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Abstract

Interleukin (IL)-22 is an effector cytokine, which acts primarily on epithelial cells in the skin, gut, liver and lung. Both pro- and
anti-inflammatory properties have been reported for IL-22 depending on the tissue and disease model. In a murine model of
allergic airway inflammation, we found that IL-22 is predominantly produced by innate lymphoid cells in the inflamed lungs,
rather than TH cells. To determine the impact of IL-22 on airway inflammation, we used allergen-sensitized IL-22-deficient
mice and found that they suffer from significantly higher airway hyperreactivity upon airway challenge. IL-22-deficiency led
to increased eosinophil infiltration lymphocyte invasion and production of CCL17 (TARC), IL-5 and IL-13 in the lung. Mice
treated with IL-22 before antigen challenge displayed reduced expression of CCL17 and IL-13 and significant amelioration of
airway constriction and inflammation. We conclude that innate IL-22 limits airway inflammation, tissue damage and clinical
decline in allergic lung disease.
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Introduction

Interleukin (IL)-22 belongs to a family of cytokines structurally

related to IL-10 and was originally identified as a gene induced by

IL-9 in T cells and mast cells [1]. The functional IL-22 receptor is

composed of two subunits the IL-22R1 and the IL-10R2 chain, of

which the latter can also pair with IL-10R1 to form the IL-10R

complex [2,3]. In contrast to IL-10, which performs predomi-

nantly regulatory functions during inflammation [4], IL-22 was

initially identified as a pro-inflammatory cytokine capable of

inducing the production of acute-phase reactants by hepatocytes

[5]. In vitro, IL-22 has a pro-inflammatory, hyperplastic effect on

keratinocytes [6], and it was reported that IL-22 mediates IL-23-

induced dermal inflammation and acanthosis in mice [7], similar

to the changes seen in psoriatic skin lesions in humans. On the

other hand, Flavell and colleagues suggested that IL-22 can

protect hepatocytes during acute liver inflammation [8]. Addi-

tionally, IL-22 has been shown to play a protective role in different

models of inflammatory bowel disease [9]. IL-22 is expressed in

healthy human lung tissue and decreased levels have been

observed in patients with sarcoidosis and acute respiratory distress

syndrome [10]. Exposure to IL-22 leads to an expression of

host defense genes in humans and mice and neutralization of

IL-22 resulted in exacerbation of bacterial infections, suggesting a

protective role in mucosal/epithelial host defense [11]. In contrast,

IL-22 plays only a marginal role for infection control during

primary influenza virus infection in the lung [12]. Recent studies

have shown increased pulmonary IL-22 production following

different stimuli. Following bleomycin exposure IL-22 had either

proinflammatory or tissue protective effects depending on the

presence of IL-17A [13]. In contrast, IL-22 was protective during

the development of lung fibrosis induced by chronic exposure to

Bacillus subtilis [14]. Different sources have been described for

IL-22 production. Following bleomycin increased numbers of

IL-22 producing Th17 cells have been reported whereas following

infection with Bacillus subtilis cd T cells seem to be the major source

of IL-22 production [13,14]. In other organ systems, especially

lymphoid tissue and the intestine, innate lymphoid cells have been

recently described to be important producers of IL-22 [15]. Apart

from NK cells and cd T cells, the family of innate lymphoid cells is

ever expanding and new nomenclature for these cells is being

proposed [16]. IL-22-producing innate lymphoid cells share

several common phenotypic and transcriptional similarities, but

largely lack expression of most lineage markers [17]. Their role in

lung disease is not well defined. Initial studies have suggested that

in allergic airway disease IL-22 production is increased [18],

however cellular source and functional role of IL-22 during the

development for allergic airway disease are not identified.
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Allergic asthma is characterized by airway inflammation,

increased mucus production and airway hyperresponsiveness

(AHR). Inflammation is orchestrated primarily by T helper (Th)

2 cells, which accumulate in the lung following allergen exposure

and produce a vast array of different effector cytokines, including

IL-4, IL-5, IL-13 and TNF [19,20]. In addition to Th2 cells, the

role and function of IL-17-secreting Th cells in allergic disease has

lately become a subject of great interest. Increased levels of IL-17A

and IL-17F have been reported in lungs of patients with severe

asthma [21]. In murine models IL-17A is necessary during the

development of sensitization to an allergen, but apparently

functions as a negative regulator in established allergic airway

disease [22]. To define the role of IL-22 in allergic responses

within the lung, we applied a model of allergic asthma in mice

sensitized to ovalbumin (OVA). We found significantly elevated

levels of IL-22 in inflamed compared to non-inflamed lungs mainly

produced by innate lymphoid cells, suggesting a so far unknown

function of this cytokine. To determine the impact of IL-22 on

lung inflammation, we used IL-22 deficient mice and discovered

that IL-22 acts as a negative regulator for the development of

allergic airway disease. Furthermore, we demonstrate that

treatment of sensitized wild type mice with recombinant IL-22

before allergen exposure can reduce the development of AHR and

airway inflammation, suggesting that exploiting this pathway could

provide a potential therapeutic avenue for the treatment of allergic

asthma.

Results

Allergen specific T cell responses result in increased
expression of IL-22 in the lung

To specifically assess whether IL-22 expression is altered

during allergen specific T cell responses, mice which express

transgenic T cell receptor for OVA323–339 (OT II) were exposed

via the airways with OVA or PBS on 3 consecutive days. At

24 hrs following last challenge inflammatory cells in the lung

were analyzed. OT II mice that received OVA showed increased

levels of IL-22 by ELISA in BAL fluid (Figure 1C). Furthermore,

FACS analysis revealed an increased number of IL-22-expressing

cells in the lung tissue of OT II OVA treated mice compared to

OT II mice which received only PBS (Figure 1 A, B). To

delineate the population of IL-22-producing cells, next we took

advantage of the combination of intracellular cytokine and cell

surface staining. We used markers for a variety of adaptive/

innate immune cells which we expected to release IL-22 in the

lungs. Indeed, IL-22 producing cells were CD45 positive,

however majority of IL-22 producing cells were lin-negative

(Ly6G/C, CD4, CD8, CD11c, NK1.1, cd TCR and Ly6G).

