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Abstract

Highly parallel sequencing technologies permit cost-effective whole genome sequencing of hundreds of Plasmodium
parasites. The ability to sequence clinical Plasmodium samples, extracted directly from patient blood without a culture step,
presents a unique opportunity to sample the diversity of ‘‘natural’’ parasite populations in high resolution clinical and
epidemiological studies. A major challenge to sequencing clinical Plasmodium samples is the abundance of human DNA,
which may substantially reduce the yield of Plasmodium sequence. We tested a range of human white blood cell (WBC)
depletion methods on P. falciparum-infected patient samples in search of a method displaying an optimal balance of WBC-
removal efficacy, cost, simplicity, and applicability to low resource settings. In the first of a two-part study, combinations of
three different WBC depletion methods were tested on 43 patient blood samples in Mali. A two-step combination of
Lymphoprep plus Plasmodipur best fitted our requirements, although moderate variability was observed in human DNA
quantity. This approach was further assessed in a larger sample of 76 patients from Burkina Faso. WBC-removal efficacy
remained high (,30% human DNA in .70% samples) and lower variation was observed in human DNA quantities. In order
to assess the Plasmodium sequence yield at different human DNA proportions, 59 samples with up to 60% human DNA
contamination were sequenced on the Illumina Genome Analyzer platform. An average ,40-fold coverage of the genome
was observed per lane for samples with #30% human DNA. Even in low resource settings, using a simple two-step
combination of Lymphoprep plus Plasmodipur, over 70% of clinical sample preparations should exhibit sufficiently low
human DNA quantities to enable ,40-fold sequence coverage of the P. falciparum genome using a single lane on the
Illumina Genome Analyzer platform. This approach should greatly facilitate large-scale clinical and epidemiologic studies of
P. falciparum.
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Introduction

Highly parallel sequencing technologies permit cost-effective

whole genome sequencing of hundreds of Plasmodium parasites [1,2]

and promise to revolutionize our understanding of the global

diversity and migration patterns of Plasmodium populations. This

data will be essential to help monitor the spread of drug resistance

and to facilitate the discovery of genomic regions under recent

selection (e.g. anti-malarial drug pressure). It will also facilitate the

identification of candidate targets for drug and vaccine development

and enhance our knowledge of the basic biology of malaria

parasites. The accessibility of whole genome sequencing platforms

will provide the means to routinely perform large-scale clinical and

epidemiologic studies on Plasmodium. In this context, simple but

effective methods for processing clinical malaria samples, obtained

directly from the patient blood without a culture-adaptation step

(which is a costly and laborious approach, not always successful and

subject to potentially selective pressures), are essential. These

methods will present the opportunity for high-throughput investi-

gations of the ‘‘natural’’ diversity in parasite populations, enable
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assessments of important in vivo phenotypes, and ensure that whole

genome sequencing approaches are accessible to a wider spectrum

of the malaria community including laboratories without parasite

culture facilities.

A major challenge to sequencing clinical malaria samples using

shotgun technologies is the abundance of ‘‘contaminating’’ human

DNA. Owing to the random DNA fragmentation and sequencing

approach of shotgun methods, all organisms present within a

sample will be sequenced. Thus, if human DNA is abundant, this

will greatly reduce the sequence coverage of the Plasmodium

genome. Reduction of human DNA from clinical malaria samples

is challenging owing to the abundance of human relative to

Plasmodium DNA, even in high parasitaemia infections. In a whole

blood sample with a 1% parasitaemia, the parasites may be ,5–10

times more abundant than the white blood cells (WBCs).

