
validation studies. Rank ordering is achieved by dividing the experimental data for the
reference polymers into different bins or classes (e.g. low, medium, high). We applied
computational models to predict the properties of the same set of reference polymers. These
predicted properties are then grouped into similar bins and comparisons are made whether a
particular polymer is in the same bin as found from experiment or not. Rank ordering of
biomaterials with respect to certain properties is important as it reduces the time and effort
needed to complete costly cell and protein studies.

2. Methods
2.1. Experimental

The reference polymers (homo-, co-, and terpolymers) were synthesized using an automated
parallel synthesizer (SLT 100 Accelerator, Chemspeed, Basel Switzerland) utilizing
previously published methods [8, 18]. Briefly, reactors equipped with septa and reflux
condensers were inertized, cooled to RT, and degassed reagents (purified monomers, chain
transfer reagent, and solvent) were charged by syringe transfer using a 4-needle tool while
being purged with argon. The reactions were vortexed at 600 rpm at 70 °C for 20 h under
argon. The reactions were then cooled to 20 °C and precipitated manually. The polymers
were dried under vacuum for ≥24 h at 60 °C. Using this robotic instrument it was possible to
produce sufficient quantities of structurally related polymers with diverse pendant ester
groups. Once synthesized, the polymer compositions were confirmed with proton NMR
spectroscopy ( Varian 500 or 400 MHz) . Polymers were characterized for molecular weight
and polydispersity using previously published methods [8] and had molecular weights of
between 100 kDa and 200kDa and polydispersity index of less than 1.6 (measured in either
N,N-dimethylformamide or tetrahydrofuran and calculated using PS standards). Biological
properties (fibrinogen adsorption, cell attachment, cell proliferation index) were determined
using characteristic techniques relevant for this computational model as described in the
following sections.

2.1.1. Fibrinogen adsorption using an immunofluorescence assay—For the
measurement of protein adsorption on the polymethacrylate surfaces, a rapid screening
immunofluorescence assay (IFA) developed by Weber et al. [19] was applied. A brief
description of this assay on solvent cast polymethacrylates is as follows.

Solvent Casting: Polymethacrylates are dissolved (5% w/v) in tetrahydrofuran (THF, EMD
Chemical Inc., Gibbstown, NJ) and then filtered using a 0.45 µm PTFE filter (Whatman
Inc., Clifton, NJ). A 50µl polymer solution is dispensed into the wells (n = 14) in each
column of a black polypropylene 384-well plate (Nalge Nunc International, Rochester, NY).
Plates are placed under a nitrogen and solvent rich atmosphere and the solvent was allowed
to slowly evaporate in a hood over 16 hours. The plates are then placed in a temperature-
controlled oven where the temperature was increased by 10 °C from 35 °C to 85 °C every 30
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min. Then finally they are left for 96 h under vacuum at 80 °C allowing for the evaporation
of any residual solvent.

Protein adsorption detected by the immunofluorescence assay: All pipetting steps are
performed using multipipettes (hand pipetting). For each incubation step, the plates are
centrifuged at 140G for 3 minutes followed by incubation at 37°C. All washing steps are
performed using an automated micro-plate strip washer (ELx50, Biotek instruments,
Winooski, VT). During washing cycles, 40 µl phosphate buffered saline (PBS, Sigma, St.
Louis, MO) are dispensed in each well, followed by 20 seconds of plate shaking and
aspiration. Human fibrinogen (3 mg/ml, Cat. No. 341576, Calbiochem, LaJolla, CA) is
prepared in PBS for the adsorption experiments. 25 µl of this solution is pipetted into each
well and incubated for 1.5 h followed by 8 rinsing steps. To block nonspecific antibody
binding, wells are incubated with 40 µl 1% (w/v) Bovine Serum Albumin (BSA, Sigma, St.
Louis, MO) in PBS for 0.5 h. After rinsing five times with PBS, a background measurement
of the plate is performed at 485 nm (excitation) and 525 nm (emission) (Tecan, Durham,
NC). The purpose of preread blanks is to correct for well-to-well variability and subtract the
plate background prior to the addition of the antibody. To detect adsorbed fibrinogen, a
fluorescein labeled goat IgG antibody (polyclonal) to human fibrinogen (Cat. No. 55169,
MP Biomedicals, Solon, OH) diluted (1:10) in 1% BSA in PBS (w/v) (25 µl per well) is
added in each well and incubated with surface-adsorbed fibrinogen for 1.5 h, followed by 6
PBS rinses. Following subtraction of the background measurement (average of 25 repetitive
readings per well), the fluorescent intensity (FI), average from 14 wells per polymer are
normalized to the FI of bare polypropylene wells (a control row is kept in each plate).