Instead, they stained for CD90, Sca-1 (Figure 1E).

To further assess if IL-22 expression also occurs in allergic

airway disease, wt C57BL/6 mice were sensitized with OVA/

Alum on day 0 and 14 and challenged with an OVA aerosol on

days 28–30. Lungs were isolated from challenged-only, and

sensitized and challenged mice and the expression of IL-22 and

IL-22R1 was assessed. When compared to challenged-only mice

animals, IL-22 expression was increased in the lung tissue of

sensitized and challenged animals, whereas expression of IL-

22R1 remained unchanged (Figure 2 A). In addition, increased

levels of IL-22 were detected in BAL fluid of sensitized and

challenged mice compared to challenged only animals (Figure 2

B). To further identify the source of IL-22 intracellular cytokine

staining was performed on isolated lung cells. Interestingly, in

our hands in sensitized and challenged wild type animals IL-22

secretion is still coming from this CD45+ IL-22-expressing innate

lymphoid cell population and is drastically increased in the

inflamed lungs following allergen challenge (Figure 2 C, D).

Further analysis of these cells revealed that IL-22 producing cells

express CD44 and CD25 (Figure 3A). These cells do not

produce IFN-c whereas some also express IL-17A (Figure 3B).

Furthermore analysis of mice that express Cre recombinase in

RORct+ cells, which leads to terminal fate mapping of all cells

which during their development expressed RORct, showed that

the vast majority of IL-22 positive cells are eYFP positive

(Figure 3C).

Il22-deficient mice show increased AHR and airway
inflammation

Using genetically modified animals, which lack IL-22 expression,

the role of IL-22 during the development of allergic airway disease

was assessed. OVA-sensitized and non-sensitized IL222/2 mice and

IL22+/+ controls were challenged with an OVA aerosol. Airway

reactivity was assessed by measuring the changes in airway

resistance to increasing doses of inhaled methacholine (MCh)

48 h following the last airway challenge. Sensitized and challenged

Il222/2 mice demonstrated a significantly (p,0.05) increased

response to MCh throughout the dose–response curve compared to

the sensitized and challenged Il22+/+ mice (Figure 4 A, B). Under

challenged-only conditions, no difference was observed between the

Il222/2 and Il22+/+ mice indicating that the protective IL-22

response is initiated during the sensitization rather than non-

specifically after the acute mucosal exposure to OVA. Challenged-

only Il222/2 mice showed a similar low responsiveness as

challenged-only Il22+/+ mice.

Inflammatory cell accumulation in the BAL fluid and lung tissue

was evaluated 48 h after the last airway challenge. As expected,

sensitized and challenged Il22+/+ mice showed an increase in total

cell counts compared with challenged-only mice. Importantly,

sensitized and challenged Il222/2 mice showed clearly elevated

total cell numbers in the BAL fluid when compared with sensitized

and challenged wt mice (data not shown). We further assessed the

differential cell count and could identify eosinophils to be

markedly elevated (Figure 4 C). In accordance with the results

observed in BAL fluid, sensitization and airway challenge of Il222/2

mice resulted in increased peribronchial inflammation observed in

HE-stained sections of lung tissue (Figure 4 D, E). Inflammation was

more pronounced in sensitized and challenged Il222/2 animals

compared to sensitized and challenged Il22+/+ animals. In line with

the differences seen in inflammatory changes, also the number of

PAS positive goblet cells was higher in the sensitized and challenged

Il222/2 animals compared to the sensitized and challenged Il22+/+

mice (Figure 4 D, F).

In addition, expression of different cytokines and chemokines

were analyzed in BAL fluid and lung tissue. Sensitized and

challenged Il222/2 animals showed increased levels of IL-5 and

IL-13 in BAL fluid and increased expression of CCL26 (eotaxin 3),

CCL17 (TARC) and IL-33 in lung tissue compared to sensitized

and challenged Il22+/+. No differences between Il222/2 and

Il22+/+ animals were observed for IL-10, IFN-c, and TSLP

(Figure 5). Furthermore, the frequency of IL-4, IL-5, IFN-c and

IL-17A producing cells was measured in lung tissue. Increase

numbers of IL-4+IFN-c2, IL-5+IFN-c2 and IL17A+IFN-c2 cells

were detectable in lung tissue in sensitized and challenged Il222/2

mice compared to sensitized and challenged Il22+/+animals,

whereas no difference was observed for IFN-c+ IL-52 cells

(Figure 6). Overall these results suggest a protective effect of IL-22

on the development of allergic airway disease as demonstrated by

increased eosinophil numbers in BAL fluid, tissue inflammation

Role of IL-22 in Allergic Asthma
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and goblet cell metaplasia in Il222/2 mice compared to sensitized

and challenged congenic wild-type animals.

IL-22 does not affect systemic humoral immunity to
neo-antigen

As inflammation in this model of allergic airway disease is

characterized primarily by a Th2 response, which promotes

humoral immunity, we sought to determine whether IL-22 might

also contribute to the priming of anti-OVA humoral immunity. To

assess this, we took serum of sensitized and challenged and

challenged only mice 48 h after the last airway challenge and

measured serum levels of OVA-specific IgE and IgG1 by ELISA.

Sensitized and challenged Il22+/+ mice showed increased levels of

OVA-specific IgE and IgG1 compared with challenged-only

control mice (Table 1). However, levels of total OVA-specific

IgE and IgG1 in Il222/2 mice were found to not differ signifi-

cantly between sensitized and challenged Il22+/+ mice. Further-

more, allergen-induced proliferation and cytokine production of T

cells was not different in sensitized and challenged Il222/2 mice

compared to Il22+/+ controls (data not shown). These results

indicate that IL-22 is not necessary for priming of humoral

immunity in this model, which is in line with our previous

demonstration that IL-22 deficiency has no impact on Ag-driven

lymphocyte priming and expansion [23].

IL-22 induces STAT-3 phosphorylation in lung epithelial
cells and reduces IL-13 and TNF induced chemokine
production

As IL-22 is reported to act primarily on epithelial cells we

assessed which cells in the lung may mediate the effect of IL-22, we

analyzed by RT-PCR the expression of IL-22R1 and IL-10R2 in

different cell types i.e. Th2 and Th17 cells, granulocytes, smooth

muscle cells, dendritic cells and the immortalized murine clara cell

line C22 as a model for bronchial epithelial cells (data not shown).