However, as the human genome is approximately 100-fold larger

than the Plasmodium genome and is diploid, each WBC carries the

equivalent DNA weight of about 200 early blood stage (haploid)

Plasmodium parasites. At present, no effective method is available

for separating human from Plasmodium DNA. However, a number

of methods for reducing human DNA via separation of WBCs

from the red blood cell (RBC) fraction have been described. These

include the use of density-gradient separation of specific subsets of

WBCs [3,4,5,6,7,8], filter-based methods (including commercially

available units and home-made cellulose filters) [5,9,10,11,12,13],

cell-sorting using flow cytometry technology [14], and magnetic-

separation using commercial LD columns (MACS) [15] or

magnetic dynabeads (Dynal) coated with anti-HLA1 antibody.

In the context of sample preparation for genome-wide P.

falciparum shotgun sequencing, we sought a simple but effective

method for removing WBCs from patient blood samples using

standard laboratory facilities. In the first of a two-stage approach,

a preliminary assessment of combinations of density-gradient

separation, filtration and magnetic separation using anti-HLA1

dynabeads was undertaken on clinical malaria blood samples

collected in Mali. The performance of each method was assessed

for WBC-depletion efficacy and ease of use/labour intensity. This

assessment indicated a two-step combination of Lymphoprep

density-gradient centrifugation followed by Plasmodipur filtration

as an efficient and simple method for removing WBCs. In the

second stage of assessment, using a larger set of clinical malaria

blood samples from Burkina Faso, we further validated our initial

results on the two-step Lymphoprep/Plasmodipur process and we

explored if other factors, such as sample storage and parasitaemia

levels, could affect WBC depletion efficacy.

Depending upon the study objective and Plasmodium coverage

requirement, varying levels of human DNA may be tolerated in

shotgun sequencing. We assessed the influence of human DNA

contamination on P. falciparum sequencing yield using genome-

wide sequence data generated on the Illumina Genome Analyzer

platform from a range of the clinical malaria samples described in

the study.

Materials and Methods

Ethics
Ethical approval for the collection of patient samples from Mali

and Burkina Faso was granted by the Comite d’Ethique de la

Faculté de Médecine de Pharmacie et d’Odontostomatologie,

Bamako, Mali, and Comite d’Ethique Institutionnel du Centre

Muraz, Bobo-Dioulasso, Burkina Faso. All samples from adults

were collected with informed, written consent from the patient.

Samples from children were collected with informed, written

consent from a parent or guardian.

Sample collection
All samples were collected within the framework of a

multicenter study using genome-wide SNP analysis to investigate

the population genetic structure and diversity of P. falciparum

samples from across the globe (Manske, Miotto et al., submitted).

In both Mali and Burkina Faso, samples were collected in a clinical

setting from patients of all ages with uncomplicated (according to

the World Health Organization guidelines) falciparum malaria, as

determined by microscopy. In Mali, samples were collected from

Kolle and Faladje, two rural villages approximately 60 and 80 km,

respectively from the Medical Research and Training Centre

(MRTC) laboratories in Bamako. Transportation from either

clinic to the MRTC, where WBC depletion processing was

undertaken, involved a 2–3 hour journey by car over long

stretches of unmaintained road. In Burkina Faso, samples were

collected from three urban clinics in Bobo-Dioulasso (Colsamma,

Ouezzin-ville and Sakaby), each up to 8 km from the laboratory at

the Institute de Recherche en Sciences de la Santé (IRSS). Sample

transportation from the clinics to the IRSS involved a 20–

30 minute journey by moped over a mix of well and poorly

maintained bitumen road. Samples were collected from consenting

patients attending the clinic between October and November 2007

in Mali, and in September 2008 in Burkina Faso. In both studies,

venepunctures were undertaken using 21 gauge butterfly needles

(Becton Dickinson) and peripheral blood samples were drawn in

EDTA-containing Vacutainer tubes (Becton Dickinson). Blood

tubes were stored in cushioned cool boxes maintained at 4–8uC
using cold packs. The following data was recorded for each

sample: site, parasitaemia (and parasite density), blood volume,

haemoglobin density, time and date of venepuncture, time and

date of WBC-depletion processing, and method of WBC-

depletion. All samples were collected with written, informed

consent from a parent or guardian.