To evaluate the reproducibility of the assay, the adsorption and detection of fibrinogen is
repeated. An example of data set for 13 polymers, including the polypropylene, is provided
in Figure II (n =14 for each polymer per experiment). The assay is performed twice and the
results obtained from the two independent experiments are compared.

2.1.2. Quantification of cellular response using MTS assay—To allow rapid
screening, cellular response to the polymethacrylates is experimentally measured using NIH
3T3 cells seeded on spin coated glass cover slips and the MTS assay. The two parameters
measured are cell attachment (short-term response; measured 4 hours after cell seeding) and
cell proliferation (long-term response; measured 4 days or around 96 hours after cell
seeding). This procedure is a modification of the method described previously [6] and
includes a new approach to quantify cell proliferation. Briefly, the procedure includes the
following:

Polymer spin coating: A 2.5% polymer solution is made in an appropriate solvent and
filtered using a Whatman Puradisc PTFE, 0.45 micron filter (Whatman Inc., Piscataway, NJ,
USA). Fifty microliters (50 µl) of polymer solution is placed in the center of a clean 15 mm
round glass cover slip (Fisher Scientific, Pittsburgh, PA, USA) on a spin coater (Headway
Research Inc., Garland, TX, USA) that is placed in a humidity-controlled environment (<
20%). Spin coating is carried out for 30 seconds at 4000 rpm and the polymer-coated cover
slips are vacuum dried overnight at 50° C to remove any remaining solvent. Polymer coated
cover slips are sterilized by exposure to UV for 30 minutes. These UV sterilized polymer
coated slips are then placed in 24-well sterile tissue culture plates (Corning-Costar, Lowell,
MA, USA) and used for cell culture experiments.

Fibroblast cell culture and cell response study: NIH/3T3 cells (ATCC No. CRL-1658;
ATCC, Manassas, VA, USA) are cultured in DMEM-high Glucose medium supplemented
with 10% Bovine calf Serum & Penicillin-Streptomycin antibiotics (Gibco/Invitrogen,
Carlsbad, CA, USA). Sub-confluent cells of passage 6–12 are used for experiments. Cells
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growing in Corning® 75cm2 Rectangular Cell Culture Flask (Corning Product #430641;
Corning-Costar, Lowell, MA, USA) are detached using Trypsin (2.5 g/L)-EDTA.Na4 (0.38
g/L) for 2 minutes at 37° C, neutralized with 4X volume of serum containing cell culture
media and then counted using the Cellometer® Auto-T4 cell counter (Nexcelom Bioscience,
Lawrence, MA, USA). About 1 × 104 cells are seeded/well (24-well plate containing
polymer-coated cover slips, except the internal positive controls which are the original
tissue-cultured plate surfaces). Two sets of identical plates (containing same polymers in
similar arrangements) are used for each experiment, where one set is used for measuring cell
attachment and the other for cell growth. Both plates are processed identically, except where
noted. In these experiments the blank is the cell culture media and n=4 has been used for all
samples.

After cell seeding, the 24-well plates (both cell attachment & cell growth) are incubated at
37° C and 5% CO2 for 4 hours. The media is removed using a 12-channel pipette (Mettler-
Toledo Inc., Columbus, OH, USA) and the cells are washed with 400 µl of 37° C pre-
warmed Phosphate Buffered Saline (lacking Calcium & Magnesium). The viable cells that
remained attached to the polymer surface or the tissue culture polystyrene (TCP) control are
quantified using a slightly modified MTS assay [20]. 200 µl of cell culture media containing
317 µg/ml of CellTiter 96® AQueous One Solution MTS Reagent (Promega Corp., Madison,
WI, USA) is added per well of the plates representing cell attachment assay and then they
are incubated at 37° C/ 5% CO2 for 1 hour. The MTS reagent is a tetrazolium compound [3-
(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner
salt; MTS], which is bio-reduced to an aqueous (cell culture media) soluble formazan
product by the dehydrogenase enzymes found in metabolically active cells. The quantity of
formazan product (which is directly proportional to the number of living cells in culture)
was measured from the absorbance of respective cell culture media at 490 nm using a
BioTek PowerWave-x plate reader (BioTek Instruments, Winooski, VT, USA). To the plates
representing cell growth assay 200 µl of cell culture media (No MTS reagent) is added per
well and the plates incubated at 37° C/ 5% CO2 for 4 days (or about 96 hours). MTS assay is
carried out as described above.