Of all cell types analyzed, we could detect expression of the specific

IL-22R1 chain only in C22 cells whereas IL-10R2 chain

expression was found in all cell types analyzed. To further assess

the mechanism by which IL-22 could limit airway inflammation,

we analyzed the effect of IL-22 on C22 cells. As previously

reported for various other cell lines [8,24,25] IL-22 stimulation led

to increased STAT-3 phosphorylation also in C22 cells (Figure 7A).

In order to investigate a potential modifying effect of IL-22 on

clara cell function, C22 cells were pretreated with or without IL-22

and subsequently stimulated with IL-13, TNF, or a combination of

both. Both cytokines are increased in allergic airway inflammation

and have been shown to induce pro-inflammatory changes in

bronchial epithelial cells. Based on the in vivo results, showing

increased production of CCL17 in Il222/2 mice, we analyzed the

generation of CCL17, which is an important chemokine for the

Figure 1. IL-22 expression is increased during specific T cell responses in the lung. Panel A: IL-22 intracellular staining in lung cells 24 hrs
after inhaled exposure of OT II mice with either PBS (PBS) or OVA for 3 consecutive days. Panel A shows IL-22 a representative intracellular staining of
CD45+ cells. Panel B: Numbers of CD45+ IL22+ cells from 2 independent experiments, each dot represents a single mouse, bar represents Mean,
* p,0.05; Panel C: levels of IL-22 in BAL fluid, mean6SEM are shown, n = 4 from 2 independent experiments, Panel D: representative IL-22 intracellular
staining in lung cells 24 hrs after inhaled exposure of OT II mice OVA for 3 consecutive days. Panel E: ScaI and CD90 expression in lung cells 24 hrs
after inhaled exposure of OT II mice. Red dots represent IL-22 positive cells, black dots represent IL-22 negative cells.
doi:10.1371/journal.pone.0021799.g001
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attraction of CCR4 bearing Th2 cells [26] and the airway

epithelium represents an important source of CCL17 [27]. While

IL-13 alone did not significantly alter the expression of CCL17 by

C22 cells (Figure 7B, C), we observed an increased expression of

this chemokine upon TNF stimulation with a synergistic effect of

both cytokines together. Interestingly, the induction of CCL17

could be significantly reduced by previous treatment of the cells

with IL-22, suggesting that IL-22 reduces cytokine-induced

chemokine production in these cells. Inhibition of CCL17

expression was indeed a specific IL-22-mediated effect as it could

be reversed by pre-incubation of IL-22 with both a neutralizing

IL-22-specific mAb and recombinant IL-22 binding protein (data

not shown). In contrast, IL-22 alone had no significant effect on

expression of CCL17 by C22 cells.

Administration of rIL-22 reduces the development of
allergic airway disease in sensitized and challenged mice

To further establish the function of IL-22 in the development of

allergic airway disease, we determined whether the therapeutic

application of IL-22 is effective in wildtype mice. Recombinant

IL-22 (rIL-22) was administered (intranasally) in different dosages

after sensitization, but before challenge to C57BL/6 mice. To rule

out any effect of rIL-22 independent of the inflammatory setting,

we administrated rIL-22 to non-sensitized animals and confirmed

that it had no impact on airway reactivity per se (data not shown).

Overall direct effects of IL-22 on smooth muscle cells are unlikely

as murine smooth muscle cells do not express the IL-22R1 (data

not shown). However, administration of rIL-22 to sensitized mice

before each challenge resulted in a significant reduction of AHR

compared to the sham-treated controls (Figure 8 A). Furthermore,

this IL-22 mediated AHR suppression was dose dependent as it

was more pronounced in mice which received 10 mg rIL-22 prior

to the challenges than in mice which received 1 mg.

To assess whether treatment with rIL-22 also reduced airway

inflammation in this model of allergic airway disease, we evaluated

the number and composition of infiltrating cells in BAL fluid.

Sensitized and challenged animals which received rIL-22 showed

clearly decreased numbers of eosinophils compared to sensitized

Figure 2. IL-22 expression is increased during allergic airway inflammation. Panel A: Expression of IL-22 and IL-22 R1 (IL-22 Rc) was
assessed in lung tissue of challenged only (chall, n = 6) and sensitized and challenged (sens/chall, n = 6) animals. Total RNA was isolated 24 hours after
the last challenge, reverse transcribed, and gene expression analyzed by PCR with specific primers for IL-22R1. Data are shown as fold induction
relative to expression in naı̈ve animals after normalization to GAPDH. Mean6SEM from 2 independent experiments are given. * p,0.05. Panel B:
Levels of IL-22 in BAL fluid 48 hrs following the last challenge in challenged only (chall, n = 6) and sensitized and challenged (sens/chall, n = 6) animal.
Mean6SEM from 2 independent experiments are given. * p,0.05. Panel C and D: IL-22 intracellular staining in lung cells 24 hrs following the last
exposure in sensitized and challenged (top row) and challenged only (bottom row) animals and frequency of CD45+IL-22+ cells in lung tissue each dot
represents a single mouse from 2 independent experiments. * p,0.05.
doi:10.1371/journal.pone.0021799.g002
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and challenged control animals in a dose dependent manner

(Figure 8 B). Similarly, peribronchial inflammation was reduced in

mice treated with 1 mg and 10 mg, respectively, compared to the

non-treated controls (Figure 8 C; Table 2). Also the number of

goblet cells was reduced in sensitized and challenged animals

treated with rIl-22 compared to sensitized and challenged controls

(Table 2).

To determine whether rIL-22 treatment also resulted in an

alteration of cytokines and chemokines present in BAL, we

measured the concentrations of IL-13 and CCL17 in sensitized

and challenged mice 48 h after the last challenge. Levels of

CCL17 were strongly increased by OVA sensitization and

challenge. We observed decrease in BAL CCL17 levels upon

prior treatment with rIL-22 in a dose dependent manner (Figure 8

E). Accordingly, IL-13, which is produced by Th2 cells and known

to be a critical mediator of allergic asthma, was decreased by rIL-

22 in a dose dependent manner (Figure 8 D). These results further

confirm that IL-22 ameliorates AHR and airway inflammation

and suggests that IL-22 treatment led to a decrease in Th2 cell

recruitment and Th2 cytokine production.