WBC-depletion strategy
The following methods were each investigated in a minimum of

8 samples in the first stage of assessment; (a) Plasmodipur, (b)

Lymphoprep followed by Plasmodipur, (c) Plasmodipur followed

by anti-HLA1 dynabeads, and (d) Lymphoprep followed by anti-

HLA1 dynabeads. Plasmodipur filtration was prioritized for

assessment as it offered potentially the easiest and least time-

consuming approach. Lymphoprep density-gradient centrifuga-

tion only separates the lymphocyte WBC fraction. However, in

combination with other methods, this approach offered a cost-

effective method for reducing the WBC fraction sufficiently to

prevent potential saturation of downstream separation methods.

Anti-HLA1 dynabeads were included as a final step to

indiscriminately remove the WBCs remaining after prior depletion

methods.

Amongst the methods not listed above, Plasmagel, which

separates the granulocyte WBC fraction in a density-gradient

manner, was excluded early on in the study as samples subject to

this method failed to separate and formed a gelatinous

composition leading to sample loss. Preliminary tests using

homemade CF11 cellulose powder filters [5,12] proved to be

lengthy, and variation by operator and batch was observed.

Amendments to the CF11 protocol are currently being undertaken

to standardize column preparation and improve efficacy for P.

falciparum-infected blood samples (Venkatesan et al., in prepara-

tion). Flow cytometry systems were excluded from assessment

owing to their inherent requirement for costly, specialized

laboratory equipment. Purification using magnetic LD columns

(MACS) was excluded as the system depends on the presence of

haemozoin, which is absent from the early parasite stages which

WBC Depletion in Malaria Samples
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make up the majority of the population in peripheral blood

samples. To overcome this problem, a short parasite maturation

culture step is necessary prior to magnetic purification. Tests are

currently being performed to verify the efficiency of this approach

(Amaratunga and Fairhurst, in preparation).

Lymphoprep density-gradient centrifugation
One blood volume of Lymphoprep (Axis-shield) was added to a

15 ml centrifuge. Blood samples were diluted with an equal

volume of RPMI-1640 solution (Sigma) and carefully layered

over the Lymphoprep, taking care to avoid mixing. It should be

noted that other isotonic solutions can replace RPMI in this

protocol (such as Phosphate Buffered Saline - PBS). A maximum

of 5 ml diluted blood over 2.5 ml Lymphoprep was used per tube

(larger volume samples were split accordingly). Samples were

centrifuged at 800 g for 20 min at 21–22uC. The mononuclear

cells, which formed a distinct band at the sample/medium

interface were aspirated and disposed. The RBC pellet was

washed with 10 ml RPMI and centrifuged at 800 g for 5 min.

The supernatant was aspirated and disposed and the pellet was

subject to further processing with anti-HLA1 dynabeads or

Plasmodipur filters.

Plasmodipur filtration
Plasmodipur filters (Euro-diagnostica) were pre-wet with 5 ml

RPMI. Whole blood samples were diluted with 1 volume of

RPMI, and post-Lymphoprep RBC pellets were diluted with 3

volumes of RPMI. The diluted blood was gently passed through

the Plasmodipur filter using a syringe and collected in a 50 ml

falcon tube. RBCs remaining in the filter were washed through

with 10–20 mls RPMI. The filtered blood was centrifuged at

800 g for 10 min. The supernatant was removed, and the RBC

pellet was either further processed with anti-HLA1 dynabeads or

stored at -20uC until DNA extraction.

Anti-HLA1 dynabead separation
Ten microliter aliquots of Dynal CELLection Pan Mouse IgG

dynabeads (Dynal) were used per 5 ml RBC pellet. Dynabead

aliquots were prepared by washing twice with 1 ml of PBS plus 1%

bovine serum albumin (BSA), followed by resuspension in 390 ul

PBS plus 1% BSA. Five microliters W6–32 mouse monoclonal

antibody to human HLA 1 (Abcam) was added to each dynabead

aliquot and incubated on a rotating wheel for 60 minutes at 22uC.