Data analysis and calculation of relative proliferation index: The absorbance values (490
nm) from the MTS assay for samples containing the polymers (or TCP) were corrected for
blank (media) and used for further calculations. The average absorbance value (from n=4) is
used in calculations of cell attachment (expressed as a value normalized to TCP) and cell
proliferation (expressed as a Relative Proliferation Index). Relative cell Proliferation Index
or Relative Proliferation Index (RPI) is a more accurate measure of cellular response to a
growth on polymer surfaces and enables us to compare data from independent experiments
being carried over a long-time period. In the present study the synthesis and characterization
of the polymers are repeated several times over a long period of time and thus an internal
control surface (TCP), similar cell-growing conditions (passage, confluency) and
standardized protocols to ensure data consistency and repeatability has been used. The
Relative Proliferation Index (RPI) is calculated as follows:

RPI= Δ Growth for Polymer (or TCP)/ Δ Growth for TCP

Δ Growth= Growth MTS data (Average) – Attachment MTS data (Average) Standard
deviations were calculated from four cover slips per polymer. Cell attachment and
proliferation were both expressed as percentage of TCP values.

2.2. Computational
The general QSPR approach consists of three steps. First the molecular descriptors are
calculated using well known algorithms to represent the molecules. The molecular
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descriptors are the final results of logic and mathematical procedures that transform
chemical information encoded within a symbolic representation of a molecule into useful
numbers or the results of some standardized experiments. There are various software
available [21] to calculate the descriptors and the total numbers are typically a thousand or
more. The second step is reduction of the number of descriptors to identify the relevant ones
for the experimental property to be modeled. Some classifying algorithms are necessary.
Decision Tree (DT) [22] or Principal Component Analysis (PCA) is mostly used for this
purpose. A Decision Tree is a predictive tool about observation and conclusions derived for
a target value. Principal Component Analysis is a vector space transform often used to
reduce multidimensional data sets to lower dimensions for analysis. In the final step the
model is built using the most relevant descriptors. The descriptors are used in the Partial
Least Square (PLS) regression method, the Artificial Neural Network (ANN), or the Radial
Basis Function (RBF) network to model the required property, the fibrinogen adsorption or
cell attachment or cell proliferation index in this case. PLS regression is an extension to
multiple linear regression models. ANNs are based on attempt to mimic the neurological
abilities in the brain by a set of mathematical methods, models and algorithms to process
information and acquire knowledge. In mathematical terms ANN is composed of a series of
non-linear sigmoid operators to find patterns among data set in input and output. Radial
Basis Functions are powerful techniques for interpolation in multidimensional space and can
be applied as a replacement of the sigmoid hidden layer transfer characteristic in an ANN to
form the RBF network.

2.2.1. Calculation of the descriptors—Three dimensional structures were generated
using the MOE (Molecular Operating Environment) [23] software package for 33
homopolymers of ten repeat units. The predictive capability of the models was found to be
the same irrespective of ten or twenty repeat units. As glass transition temperature data was
available for these polymers we built separate models for glass transition temperature and
tested using ten and twenty repeat units. Qualitatively the models were very similar and thus
a ten monomer repeat unit was used throughout this work. There was also a limitation of the
total number of atoms that can be handled in the available version of DRAGON [24]
software that is used to calculate the descriptors. The 3D structures generated using the
MOE represent the molecular connectivity of the polymers. These molecular structures are
then energy minimized in vacuum using the default force field (MMFF94x)[25] within
MOE package to find the optimized structures. These optimized structures represent the
equilibrium configuration of the molecules with a local minimum potential. The molecular
descriptors are calculated based on these optimized structures using DRAGON version 5.4
[24] software. This version of the software is capable of calculating zero through three
dimensional descriptors including constitutional, topological, WHIM, and GATEWAY
descriptors.

A simple approach is followed for estimation of the descriptors for co- and terpolymers.
Numerical values of the descriptors are calculated as linear combinations of homopolymer
percentage composition by weight. The basic hypothesis is to build a semiempirical model
of co and terpolymers from the calculated descriptors without drawing and optimizing the
chemical structures, which is extremely time consuming. This method gives us the
flexibility to incorporate any composition found from NMR analysis of synthesized
polymers. This is a very important and simple assumption in the sense that this can be easily
adapted and extended to other formulations of the co and terpolymers in future if needed.
The idea is to see if there is still enough useful information from these sets of descriptors
that are easily estimated.