Discussion

The development of allergic airway disease includes complex

interaction of innate and adaptive immune cells as well as structural

cells which also play an important role during this process [28,29]. A

pivotal step during the induction of airway inflammation is the

recruitment of allergen specific effector T cells into the lung, which

in turn produce different effector cytokines [19,30–32]. However, in

animals with allergen-specific transgenic receptor we identify an

additional population of lineage negative lymphocytes which

accumulate in the lung following allergen challenge. Similarly, this

cell population was also detected in increased numbers in wild-type

animals. Again we found an increase of these lineage negative cells

following airway challenge only in mice which were previously

sensitized but not in non-sensitized animals. Similar to other groups

we found these cells expressing CD25 and CD44 [33,34], both

markers indicating cellular activation. Fate-mapping using Rorc-

eYFP mice, we found the IL-22-producing cells to be RorcT-

positive innate lymphocytes.

Overall this cell phenotype is reminiscent of a population of

innate lymphocytes, which lack markers of mature lymphoid cells

yet bear receptors commonly found on lymphoid progenitors and

which rely on the activity or the transcription factor Rorct [35].

Different types of innate lymphocytes have been described [36].

Innate lymphocytes are found in the gut mucosa and are

responsible for the development of chronic colitis in mice [33].

Also, innate lymphocytes have been identified in fat-associated

lymphoid clusters [37] and in mesenteric lymph nodes of

helminth-infected mice [38,39]. In the adult human small

intestine, both innate lymphocyte population and an additional

type of lymphocytes that is phenotypically similar to natural killer

cells but lack cytotoxic function, express Rorct and secrete IL-22

[15,40,41]. In regard to pulmonary inflammation mainly NKT

and cd T cells have been in the focus of research [42]. Indeed,

mice deficient of NKT cells fail to develop AHR [43] and either

proinflammatory or suppressive functions have been associated

with the expression of either Vc1+ or Vc4+ TCR respectively

[44,45]. However, we found increased numbers of innate

lymphocyte as the main source of IL-22 production during the

development of allergen specific airway inflammation in the lung.

In previous studies using different models, increased expression of

IL-22 and accumulation of CD4+ IL-22+ cells have been reported

following installation of bleomycin or chronic infection with

Bacillus subtilis in the lung [13,14]. Different sources have been

described for IL-22 production. Following bleomycin increased

numbers of IL-22 producing Th17 cells have been reported

whereas following infection with Bacillus subtilis cd T cells seem to

be the major source of IL-22 production [13,14]. In the present

study the majority of IL-22 positive staining cells in the lungs were

innate lymphocytes and only few CD4+ or cd T cells were

detected to express IL-22. In addition, IL-22 production on a per

cell level was rather small. However, a substantial increase in the

number of IL-22 producing cells was detectable in sensitized and

challenged animals. Overall these findings suggest that in the

present model IL-22 production is not induced but rather the

Figure 3. Analysis of cytokine production and surface markers
of infiltrating mononuclear cells in the lungs. Panel A shows the
expression of CD25 and CD44 among IL-22 producing cells. Panel B
shows the IFN-c and IL-17A production from sensitized and challenged
mouse lungs. Panel C shows the expression of Rorgt. Rorc-eYFP mice
were sensitized and challenged and the lung infiltrating mononuclear
cells were analyzed for the expression of YFP.
doi:10.1371/journal.pone.0021799.g003
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recruitment of IL-22-producing innate lymphocytes into the lung

is increased in sensitized and challenged animals.

Increased expression of IL-22 was detected in intracellular

staining, real time PCR and by ELISA in BAL fluid in OT II mice

that received OVA as well as allergen sensitized and challenged

animals. This is in line with findings of increased IL-22 levels in lung

homogenates of sensitized and challenged BALB/c mice [18].

Using genetically modified animals, deficiency of IL-22 resulted in

increased AHR, eosinophilic airway inflammation, goblet cell

metaplaisa, accumulation of IL-4 and IL-5 producing cells in the

lung as well as increased levels of IL-5, IL-13, CCL17 and CCL26

in BAL fluid and lung tissue compared to challenged only mice.

Under challenged-only conditions, no difference was observed

between the Il222/2 and Il22+/+ mice indicating that the protective

IL-22 response is initiated during the sensitization rather than non-

specifically after the acute mucosal exposure to OVA. Analysis of

allergen specific antibodies indicate that that IL-22 is not necessary

for priming of humoral immunity in this model, which is in line with

our previous demonstration that IL-22 deficiency has no impact on

Ag-driven lymphocyte priming and expansion [23].

Effects of IL-22 in lung has been reported on airway epithelia

cells as only epithelial cells have been found to express IL-22

receptors in the lung. Previous reports have suggested a direct

effect of IL-22 on pulmonary dendritic cells [18], however we were

not able to find expression of IL-22 receptor in bone marrow

derived dendritic cells as well as dendritic cells isolated from the

lung. Also we did not find a direct effect of IL-22 on bone marrow

derived dendritic in regard to STAT-3 phosphorylation, allergen-

uptake and expression of co-stimulatory molecules (data not

shown). In order to investigate a potential modifying effect of IL-

22 on bronchial epithelial cells we utilized a clara cell. C22 cells

were pretreated with or without IL-22 and subsequently

stimulated with IL-13, TNF, or a combination of both. Both

cytokines are increased in allergic airway inflammation and have

been shown to induce pro-inflammatory changes in bronchial

epithelial cells. T cell recruitment into the lung during allergic

airway disease has been linked to chemokines, including CCL17

[26]. Based on the in vivo results, showing increased production of

CCL17 in Il222/2 mice, we analyzed the generation of CCL17,

which is an important chemokine for the attraction of CCR4

Figure 5. Analysis of cytokines and chemokines in IL-222/2 and congenic controls. Levels of IL-5. IL-13, IL-10, IFN-c (IFN) and CCL-17 in BAL
fluid, TSLP and IL-33 in lung homogenate and expression of CCL26 in whole lung were analyzed in challenged only (c) and sensitized and challenged
(s/c) Il22 deficient (IL-222/2 c, n = 12; IL-222/2 s/c, n = 13) and congenic wild-type controls (IL-22+/+ c, n = 12; IL-22+/+ s/c, n = 13). Each dot represents a
single mouse, bar represents mean. Data are from 2 independent experiments. * p,0.05 compared to challenged groups, # p,0.05 compared to all
other groups.
doi:10.1371/journal.pone.0021799.g005