After incubation, the W6–32 antibody-bound dynabeads were

washed once in 1 ml PBS plus 1% BSA, and resuspended in

200 ul PBS and 1% BSA. Post-Lymphoprep/Plasmodipur RBC

pellets were resuspended in an equal volume of RPMI-1640,

added to the antibody-dynabead preparation and incubated on a

rotating wheel for 40 minutes at 22uC. Post-incubation, the tubes

were placed in a magnetic rack for 5 minutes, allowing the WBC-

bound magnetic dynabeads to bind to the magnetic face of the

tube. The supernatant was carefully removed without disturbing

the dynabeads, transferred to a clean tube and washed twice by

centrifugation at 800 g for 5 minutes at 22uC with RPMI-1460

medium.

DNA extraction and Quantification
DNA extraction was undertaken using the QIAamp DNA

Blood Midi/Maxi Kit (Qiagen) as per manufacturer’s protocol. In

order to quantify the abundance of human and P. falciparum DNA

remaining after WBC-depletion, quantitative real-time PCR

(QRT-PCR) analysis was undertaken on 2–5 ng aliquots of each

sample using the Applied Biosystems StepOne PCR system with

human (primers for TLR9 gene: ACGTTGGATGCAAAGGG-

CTGGCTGTTGTAG and ACGTTGGATGTCTACCACGA-

GCACTCATTC) and Plasmodium-specific (primers for EBA175

gene: ACGTTGGATGCACCAGTGAAGAAACTACAG and

ACGTTGGATGCTTCATATTCCTTAGTAAGCG) primer sets.

Human and P. falciparum DNA negative controls were included in

the respective reactions, to confirm primer species-specificity. Each

primer set was unique within the respective genomes. Pure human

and pure P. falciparum standards were prepared to range 0.1–

100 ng/ul concentrations. Test samples were diluted as necessary

to fit within this range. All samples and standards were tested in

duplicate. DNA (1 ul) was added to a 24 ul PCR solution

containing 8.5 ul water, 12.5 ul PCR Sybergreen Master Mix

and 1.5 ul of each primer (stock at 2 uM). The mixture was

amplified for 5 cycles of 94uC for 45 seconds (sec), 56uC for 45 sec,

72uC for 45 sec, followed by 30 cycles of 94uC for 45 sec, 65uC for

45 sec (data collection point) and 72uC for 45 sec. Data was

analyzed using the Applied Biosystems StepOne V2.0 software.

Statistical Analysis
A multivariate analysis of variance (linear regression) model was

used to a) measure the relative contributions of different factors to

the observed variation in the percentage of human DNA and b)

the relative contributions of human DNA level and sequence

read length to variation in P. falciparum sequence coverage. The

following variables were analysed: parasitaemia, study site, blood

storage duration (from venepuncture to WBC-depletion), blood

volume, haemoglobin density and WBC depletion method. The

percentage of human DNA per sample was transformed using a

square-root transformation to improve symmetry. Similarly,

percent parasitaemia was logarithmic transformed and average

genome coverage was transformed using a square-root. All analysis

was performed using the R statistical package [16].

DNA Sequencing
Fifty-nine samples with human DNA levels up to 60% (and a

minimum of 500 ng total DNA) were sequenced on the Illumina

Genome Analyzer platform (http://www.illumina.com/systems/

genome_Analyzer.ilmn). Library preparation and sequencing was

undertaken by the Wellcome Trust Sanger Institute core library

preparation and sequencing teams. Standard paired-end libraries

of 200–400 bp DNA fragments were prepared from 500–1000 ng

total DNA. Sequence reads were either 54 bp or 76 bp long.