2.2.2. Reduction of number of relevant descriptors using Decision Tree (DT)—
The total number of available descriptors (1664) is large and any model based on all the
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descriptors would overfit the data. Highly correlated descriptors and descriptors containing
identical information for over 90% of the data set are removed. Next the homopolymers are
grouped into either 5 bins or 3 bins based on the experimental values using the EM
(Expectation Maximization) cluster analysis algorithm from WEKA [26]. Cluster analysis
can group similar items into same bins. An expectation-maximization (EM) algorithm is
used in statistics for finding maximum likelihood estimates of parameters in probabilistic
models. The most significant descriptors relevant for each property are found by the C4.5
Decision Tree [22] algorithm from WEKA [22]. This DT algorithm is the commercial
successor of the original C4.5 program and uses a top-down induction of Decision Tree with
pruning of the branches. All the experimental data for each set of polymers are used in the
Decision Tree to find the most significant descriptors. The significant descriptors are
capable of correctly classifying the instances for more than or equal to 90% of the cases.
Either the Decision Tree algorithm is used directly or useless (constant attribute along with
nominal attributes that vary too much) descriptors are removed and then CfsSubsetEval
attribute selection method is used to find the best subset for each class and then the Decision
Tree algorithm is applied to find the best descriptors for the clusters. CfsSubsetEval [22]
function evaluates the worth of a subset of attributes by considering the individual predictive
ability of each feature along with the degree of redundancy between them. Exactly similar
Decision Tree approach is followed for homo-, co- and terpolymers.

2.2.3. Building Artificial Neural Network (ANN) model—These significant
descriptors are then used by the back propagated Artificial Neural Network [27] with two
nodes in one hidden layer to build the model. Either one random seed or 100 random seeds
have been used to see the effect of the number of seeds in the model. The best model found
from WEKA is also used in genetic algorithm driven [28, 29] artificial neural network with
two nodes in one hidden layer to build the model and compare with the results found from
WEKA.

The total number of data points for homopolymers are relatively sparse for all the properties
of interest and thus the previous practice [13] of using 50% of the experimental data as
training set and rest as test set is not appropriate. Instead a ten-fold cross-validation method
[30] is used. For example, for cellular responses there are thirteen homopolymer data to
build the model. Eleven out of thirteen data is taken to train the model and the remaining
two to test the model. This is done for all possible (13C2 = 78) combinations. Any data is
part of the test set for 12 times and part of the training set for 66 times but no data is part of
both the training and the test sets at the same time. When 100 random seeds are used to run
the iteration process, the best random seed for training set to predict the test set has been
taken. This exhaustive iteration is carried out to minimize the dependencies of the training
on initial random weights and biases. This generally produces much better statistics than any
single training run [31, 32]. Results are obtained by averaging the output values for each
polymer in the test sets.

For co- and terpolymers 50% of the data is used to build the model and the rest to test the
model. This is plausible as there were a fair amount of experimental data to build the model
using only 50% of the data set. Randomly 100 training sets are selected from the whole data
set and predicted values are found as average of those runs. All the experimental data for
homo, co-, and terpolymers are combined together and used to build one uniform model for
all of the polymers as well. The same procedure has been used for fibrinogen adsorption and
cellular response to find different models for homo-, co-, ter- and all polymers together.
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3. Results and Discussion
In this section the results of the fibrinogen adsorption model and cellular response model are
presented followed by discussion of the model sensitivity to selection of the best descriptors
and at the end a comparative discussion is carried out about the validity of both types of
biological responses.

3.1. Fibrinogen Adsorption
The description of the best descriptors found from DT for fibrinogen adsorption for different
set of polymers (homo-, co-, ter-) along with the Pearson correlation coefficients [33] are
described in table I.

Using the iteration methodology to model fibrinogen adsorption to homopolymers, the
training set Pearson correlation coefficient is found to be 0.99 with a test set value of 0.91.
In more than 90% of the cases the predicted fibrinogen adsorption for the homopolymers are
in the right bins (low, medium, and high) as observed from experimental data (Figure III).
Three bins are formed with experimental normalized fibrinogen adsorption values relative to
adsorption on polypropylene without polymer i) less than 200 ii) between 200 and 400 and
iii) more than 400. The numerical values of the highest two values are slightly off from the
experimental values but the trend is correctly maintained.

When the model is extended to copolymers and terpolymers, the numerical values of the
descriptors are calculated as weighted average of the homopolymer experimental
composition. It must be emphasized that although the descriptors are combined linearly, the
ANN model itself is nonlinear in nature. We used 100 random training-test sets to find the
average Pearson correlation coefficient as described before. The average Pearson correlation
coefficients were 0.95 and 0.66 for training and test sets respectively for fibrinogen
adsorption to copolymers (Figure IVa). For terpolymers these numbers are 0.99 and 0.87
respectively (Figure IVb). In both cases it is confirmed that 100 random selections of
training and test sets are a reasonable number in order for the model to become statistically
accurate, where all possible combinations give the same result as 100 random runs.

Similar to what was performed for homopolymers, three bins are formed with experimental
fibrinogen adsorption values on co and terpolymers relative to polypropylene control i) less
than 200 ii) between 200 and 400 and iii) more than 400. In 70% of the cases the predicted
fibrinogen adsorption values are in the right bins for copolymers whereas for terpolymers
this number is more than 80%.