Figure 4. IL-22 deficient animals display increased AHR and airway inflammation. Airway resistance (panel A) and dynamic compliance
(panel B) in challenged only wild-type (IL-22+/+ chall, n = 12), challenged only IL-22 deficient (IL-222/2 chall, n = 12), sensitized and challenged wild-
type (IL-22+/+ sens/chall, n = 13) and sensitized and challenged IL-22 deficient (IL-222/2 sens/chall, n = 13) mice. Results are expressed as mean6SEM
from 2 independent experiments. # p,0.01, *p,0.05. Panel C shows differential cell counts for eosinophils in BAL fluid. Each dot represents a single
mouse, bar represents mean. # p,0.05 compared to IL-22+/+ chall and IL-222/2 chall; * p,0.05 compared to all other groups. N.D.: not detectable.
Panel D: Tissue inflammation was evaluated 48 hrs following the last challenge using hematoxylin and eosin staining (HE) and PAS staining for goblet
cells in challenged only wild-type mice (IL-22+/+ chall), sensitized and challenge wild-type mice (IL-22+/+ sens/chall), challenged only IL-22 deficient
mice (IL-222/2 chall) and sensitized and challenged IL-22 deficient (IL-222/2 sens/chall). Final magnifications 1006 and 4006 for inserts. Panel E
shows histology score and panel F number of goblet cells per mm of basement membrane for challenged only (c) and sensitized and challenged (s/c)
wild-type (IL-22+/+) and IL-22 deficient (IL-222/2) animals. Each groups contains 12 animals. Means6SEM are given. *p,0.01 compared to IL-22+/+ c
and IL-222/2 c. # p,0.05 compared to all other groups.
doi:10.1371/journal.pone.0021799.g004
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bearing Th2 cells and the airway epithelium represents an

important source of CCL17 [27]. We observed an increased

expression of this chemokine upon TNF stimulation with a

synergistic effect of both cytokines together. Interestingly, the

induction of CCL17 could be significantly reduced by previous

treatment of the cells with IL-22, suggesting that IL-22 reduces

cytokine-induced chemokine production in these cells. These

findings support the in vivo data of increased levels of CCL17 in

the lungs of sensitized and challenged Il222/2 mice. Also this is in

line with a previous report, which demonstrated that IL-22 alone

and in synergy with IL-10 decreased IL-8 production by human

alveolar epithelial cell lines [10] and comparable to effects of IL-22

alone on bronchial epithelial cells observed in other studies [11].

These in vitro findings are also supported by in vivo studies of rIL-

22 into the lung of sensitized mice prior to airway challenge.

Indeed, rIL-22 suppressed AHR, airway inflammation and levels

of IL-13 and CCL17 in the BAL fluid in a dose dependent manner

demonstrating a suppressive capacity of IL-22. These findings

therefore support the data generated with gene-deficient animals.

As IL-22-deficient mice showed significant but small increase in

AHR, the exogenous application of IL-22 had a very profound

effect. These could suggest that IL-22-producing innate lymphoid

cells play only a minor role as regulators during the development

of AHR but that therapeutic application of IL-22 have a very

beneficial effect. Overall the results suggests that IL-22 treatment

led to a decrease in Th2 cell recruitment and Th2 cytokine

production, primarily via inhibiting production of chemokines by

epithelial cells In regards to the therapeutic value of this pathway

IL-22 might offer the opportunity to specifically affect tissue

responses without systemic effects when administered locally [46].

Treatment with IL-22 using gene delivery provided protection

during experimental hepatitis [47]. Treatment of already inflamed

colonic tissue with local gene-delivery of IL-22 lead to reduced

inflammatory infiltrates and increased number of goblet cells in

the gut [48]. In the lung IL-22 seems to play a dual role depending

on the existing mircomilieu. Indeed, in bleomycin induced lung

injury models Il222/2 animals show amelioration of disease,

whereas IL-22 seems to plays a protective role in the same model

in Il17A- deficient mice [13] whereas in chronic infection with

Bacillus subtilis IL-22 seems to be tissue protective [14]. In the

Table 1. Serum immunoglobulin titers.

Il22+/+ chall Il22+/+ sens/chall Il222/2 chall Il222/2 sens/chall

OVA-specific IgE (Titer) N.D. 287.4644.6# N.D. 307.1637.9#

OVA-specific IgG1 (Titer) (6103) 15.269 312.8676.5# 32.2625.1 349.36110.3#

OVA-specific IgG2b (Titer) 665 5606216# 665 4476159#

Mice were sensitized and challenged as described in Methods. Serum levels of immunoglobulins were assessed 48 h after the last challenge. Mean values6SEM are
given. Il222/2: C57Bl/6 IL-22 deficient mice, Il22+/+: congenic wild-type control mice. N.D.: not detectable.
#p,0.05 compared to Il22+/+chall and Il222/2 chall.
doi:10.1371/journal.pone.0021799.t001

Figure 6. Intracellular cytokine staining of mononuclear cells in the lung. Cells were isolated from either challenged only (c) or sensitized
and challenged (s/c) Il22 deficient and congenic wild-type controls (IL-22+/+). Panel A shows a representative plot of intracellular IL-5 and IFN-c
staining. Panel B shows cell counts for IL-4 positive, IFN-c negative (IL-4+IFN2), IL-5 positive, IFN-c negative (IL-5+IFN2), IFN-c positive, IL-5 negative
(IFN+IL-52) and IL-17A positive, IFN-c negative (IL-17A+IFN2) cells. Each dot represent a single mouse. Data from 2 independent experiments are
given. * p,0.05 compared to all other groups.
doi:10.1371/journal.pone.0021799.g006
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present study, based on the data in IL-22-deficient mice and

administration of rIL-22, we found that IL-22 functions as a

negative regulator in allergen-induced development of AHR, lung

eosinophilia, and goblet cell metaplasia upon allergen exposure of

the sensitized host. The fact that treatment with rIL-22 is effective

in reducing AHR and airway inflammation, even after sensitiza-

tion, is intriguing, as it could be a novel therapeutic approach for

patients with allergic asthma.