Owing to continual improvements in read length, samples

sequenced later in time had 76 bp sequence reads. Up to 3 lanes

were sequenced per sample. Sequence data was mapped to the

reference P. falciparum genome (3D7 version 4.1.2) using the SNP-

o-matic read mapping tool [17] under the parameters for perfect

read matching (with allowance for pre-identified SNPs) (Manske et

al., in preparation). Only sequences which mapped uniquely

within the P. falciparum reference genome and which did not map

to the human reference genome were included in our analyses.

Coverage (average number of reads representing a given

nucleotide) statistics on the number of bases mapped to the

reference genome were recorded per lane for each sample.

Results

WBC-depletion assessment in Mali
Forty-three samples were collected from the villages of Kolle

and Faladje (24 and 19 respectively) and were processed to deplete

WBCs using different approaches. A wide range of human DNA

(Figure 1a) was observed after WBC-depletion. The samples

processed with the Lymphoprep plus Plasmodipur plus anti-HLA1

WBC Depletion in Malaria Samples
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approach exhibited the lowest% human DNA (median 13.6%,

Interquartile range (IQR) 1.7–25.4), followed by Lymphoprep plus

Plasmodipur (median 42.2%, IQR 5.7–66.9) (Figure 2). The

Plasmodipur alone and the Lymphoprep plus anti-HLA1

approaches exhibited similar levels of human DNA (median

63.4%, IQR 45.7–87.6 and median 62.91%, IQR 44.6–85.6

respectively).

Moderate inter-sample variation was observed in a number of

variables such as parasitaemia, (median 1.4%, range 0.7–9.9),

blood volume (median 4.0 ml, range 2.0–8.0), haemoglobin

density (median 10.4 g/dl, range 7.7–13.5) and duration of blood

storage (median 4.5 h, range 2.2–102.0). These variables, study

site and WBC-depletion method, were all fitted into a multivariate

analysis of variance (linear regression) model to measure their

relative contributions to the observed variation in the percentage

of human DNA. The most significant determinant of the human

DNA yield was the WBC depletion method used (F[3, 39] = 8.45,

p = 0.00019). The only other variable which demonstrated a

significant influence was parasitaemia (F[1,43]) = 4.32, p = 0.043).

The multiple linear regression analysis (F[4,38] = 8.06,

P = 0.000083) indicated that relative to the other approaches,

the 3-method approach (Lymphoprep plus Plasmodipur plus anti-

HLA1) was the most effective at reducing the percentage of human

DNA (vs Lymphoprep plus anti-HLA1: coef = 4.45, se = 1.08

P = 0.0002; vs Plasmodipur: coef = 4.03, se = 0.90, P = 0.000064;

vs Lymphoprep plus Plasmodipur coef = 2.32, se = 1.01,

P = 0.027). High parasitaemia levels (coef = 23.34 se = 1.56,

P = 0.039) also significantly reduced the percentage of human

DNA. However, as illustrated in Figure 3, a large amount of

variation determined by other unknown variables is observed in

the correlation between parasitaemia and the percentage of

human DNA. Thus, specific threshold parasitaemias for yielding

human DNA percentages below a required threshold cannot be

assigned.

Figure 1. Frequency distribution of human DNA proportions post WBC-depletion. a) Mali, b) Burkina Faso. Human DNA proportions are
presented as the percentage human DNA in the total sample as estimated by quantitative real-time PCR (see methods). The Malian samples (a)
represent a range of WBC-depletion methods. All Burkinabe samples (b) were processed using the Lymphoprep plus Plasmodipur approach.
doi:10.1371/journal.pone.0022213.g001
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Although the Lymphoprep plus Plasmodipur plus anti-HLA1

approach was most efficient at removing WBCs, this was also the

most laborious approach. In particular, the antibody stage was

especially lengthy owing to multiple washing steps and two long

incubation periods. The simplest and least laborious of all the

procedures was the Plasmodipur filtration. With regards to cost,

Plasmodipur filters and antibody/dynabeads both approximate

£10–15 per sample, while the Lymphoprep step is vastly cheaper

at approximately £0.14 per sample. The Lymphoprep step also

enables the collection of the lymphocyte fraction for other, human

genetic or immunological, studies. Thus, the three-step method

may be the best option for studies with small sample size or highly

critical samples, while the Lymphoprep and Plasmodipur

approach was the most time- and cost-effective, and was therefore

selected for the consecutive studies in Burkina Faso.