When all of the three models and the predicted values of fibrinogen adsorption are
considered, more than 82% of the polymers sort into the appropriate bin. In this case the
bins are formed with experimental values i) less than 200 ii) between 200 and 500 and iii)
more than 500 relative to the polypropylene control. Figure V represents the experimental
and predicted fibrinogen adsorption as increasing order of their experimental values. The
data indicates that when all three models are combined, the overall ranking for fibrinogen
adsorption to polymers is good with respect to predicted individual polymers and excellent
for defining the general trends.

In order to consider all polymers (homo-, co-, ter-) together, a unified model was developed
and a Decision Tree algorithm was used to find the top seven descriptors for fibrinogen
adsorption. These descriptors were then employed to build the ANN model for the entire
polymer system. 100 random training and test sets were selected and results were obtained
as average over all the runs. The total data set has been split in two, with half to use as
training set and the other half in the test set. The Pearson correlation coefficient of training
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set is 0.91 and that of test set is 0.71. These results suggest that the overall quality of the
model is compromised to some extent but the prediction is very encouraging considering the
wide variation of the data and the simplicity of the model.

Comparing the four models (homo-, co-, ter-, and all polymers together) reveals interesting
similarities in what polymer properties could be used to best describe and predict fibrinogen
adsorption. Although each set of models has a distinct set of best descriptors without much
overlap, overall similar attributes were selected. As described in Table I, one of the best
descriptors for homopolymers is AMW (average weight-average molecular weight), which
is easy to correlate with the mass and size of the molecules. A second descriptor with good
predictive value, RPCG (relative positive charge), accounts for the effects of polar
intermolecular interactions or charge distribution of the molecules [21]. Among the four top
descriptors for copolymers of fibrinogen adsorption, MAXDN (maximal electrotopological
negative variation) represents the maximum negative intrinsic state difference in the
molecule and can be related to the nucleophilicity of the molecule [34]. SIC3 (structural
information content – neighborhood symmetry of third order) gives information about the
third order neighborhoods of the vertices of chemical graph by applying information theory
on chemical graphs [35]. GATS8m (Geary autocorrelation – lag 8 / weighted by atomic
masses) is also based on molecular graph theory, describing the distribution of atomic
masses along the paths connecting atom pairs of length 8 and characterizes the importance
of atomic mass distribution [36]. Radial distribution function descriptors, on the other hand,
are based on the distance distribution in the molecule [21]. The radial distribution functions
describe how the density of surrounding matter varies as a function of the distance from a
particular point and can be interpreted as the probability distribution of finding an atom in a
spherical volume. Similarly the best descriptors for the terpolymers represent information
about the fourth order neighborhood, bonds and multiplicity of chemical graph (BIC4) [21],
the geometric mean on the leverage magnitude in study (HGM) [37] and autocorrelation
coefficients. Overall the best homopolymer descriptors focus on size and electrostatics,
copolymer descriptors focus on size, mass, structure, nucleophilicity, with terpolymer
descriptors focusing on bonding, size and structure of the molecules. It is interesting to note
that terpolymers prediction is much better than the copolymers prediction, which might be
attributed to the fact that terpolymers descriptors contain more information about the
polymers than the descriptors of copolymers. The seven top descriptors for the combined
data set has information about the flexibility, nucleophilicity, shape, geometry, size,
structure, and bulkiness of the molecules.

3.2. Cellular Response
Results for the cell attachment and proliferation for different set of polymers (homo-, co-,
ter-) along with the Pearson correlation coefficients and best descriptors are detailed in
Table II. The polymers encompass a variety of cell attachment characteristics, with values
(relative to TCP) ranging from 0.2 to 1.0. Cell proliferation (again relative to TCP) ranged
from 0 up to 2, exemplifying the diversity of the polymer library. Interestingly, the polymers
having a very low proliferation index did not always match up with polymers exhibiting
poor attachment of NIH3T3 cells.

The training set Pearson correlation coefficients are found to be 0.99 for both cell
attachment and cell proliferation index with test set values of 0.58 and 0.51 for attachment
and proliferation respectively for homopolymers. In more than 77% of the cases the
predicted cell attachment for the homopolymers are in the right bins (low, medium, and
high) as found from experiments. For cell proliferation index 70% of the predicted data are
within same experimental bins. In these cases the bins are formed with experimental cell
attachment or proliferation index values i) less than 0.31 ii) between 0.31 and 0.61 and iii)
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more than 0.61. For homopolymers all possible combinations as described in the method
section gives the same result as averaging 100 random training sets.