Materials and Methods

Mice
C57BL/6 mice were bred in the Zentrale Tierzuchtanstalt of the

Johannes-Gutenberg-University Medical Center. C57BL/6 OVA

TCR transgenic OTII, Il22 deficient (Il222/2), and respective

C57BL/6 (Il22+/+) mice were kept and bred at the University

of Zürich. In some experiemtns Rorc-Cre [49] crossed with

Figure 7. IL-22 reduces TNFa/IL-13 induced production of CCL17 in murine Clara cells. Panel A: C22 cells were stimulated with
recombinant IL-22, for the indicated time points. Protein lysates were subjected to SDS page gel electrophoresis and Western blot analysis performed
with a pSTAT-3 specific antibody. Detection of total STAT-3 as loading control. Data are representative of 2 independent experiments. Panel B and C:
C22 cells were stimulated with recombinant IL-13, TNFa, or a combination of both, for 5 hours or left untreated (US). To assess the effect of IL-22 on
TNFa and TNFa/IL-13 induced TARC expression, cells were preincubated with recombinant IL-22 for 4 hours and stimulated with the indicated
cytokines for an additional 5 hours in the continued presence of IL-22 (IL-22 +). Controls were incubated with IL-22 only for a total of 9 hours. Relative
TARC mRNA expression (panel B) was measured in triplicates by quantitative PCR and normalized to GAPDH expression levels. Results are shown as
means6SEM of 5 replicates per treatment pooled from 4 independent experiments. TARC levels in cell culture supernatants (panel C) were assessed
by ELISA after 48 hours. Results are shown as mean6SEM of triplicates and of 3 independent experiments. *p,0.01 vs. US, **p,0.001 vs. TNFa alone,
***p,0.05 vs. respective controls stimulated in the absence of IL-22.
doi:10.1371/journal.pone.0021799.g007
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Rosa26-stop-eYFP mice [50] (called ‘Rorc-eYFP mice’ here) [51]

(kindly provided by A. Diefenbach, Freiburg, Germany) express Cre

recombinase in RORct+ cells, which leads to excision of the stop

cassette and consequent expression of enhanced yellow fluorescent

protein (eYFP) driven by the Rosa26 promoter. Mice were used at

the age of 8–12 weeks. All animal procedures were conducted in

accordance with current institutional guidelines and performed

according to the Helsinki convention for the use and care of animals

and the Cantonal Veterinary Office of Zurich and were reviewed

and approved by the review board of the Cantonal Veterinary

Office of Zurich (ID: Z-BECH-Allg.) and the regional government

authorities of Rhineland-Palatinate (ID: 23177-07/G08-1-016).

Experimental protocol
OTII mice were anesthetized (Ketamin-ratiopharmH/Rompun

2%) (Ratiopharm, Ulm/Bayer, Leverkusen) and challenged

intranasally with 20 mg ovalbumin (OVA, Sigma-Aldrich, St.

Louis, MO) suspended in 20 ml PBS on 3 consecutive days. At

24 hours after the third allergen challenge, animals were sacrificed

and lungs were dissected into small pieces and exposed to an

enzymatic digestion by 0.5 mg/ml collagenase type IA (Sigma-

Aldrich, Cat.# C9891) and a single-cell suspension was produced

as previously described [52]. Mononuclear cells were cultured in

RPMI (Invitrogen, Basel, Switzerland) with 10% FCS in the

presence of 40 mg/ml ovalbumin (OVA grade V, Sigma-Aldrich,

St. Louis, MO) overnight at 37uC and 5% CO2. After 12 h of

culture PMA and Iono and Golgi plug (BD Biosciences, San

Diego, CA, USA) were added for 5 h. Cell were then stained and

analyzed by FACs (CantoII, BD Biosciences).

Wild-type and Il222/2 mice were sensitized by intraperitoneal

(i.p.) injection of 20 mg OVA (Sigma-Aldrich) suspended in

2.25 mg aluminum hydroxide (Imject Alum, Pierce, Rockford,

IL) in a total volume of 100 ml on days 0 and 14. Mice were then

challenged via the airways on days 28, 29 and 30, using nebulized

OVA (1% in phosphate buffered saline PBS), with an ultrasonic

nebuliser (NE-U17, Omron, Hoofdorp, The Netherlands).

In some experiments, either 0.1, 1 or 10 mg of recombinant IL-

22 was administered 1 h before each OVA challenge to sensitized

C57BL/6 mice by intranasal application during general anesthesia

(Ketamin-ratiopharmH/Rompun 2%) (Ratiopharm, Ulm/Bayer,

Leverkusen). Each experiment was performed at least twice.

Cloning, expression, and purification of murine
interleukin-22

Murine IL-22 (34–179) was amplified from IL-23 stimulated

splenocytes with GGAATTCCATATGCTGCCCGTCAACAC-

CCG and CGCGGATCCTTAGACGCAAGCATTTCTCA-

GAGAC (Microsynth, Switzerland) forward and reverse oligonu-

cleotide primers, respectively, and inserted into pIVEX2.4 (Roche)

using the NdeI and BamHI (NEB) restriction sites. IL-22 was

produced in a 20 ml batch mode cell-free protein expression

reaction for 2.5 hours at 30uC and isolated. Insoluble material of

the cell-free protein expression reaction was removed by

centrifugation for 5 min at 40006g. The supernatant was applied

onto a 5 ml SP FF cation exchange column (Amersham)

equilibrated with buffer A (50 mM sodium phosphate, pH 7.5)

and proteins were eluted with 100 ml of a 0–1 M linear gradient

of sodium chloride in buffer A. Fractions containing IL-22 were

pooled and loaded onto a 5 ml HisTrap column (Amersham)

equilibrated with buffer B (50 mM sodium phosphate, 30 mM

imidazole, 500 sodium chloride, pH 7.5). IL-22 was eluted with

100 ml of a linear gradient of 30–500 mM imidazole in buffer B

and the obtained protein was dialyzed overnight at 4uC in an

8 kDa Biotech RC membrane (Spectrum Labs) against 2 l of

1.56PBS, pH 7.2, and 5% glycerol. The protein was then dialyzed

four times against 2 l of 16PBS with buffer exchange after every

2 h, followed by sample concentration in a 10-kDa Amicon Ultra-

15 centricon (Millipore) at 4uC and 35006g to obtain 70 mM IL-

22 in 2 ml final volume. The sample was lyophilized in 250 ml

aliquots and stored at 280uC until further use. Protein integrity

was validated by gel filtration analysis, CD-, fluorescence-, and

NMR-spectroscopy (data not shown). Content of LPS was

Table 2. Histology score and PAS-positive cells in airway epithelium.