Assessment of Lymphoprep plus Plasmodipur in Burkina
Faso

Seventy-six samples were collected, 30 from Colsamma, 17

from Ouezzin-ville and 29 from Sakaby. All samples were

processed using the Lymphoprep plus Plamodipur approach.

Relative to the Malian study, the distribution of human DNA

levels was more skewed toward a lower percentage of human DNA

(Figure 1b). Whilst the average human DNA in Mali was 46%

(sd = 36.0), in Burkina Faso an average of 25% (sd = 28.4) was

observed. Despite the eight-fold increase in sample size, the

Burkina Faso dataset still demonstrated noticeable inter-sample

variability in the presence of human DNA. Inter-sample variability

was also observed for a number of variables: parasitaemia, (median

0.59%, range 0.12–4.44) blood volume (median 3.5 ml, range 2.0–

8.0), haemoglobin density (median 11.0 g/dl, range 7.3–16) and

duration of blood storage (median 3.0 h, range 1.1–8.3). These

variables were fitted in a multivariate analysis of variance model to

assess their contribution to the observed variation in the

percentage of human DNA. Parasitaemia was the only variable

that influenced the level of human DNA after WBC depletion

(F[1,74] = 3.852, P = 0.044).

Influence of Human DNA on Plasmodium Genome
Sequencing Coverage

To assess the influence of human DNA on the sequencing

coverage of the Plasmodium genome, we analysed the data available

for 59 independent samples against the percentage of human DNA

present in each sample. Sequence read length presented a potential

confounder in this analysis as increased read length results in

increased overall data yield and enhances read mapping ability.

Furthermore, owing to these features, samples with moderately high

levels of human DNA (.30%) were generally only sequenced once

longer (76 bp) read lengths were available. We fitted a multiple

linear regression model to assess the relationship between the

average genome coverage per sequenced lane and the human DNA,

whilst accounting for read length (54 or 76 bp). Percent of human

DNA remained significant after adjusting for variability in read

length (coef = 20.107, se = 0.015, P,0.0001). At both read lengths,

a trend of increasing sequencing coverage with decreasing human

DNA was observed (Figure 4). A summary of the sequencing data

coverage for the 59 samples grouped by human DNA range and

sequence read length is presented in Table 1. The highest average

Figure 2. Distributions of human DNA proportions (% of total DNA) remaining after processing clinical blood samples from Mali
with four different WBC-depletion methods. LA = Lymphoprep plus Antibody (N = 8), P = Plasmodipur (N = 13), LP = Lymphoprep plus
Plasmodipur (N = 9), LPA = Lymphoprep plus Plasmodipur plus Anti-HLA1 (N = 13).
doi:10.1371/journal.pone.0022213.g002
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coverage per sequenced lane was observed for samples with #30%

human DNA (median = 39.66, IQR 29.68–51.73). Higher human

DNA levels resulted in lower average genome coverage (medi-

an = 4.90, IQR 3.15–11.82). With regard to the uniformity of

sequence distribution across the P. falciparum genome, by sequencing

one lane it was possible to obtain an average of 60% of the genome

covered by at least 10 sequenced bases (minimum read depth 10), in

samples with #30% human DNA. This rises to 70% and 85%

average genome coverage when the threshold is reduced to at least 5

or 1 base respectively (minimum read depth of 5 or 1). For samples

with .30% human DNA, sequence data from one lane yields an

average of 21% of the genome being covered by at least 10

sequenced bases, rising to 32% and 60% for minimum read depth of

5 and 1, respectively.