For copolymers, training sets give average Pearson correlation coefficients of 0.91 and 0.92
and those of test sets give values of 0.44 and 0.66 for the cell attachment (Figure VIIa) and
cell proliferation (Figure VIIb) index respectively. For terpolymers these numbers are 0.99
and 0.95 for training sets and 0.77 and 0.40 for test sets for attachment (Figure VIIIa) and
proliferation (Figure VIIIb) respectively. Three bins are formed for cell attachment values i)
less than 0.31 ii) between 0.31 and 0.61 and iii) more than 0.61. In 70% of the cases the cell
attachment values are in the right bins for copolymers where as for terpolymers this number
is about more than 80%. For cell proliferation index these values are 64% and 38%
respectively for copolymers and terpolymers with bins defined with values i) less than 0.5 ii)
between 0.5 and 0.8 and iii) more than 0.8. These results show that when individual polymer
models (homo, co-, ter-) are developed, a good rank ordering into bins can be achieved, with
the exception of cell proliferation on terpolymers. When all of the three models and the
predicted values of cell attachment and cell proliferation index are considered it was found
that 75% and 56% of the polymers are in the right bins for the respective properties. These
results show that overall ranking is acceptable when the 3 models are combined and used to
predict the cellular responses for the entire dataset.

Two of the best descriptors for cell attachment onto homopolymers are based on the eigen
values of the edge adjacency matrices whereas two other descriptors reference the three
dimensional structures, atomic mass and volumes of the homopolymers. For copolymers the
best descriptors represent topology, size, volume and connectivity of the molecules.
Flexibility, mass, structure and polarisability of the molecules are descriptors which best
predict cell attachment to terpolymers. With reference to cell proliferation, homopolymer
descriptors represent information about the symmetry and electrostatics of the polymers.
Three of the top five descriptors for copolymers of cell proliferation index represent three
dimensional Morse descriptors and other descriptors represent the autocorrelation functions
which have information about the volume, polarizability, and structure of the molecules.
Topology, polarisibility, electronegativity of the molecules are main feature to depict the
variation of cell proliferation index of the terpolymers within methacrylate library of
polymers.

3.3. Sensitivity of the model on selection of the best descriptors—As discussed
in the method section, several different strategies have been deployed to find the best
descriptors. One of the strategies was to remove the useless (constant attribute along with
nominal attributes that vary too much) descriptors first followed by application of
CfsSubsetEval function, which evaluates the worth of a subset of attributes by considering
the individual predictive capability. CfsSubsetEval function is known to improve the J48
Decision Tree algorithm from WEKA software. After these steps we applied Decision Tree
algorithm on relatively smaller number of descriptors. In another strategy we used Decision
Tree directly after removing the useless descriptors but used different levels of pruned tree.
These different sets of best descriptors are then used to build the ANN model. The most
accurate models has been discussed previously in the results section but here analysis is
made on whether other sets of descriptors have any correlation with the chosen model, and
consequently to the experimental data.

Table III represents the different sets of best descriptors to build the model of fibrinogen
adsorption for homo-, co- and terpolymers. It is clear from the Pearson correlation
coefficients of each set that it is easy to get a perfect correlation for training set but a good
correlation for test set is only achieved with the proper choice of descriptors. The chosen
best descriptors (AMW, RPCG) for homoplymers in this case clearly have some meaning to
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the variation of experimental data of homopolymer fibrinogen adsorption. Set 2, 3, and 4 are
comparable as per the Pearson correlation coefficients for copolymer model but the chosen
Set4 is obviously the best one with reasonable number of descriptors. Similarly if Set 1 and
Set3 are compared for terpolymers it is clear that replacing the descriptor nC with two other
(BIC4, HGM) gives slightly better correlation but overall different sets have overlapping
best descriptors. Similar analysis on cellular models also reveals that the chosen model has
relevance to the experimental variation.

3.4. Comparative discussion and applicability of the model
In general the cellular response models are less accurate than the fibrinogen adsorption
models. This can be explained from the variability of the cellular studies. It is inherently
difficult to reproduce some of the cellular response experiments, with two important issues
to be considered here, chemistry and surface topography. The assumption is made that
similar chemistries will generate similar topographies and that correlation can be made
between cellular response and the chemistry of the polymers. This is a simple assumption to
build a complicated model for a vast library of polymethacrylates with so much variation in
the structures. In spite of such variation it is none the less encouraging to see correlations
among the cellular response and chemistry of the polymers.