chall PBS sens/chall PBS sens/chall 0.1 mg IL-22 sens/chall 1 mg IL-22 sens/chal 10 mg IL-22

Histology score 0.560.3 2.960.4 2.860.7 260.4* 1.260.5*

PAS-positive cells/mm BM N.D. 63611 60612 44612* 1969*

Peribronchial inflammation was graded by a semi-quantitative score (no inflammation = 0 to severe inflammation = 4). For each slide 5 randomly chosen areas were
scored. Goblet cell metaplasia is expressed as number of PAS-positive cells per mm of basement membrane (BM). Mean values6SEM are given, n = 12 per group. N.D.:
not detectable.
*p,0.05 compared to sens/chall PBS.
doi:10.1371/journal.pone.0021799.t002

Figure 8. Administration of rIL-22 reduces AHR and airway inflammation. Airway responsiveness (panel A), cell counts in BAL fluid (panel B)
and lung tissue inflammation and goblet cell metaplasia (panel C) were assessed in mice 48 h after the last airway challenge. Mice which were
sensitized and challenged (sens/chall, n = 12) showed increased airway reactivity and numbers of eosinophils in BAL fluid compared to challenged
only mice (chall, n = 5), where no eosinophils were detectable. Intranasal treatment of sensitized and challenge animals with 0.1 mg recombinant IL-22
(IL-22 0.1 mg, n = 12) showed little effects on AHR and inflammation. In contrast, mice treated with either 1 mg (IL-22 1 mg, n = 12) or 10 mg (IL-22 1 mg,
n = 12) of recombinant IL-22 showed decreased AHR and number of eosinophils in BAL fluid. Means6SEM are given, *p,0.05 compared to sens/chall.
Panel C: Tissue inflammation was evaluated 48 hrs following the last challenge using hematoxylin and eosin staining (HE) and PAS staining for goblet
cells in challenged only mice (chall), non-treated sensitized and challenged mice (sens/chall) and sensitized and challenged animals treated with
10 mg of recombinant IL-22 (rIL-22). Final magnifications 1006and 4006for inserts. Panels D and E: Levels of IL-13 (panel D) and CCL17 (panel E) were
measured in BAL fluid by ELISA 48 h after the last challenge. Means6SEM of challenged only mice (chall, n = 5), non-treated sensitized and challenged
mice (sens/chall, n = 12), and sensitized and challenged mice treated with 0.1 mg (0.1 mg IL-22, n = 12), 1 mg (1 mg IL-22, n = 12) and 10 mg (10 mg IL-22,
n = 12) of rIl-22, respectively. Mean6SEM are given. * p,0.05 compared to sens/chall and 0.1 mg IL-22.
doi:10.1371/journal.pone.0021799.g008
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measured by LAL kinetic chromogenic assay (Lonza, Wuppertal,

Germany). The amount of LPS was ,0.02 EU/mg protein.

Measurement of airway reactivity
Measurements of the airway resistance (RL) and dynamic

compliance (Cdyn) were performed on anesthetized, intubated and

mechanically ventilated mice (FlexiVent, Scireq, Montreal, QC) in

response to increasing doses of inhaled methacholine (MCh) (6.25,

12.5, 25, 50 and 100 mg/ml) as previously described [53].

Broncho-alveolar lavage and lung histology
After assessment of airway function, lungs were lavaged via the

tracheal tube with 1 ml PBS. Numbers of BAL cells were counted

by using trypan blue dye exclusion. Differential cell counts were

made from cytocentrifuged preparations fixed and stained with the

Microscopy Hemacolor H-Set (Merck, Darmstadt, Germany).

Percentage and absolute numbers of each cell type were

calculated. Then lungs were fixed by inflation (1 ml) and

immersion in 10% formalin and embedded in paraffin. Tissue

sections were stained with hematoxylin and eosin (HE) and

periodic acid-Schiff (PAS). Slides were examined in blinded

fashion by 2 experienced observers with a microscope (BX40,

Olympus, Hamburg, Germany). Peribronchial inflammation and

number of goblet cells were assessed as previously described [52].

Analysis of leukocyte populations by FACS
Mononuclear cells were stained with CD45 PerCP 30-F11

(Biolegend, San Diego, CA, USA), CD4 GK1.5 PE, FITC (BD

Biosciences), CD4 Pacific blue RM4-5 (Biolegend), CD3 PE-Cy7

17A2 (Biolegend), CD3 Pacific blue 145-2C44 (BD Biosciences),

CD90.2 Pacific blue 30-H12 (Biolegend), CD90.2 biotin 30-H12

(BD Biosciences), ScaI PerCP Cy5.5 D7 (Biolegend), TCRcd
FITC and PE GL3 (BD Biosciences), GR1 Pacific blue RB6-8C5

(Biolegend), CD8 Pe-Cy7 53-6.7 (BD Biosciences), CD25 PE

PC61 (BD Biosciences), CD44 FITC IM7 (BD Biosciences),

CD11c PE HL3 (BD Biosciences), NK1.1 PE PK136 (BD

Biosciences), Ly.6G PE 1A8 (BD Biosciences) and IL-22 Alexa-

647 3F11 provided by Genentech (San Francisco, CA, USA).

For intracellular cytokine staining mononuclear cells were

incubated with PMA (Phorbol 12 Myristate 13 Acetate; SIGMA,

Saint Louis, USA) and Inonomycin (SIGMA, Saint Louis, USA)

and BrefeldinA (SIGMA, Saint Louis, USA) for 4–6 h at 37uC.