Discussion

Highly parallel sequencing technologies such as Illumina’s

Genome Analyzer offer a cost-effective method to undertake

genome-wide analysis on hundreds of Plasmodium samples. With

ongoing technological developments, sample sizes in the order of

thousands are anticipated in the near future. At this level, large-

scale population genetic analyses of Plasmodium parasites using

whole genome sequencing platforms should become common-

place. The use of clinical samples offer several advantageous

features over cultured samples, including reduced time and cost of

preparation, and, importantly, greater maintenance of the full

diversity of parasites present in the original patient infection.

However, owing to the indiscriminate nature of shotgun

sequencing approaches, with current Illumina sequencing param-

eters, if a large quantity of the human WBCs are not removed

from clinical samples prior to extraction, human sequence will be

highly represented and Plasmodium sequence yield may be

insufficient for proposed analyses.

We tested four different methods for removing WBCs from

whole blood in a set of 43 samples collected at two health centres

in Mali. The multiple linear regression coefficients indicated that

relative to the other approaches, a combination of Lymphoprep

plus Plasmodipur plus anti-HLA1 was the most effective at

reducing the percentage of human DNA. However, this three-step

approach also proved the most laborious. On this basis, and the

approximate 2-fold increase in the cost of this three-step approach

relative to the two-step Lymphoprep plus Plasmodipur approach,

the latter was selected for the purification of a large set of samples

from Burkina Faso intended for genome-wide sequencing using

the Illumina Genome Analyzer platform.

Using just the Lymphoprep plus Plasmodipur method, the

percentage of human DNA was lower in Burkina Faso than in

Mali. In both studies, parasitaemia demonstrated a significant

association with human DNA percentage, whereby increased

parasitaemia correlated with reduced human DNA. No significant

associations were observed with any of the other variables tested.

In addition to parasitaemia, inter-sample variation in percent

human DNA following Lymphoprep plus Plasmodipur processing

may arise from a range of other variables not tested here. Physical

variation between Plasmodipur filter units (e.g. possible air

pockets), variation in the filtration procedure (e.g. force exerted

on the membrane), variation in the Lymphoprep procedure (e.g.

variable degree of mixing between blood and Lymphoprep layers),

inter-individual variation in blood properties such as WBC count,

variation in the venepuncture procedure, and continual growth of

parasite populations between venepuncture and WBC processing

Figure 3. Human DNA percentage post-purification with Lymphoprep plus Plasmodipur against parasitaemia in Burkina Faso. The
dashed line indicates the line of best fit. IRBC = Infected Red Blood Cell.
doi:10.1371/journal.pone.0022213.g003
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may all contribute to the remaining inter-sample variability

observed in human DNA levels. These factors should be further

investigated in future studies to facilitate optimisation of the WBC

depletion methods.

Depending upon the yield of Plasmodium sequence required for a

given analytical procedure, varying levels of human DNA may be

tolerated in shotgun sequencing. We assessed the Plasmodium

sequence yield in 59 samples with human DNA levels up to 60%.

Table 1. Summary of sequencing coverage per lane across 59 clinical samples.

% Human Read Length
No. Samples
(No. Lanes)

Average No. P. falciparum
Megabases Sequenced

Average
Coverage

% Genome
Covered: Min
Read Depth 1

% Genome
Covered: Min
Read Depth 5

% Genome
Covered: Min
Read Depth 10

,1 54 10 (18) 1006 43.19 91.11 75.26 64.78

76 1 (2) 895 38.39 63.5 48.63 42.86

1–5 54 12 (20) 924 47.16 92.42 80.39 67.15

76 1 (2) 437 18.8 65.67 47.16 37.17

5–10 54 8 (13) 1037 44.54 92.99 77.82 68.82

10–20 54 6 (11) 754 32.36 81.29 61.93 51.45

76 1 (2) 641 27.5 88.7 71.32 58.95

20–30 54 2 (4) 629 26.98 92.52 73.7 60.51

76 1 (2) 1136 48.74 96.44 86.87 80.22

30–40 54 3 (6) 126 5.4 54.01 21.91 12.58

76 2 (2) 246 10.56 61.82 36.18 24.59

40–50 76 7 (13) 186 6.65 66.4 39.07 25.25

50–60 76 5 (11) 155 6.93 56.88 30.9 21.6

Data is averaged across all sample lanes within the given ranges of human DNA quantities. On average, each sample was sequenced on 2 lanes.
doi:10.1371/journal.pone.0022213.t001