It must be noted that any QSPR model must be validated by predicting the properties
(fibrinogen adsorption, cell behaviors) on polymers outside the original “reference set”.
Here the external prediction of the fibrinogen adsorption is presented for polymers that were
synthesized and characterized after the model was established based on the sub set of
polymers. Models were constructed for each polymer sub-type in that the homopolymer
model is used to predict the properties of homopolymers, and similarly for copolymers and
terpolymers. Only “usable” experimental data within the range of each set of model are
considered to validate the model. Data from validation experiments found that the models
constructed to predict homo and terpolymers were more accurate than those constructed to
predict fibrinogen adsorption to copolymers. The data shown in Figure IX exemplify the
capabilities of the individual models, where predicted fibrinogen of homopolymers (#1, and
#9) and a terpolymer (#8) are much closer to their actual adsorption than the predictions of
the copolymers (#’s 2–7). Again it must be emphasized that we were interested in rank
ordering of the polymer properties rather than predicting their exact values.

Another question is the applicability of fibrinogen adsorption model for one library of
polymers to other library of polymers. In this respect particularly the applicability of the best
descriptors for fibrinogen adsorption model of polyarylates to polymethacrylates is tested. J.
Smith et. al [16] developed models for fibrinogen adsorption for polyarylates where they
used experimental descriptors e.g. glass transition temperature, contact angle etc. and later
on they improved [13] the model by replacing the experimental descriptors with the
computed descriptors. Here in the context of another larger library it is interesting to see if
the previously built model can be translated to other library of polymers. Three different sets
[13] of J. Smith’s descriptors are used to build the ANN model for methacrylate library of
polymers. Models for individual set of polymers have been tried with homo-, co-, ter-, and
for all polymers together. It has been found that models for all polymers together are better
than each of the other sets. Fifty percent of the data is used to build the model and rest of the
data to test the model using 100 iteration cycles and taking the average from all the runs.
The three sets of descriptors and the corresponding Pearson correlation coefficients (PCC)
for all polymer models are represented in Table IV.

The model based on the best descriptors from polyarylate library is not directly transferable
to the current library. Our interpretation is that it is always best to build the model for each
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individual library of polymers. This result can be explained from the structural variation
among polyarylates and polymethacrylates also.

4. Conclusions
In this study an Artificial Neural Network has been used to build a nonlinear QSPR model
for complicated biological properties for a large library of polymers. It has been
demonstrated that the quantitative structure property method can predict the complicated
biological responses on polymeric substrates which include a large library of polymers
comprising of homo-, co- and terpolymers. It is interesting to note that although there are
three individual models having three different sets of best descriptors for homo-, co-, and
terpolymers, nonetheless the best descriptors in each set contain similar information. The
methodology is able to bypass the tedious calculation of all possible descriptors of co- and
terpolymers for each polymer composition. It is possible that the predictive capacity of the
model may be greatly improved if experimental descriptors such as reactivity ratio, direct
image analysis or cell material topography, could have been obtained and utilized into the
model. Despite the prospect of improving the model using further experimental data, the
here described and utilized QSPR method gives very good predictions for homo-, co- and
terpolymers considering the wide variation in the chemical structure and experimental data.

Using the model it is now possible to extrapolate the predicted values to other polymers in
the library for which there is no experimental data yet. From the predicted rank ordering of
the polymers it is easier to narrow the field of nearly countless polymer combinations to
focus on a subset that are likely to give the desired outcome. This can help reduce the
experimental cost to identify polymers with right order of magnitude of fibrinogen
adsorption, cell attachment or cell proliferation index. Utilizing this modeling method as a
complimentary technique to combinatorial chemical synthesis will greatly improve the
evaluation of extensive biomaterial libraries.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure I.
Methacrylate polymers used in the library (in homopolymer form)
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Figure II.
Fibrinogen absorption reproducibility test of polymethacrylates. Two independent
experiments are performed (mean ±SD; n = 14). The middle bar represents the combined
average calculated from both experiments. First and third bar represent the individual plate
average. The y-axis represents the fibrinogen adsorption relative to adsorption on
polypropylene without polymer presented in arbitrary fluorescent intensity units.
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Figure III.
Predicted fibrinogen adsorption against the experimental values for homopolymers. The
legend TrainPa and TestPa stand for training and test protein adsorption respectively.
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Figure IV.
Predicted fibrinogen adsorption against the experimental values for a) copolymers (42 data)
b) terpolymers (30 data). The legend TrainPa and TestPa stand for training and test protein
adsorption respectively.
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Figure V.
Experimental and predicted fibrinogen adsorption as increasing order of the experimental
values (composition of the polymers are presented in the supplementary data sheet).
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Figure VI.
Predicted a) cell attachment and b) cell proliferation index against the experimental values
for homopolymers (13 data)
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Figure VII.
Predicted a) cell attachment and b) cell proliferation index against the experimental values
for copolymers (53 data)
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Figure VIII.
Predicted a) cell attachment and b) cell proliferation index against the experimental values
for terpolymers (26 data)
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Figure IX.
External prediction for fibrinogen adsorption. Fibrinogen adsorption was most accurately
predicted on homopolymers (1 and 9) and a terpolymer (8), where copolymers were much
more difficult to predict with such accuracy. Polymer compositions are as follows: 1.
Poly(undecyl methacrylate) 2. Poly(2-hydroxyethyl methacrylate-co-methyl methacrylate)
(50:50) 3. Poly(butyl methacrylate-co-methyl methacrylate) (75:25) 4.
Poly(tetrahydrofurfuryl methacrylate-co-methyl methacrylate) (75:25) 5. Poly(ethylene
glycol methyl ether methacrylate-co-methyl methacrylate) (25:75), 6. Poly(butyl
methacrylate-co-2-hydroxyethyl methacrylate) (50:50), 7. Poly(methacrylic acid-co-methyl
methacrylate) (75:25), 8. Poly(isobutyl methacrylate-co-methyl methacrylate-co-methacrylic
acid) (33:33:33) 9. Poly(2-2-2 trifluoroethyl methacrylate).
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Table I