Following incubation cells were washed twice and the intracellular

staining was performed (BD Cytofix/Cytoperm) according to the

manufactures protocol. In brief, Fc-receptor blocking antibodies

(aCD16/CD32 BD Pharmingen, Heidelberg Germany) were

added to the cells and incubated for 10 min at 4uC. For surface

staining surface antibodies were added to the appropriate groups.

To analyze T cells, CD4-FITC (BD Pharmingen); CD3-Percp

Cy5.5 (BD Pharmingen) were used. Antibodies were incubated for

20 min at 4uC in the dark. Following washing in WB cells were

resuspended in 150 ml Cytofix/Cytoperm (BD Pharmingen) and

incubated for 20 min at 4uC in the dark. Cells were washed twice

and subsequently intra-cellular antibodies were added. For

analysis following antibodies were used: IFNc-APC; IL17A-Alexa

Fluor 647; IL17-PE, IL4-PE; IL4-APC and IL5-PE (all BD

Pharmingen). Antibodies were incubated at 4uC for 30–40 min in

the dark. Afterwards cells were washed twice, resuspended and

then analyzed (Canto II, BD Pharmingen)

Cytokine and antigen-specific immunoglobulin ELISA
IL-22 (Antigenix America, Huntington Station, NY, USA), IL-

5, IL-10, IFN-c (all BD Bioscience, San Diego, CA, USA) IL-13,

IL-33, CCL17 and TSLP (all R&D Systems, Minneapolis, MN,

USA), ELISAs were performed according to the manufacturer’s

directions. OVA specific IgG1 and IgE-titres in sera were

determined as previously described [53].

Cell culture and stimulation
The murine clara cell line C22 generated from H-2Kb-tsA58

transgenic mice was a kind gift of J. Ryerse and D. Demello (St.

Louis, USA). The cells express the thermolabile large tumor

antigen of the tsA58 strain of the simian virus 40 (SV40) under

control of the interferon (IFN) c inducible H2Kb promoter [54].

For experiments, C22 cells were plated in 6-well plates (Falcon) at

a density of 0.756106 cells/well for purification of total protein

and RNA, respectively, or in 96-well plates at a density of 2.56104

cells/well for ELISA, and cultured over night in non-permissive

conditions, i.e. in media without IFNc at 39uC. Cells were

stimulated with 20 ng/ml or 60 ng/ml rmIL-13 (R&D Systems),

5 ng/ml TNFa (R&D Systems), and pretreated with rmIL-22 as

indicated. C22 cells were maintained in Dulbecco’s modified

Eagle’s medium DMEM (Gibco) supplemented with 3% FCS

(Vitromex), penicillin (250000 U/ml), streptomycin (250 mg/ml),

glutamine (2 mM), amphothericin B (250 mg/ml), endothelin-1

(200 ng/ml), insulin (10 mg/ml), transferrin (10 mg/ml), endothe-

lium cell growth supplement (15 mg/ml), epidermal cell growth

factor (0.1 mg/ml), hydrocortisone (5 mg/ml) and T3 (200 mg/ml) at

33uC at 10% CO2. For propagation, cells were kept at 33uC with

supplementation of interferon c (100 units/ml); for experiments,

media without interferon y was used and cells were kept at 39uC.

RNA Isolation, conventional and quantitative Real time
PCR

For expression analysis of CCL17/TARC, IL-22, IL-22R1, and

IL-10R2, total RNA was isolated from cells and total lung tissue,

respectively, using TRIzol reagent (Invitrogen) and cDNA was

synthesized with RevertAid M-MuLV reverse transcriptase (MBI

Fermentas) following the manufacturer’s recommendations.

Conventional PCR was performed on a Cycler Peqstar 96

Universal (Peqlab) with Platinum polymerase (Invitrogen) accord-

ing to the manufacturer’s instructions. qRT-PCR was performed

on an iCycler (Bio-Rad, Munich, Germany) in triplicates using

ABsolute SYBR Green Mix (ABgene, Hamburg, Germany)

according to the manufacturer’s instructions.

GAPDH forward: CCA TCA CCA TCT TCC AGG AG;

GAPDH reverse: TTT CTC GTG GTT CAC ACC C; mCCL17

forward: AGA CAG GCA GAA GGA CCC ATG AAG, mCCL17

reverse: TAA TCC AGG CAG CAC TCT CGG C; mIL-22

forward, CCA GCC TTG CAG ATA ACA AC, mIL-22 reverse,

GGA AGG AGC AGT TCT TCG T, IL-22R1 forward, ACA

GCT GCC CTG CTT CTT AT, IL-22R1 reverse, ATT TGG

GAG TGG AGA GGA TG. After normalization of the data

according to the expression of GAPDH mRNA, the relative expre-

ssion levels were calculated. Data were analyzed by the D/DCT.

Western-Blot
After treatment of C22 cells with rmIL-22, cells of a confluent

well of a 6-well plate were lysed in 250 ml 16RIPA-buffer

containing inhibitors for proteinases and phosphatases. Thirty mg

protein were separated by denaturing SDS gel electrophoresis, and

transferred to an Immobilon-P Membrane. After blocking in PBS/

5% nonfat dry milk the membrane was incubated with a

polyclonal rabbit antibody specific for STAT3 phosphorylated at

Ser727, followed by incubation with an HRP coupled goat anti-

rabbit antibody. Blots were developed using SuperSignal West
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Dura chemiluminescent substrate kit and visualized on a BioRad

Molecular Imager ChemiDoc XRS System. To control for equal

loading, blots were stripped, blocked and incubated with a rabbit

polyclonal antibody recognizing total STAT3/b-Actin.

Statistical analysis
ANOVA was used to determine the levels of difference between

all groups. Differences in responsiveness to MCh were assessed by

repeated measures ANOVA. Pairwise comparisons were then

performed employing either Tukey-Kramer honest significant

difference test or Bonferrini correction. Number of eosinophils,

histology score and number of PAS-positive cells were initially

analyzed by non-parametric ANOVA (Kruskal-Wallis Test) for

overall differences. This was verified by pair wise comparisons

(Mann-Whitney-U-Test). P values for significance were set at 0.05.

Values for all measurements are expressed as the mean6SEM.
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