Figure 4. Square root of average coverage per base against human DNA proportion for 59 sequenced clinical samples. Sequence
read lengths were either 54 bp (grey spots) or 76 bp (black spots). Each dot represents a sample. Where a sample was sequenced on more than one
lane, the average sequence coverage is presented. The median (Square root of average coverage) intra-sample standard deviation was 0.91, and
inter-quartile range was 0.70–1.35.
doi:10.1371/journal.pone.0022213.g004
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As expected, human DNA contamination level influenced the

yield of Plasmodium coverage even when accounting for read

length. Lower human DNA levels will result in greater relative

representation of Plasmodium DNA and, thus, sequence yield,

which influences coverage levels. Amongst other variables,

moderate variation in the total yield of Plasmodium sequence data

between samples with the same human DNA levels and read

length may arise as a result of technical inter-lane variation in

DNA abundance on the flow cell (cluster density). Further details

beyond the scope of this study on the sequence data presented

here, including SNP detection approaches and descriptions of

inter- and intra-host diversity, are presented elsewhere (Manske,

Miotto et al., submitted). The data is also available in the

European Nucleotide Archive (http://www.ebi.ac.uk/ena/data/

search?query = plasmodium).

Using the Burkina Faso study as a model, at the 30% human

DNA threshold and with 76 bp reads, using the Lymphoprep plus

Plasmodipur approach, .70% of samples should yield average

genome coverage of ,40 with one lane of Illumina sequence data.

Furthermore, as Illumina technology continues to improve,

increasing sequence data yields are observed. In this study, 1–

2 Gb total sequence data was generated per lane, whilst more

recent lanes have produced yields of 4–5 Gb sequence data, a 2–3-

fold increase in the average sequence coverage of the parasite

genome despite consistent trends in the relative reduction of

parasite sequence coverage with increasing human DNA (data not

shown).

A number of WBC-depletion methods have been described in

the malaria literature, but the majority of these studies have been

concerned with removing WBCs to sufficiently low levels for

parasite culture-adaptation. The efficacy of these methods in the

preparation of clinical blood samples for whole genome sequenc-

ing has generally not been assessed. Addressing this in our study,

we demonstrate that a simple two-step Lymphoprep plus

Plasmodipur approach can be undertaken with basic laboratory

facilities and is effective at removing human WBCs from clinical

samples for large, genome-wide studies. For more bespoke studies

on clinical samples, a combination of lymphoprep, Plasmodipur

and anti-HLA1 dynabeads is more effective. A recent study

demonstrated a yield of ,50% human DNA following CF11-

based filtration of a P. vivax sample with a 1.9% parasitaemia

(Dharia et al., 2010). The yield of P. vivax Illumina sequence data

(average 30-fold genome coverage) in this sample proved sufficient

for genome-wide SNP-based analysis. Further analysis of the CF11

method with a larger sample size and broad range of parasitaemias

should enable further validation of the utility of this method to

Plasmodium sample preparation for whole genome sequencing. The

observation of high sequence yields, even in samples with human

DNA levels as high as 30 or 50%, validates the general approach

of genome-wide sequencing on clinical P. falciparum samples and

requests further optimization of cost-effective WBC-depletion

methods for P. falciparum and other Plasmodium species. A

combination of molecular (i.e. DNA quantity) and cellular (i.e.

complete blood counts) assessments of human and parasite

quantities both pre and post sample processing should facilitate

these efforts.
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