Best descriptors and the Pearson correlation coefficient for different set of models for fibrinogen adsorption.

Polymer set # of data Best descriptors Pearson
correlation
coefficient

Homopolymers 8 AMW (average weight-average molecular weight), RPCG (relative positive charge) Training: 0.99
Test:  0.91

Copolymers 42 MAXDN (maximal electrotopological negative variation), SIC3 (structural information
content – neighborhood symmetry of third order), GATS8m (Geary autocorrelation – lag 8 /

weighted by atomic masses), RDF040m (radial distribution function – 4.0 / weighted by
atomic masses)

Training: 0.95
Test:  0.66

Terpolymers 30 BIC4 (bond information content), HGM (geometric mean on the leverage magnitude),
HATS3u (leverage-weighted autocorrelation of lag 3 / unweighted), R8v (R autocorrelation

of lag 8 / weighted by atomic van der Waals volumes)

Training: 0.99
Test:  0.87

All polymers 80 RBN (number of rotatable bonds), MAXDN (maximal electrotopological negative variation),
PW2 (path / walk 2 – Randic shape index), J3D (3D-Balaban index), RDF020m (radial

distribution function – 2.0 / weighted by atomic masses), L1p (1st component size directional
WHIM index / weighted by atomic polarisabilities), C-003 (atom centered fragments –

CHR3)

Training: 0.91
Test:  0.71
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Table III

Different sets of best descriptors for model of fibrinogen adsorption. Bold represents the chosen model as
described in the earlier section.

Polymers Model Descriptors Pearson correlation
coefficient

Training Test

Homopoly Set1 Me, HATS3u 0.99 0.39

Set2 EEig07d, R4e+ 0.99 −0.23

Set3 AMW, RPCG 0.99 0.91

Set4 AMW, nH, RPCG 0.99 −0.36

Set5 Me, EEig07r, HATS4u, R4e+ 0.99 −0.63

Set6 AMW, RBF, Qpos, RPCG 0.99 0.39

Copoly Set1 MAXDN, DECC, ATS3m, GATS8m, EEig04r, BELp1, JGI6 0.97 0.51

Set2 Xt, MSD, MAXDN, MWC02, GATS8m, EEig01x, EEig07x, EEig08r, BELe1, P1m,
HATS3p, R7m+

0.98 0.63

Set3 MAXDN, GATS8m, RDF040m 0.92 0.64

Set4 MAXDN, SIC3, GATS8m, RDF040m 0.95 0.66

Terpoly Set1 nC, HATS3u, R8v 0.98 0.83

Set2 CIC0, RDF035e, R8v 0.99 0.78

Set3 BIC4, HGM, HATS3u, R8v 0.99 0.87

Set4 CIC0, RDF035e, Mor08u, R8u 0.99 0.70
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Table IV

Different sets of descriptors from polyarylate model applied to polymethacrylate library

Set Descriptors PCC -
training

PCC – test

Set1 number of secondary sp3 carbons, number of hydrogen atoms, hydrophilic factor, number of single bonds,
sum of the van der Waals area of atoms in the molecule with negative partial charge, number of rotatable
single bonds, Kier flexibility index, 2-path Kier alpha modified shape index, third – kappa shape index

0.87 0.62

Set2 molecular density, number of hydrogen atoms, log of the octanol/water partition coefficient from the liner
atom type model, first kappa shape index of Kier, molecular refractivity calculated from the atomic model
based on the corrected protonation state, sum of atomic van der Waals volume scaled on carbon atom,
number of aliphatic ethers, log of the octanol/water partition coefficient calculated from the atomic model
based on the corrected protonation state, molar refractivity from the linear atom type model

0.89 0.64

Set3 molecular density, number of hydrogen atoms, log of the octanol/water partition coefficient from the liner
atom type model

0.75 0.55
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