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Abstract
Background—Cognitive, global and functional instruments have been extensively investigated
for correlations with neuropathological changes such as neurofibrillary tangles (NFTs), plaques,
and synapse loss in the brain.

Objective—Our objective is to correlate the functional, global and cognitive decline assessed
clinically with the neuropathological changes observed in a large prospectively characterized
cohort of mild cognitive impairment (MCI) and Alzheimer’s disease (AD).

Methods—We examined 150 subjects (16 MCI and 134 AD) that were prospectively assessed
and longitudinally followed to autopsy. MCI subjects clinically met Petersen criteria for single or
multi-domain amnestic MCI. AD subjects clinically met NINCDS-ADRDA criteria for probable
or possible AD. All subjects received the Functional Assessment Staging (FAST), the Global
Deterioration Scale (GDS), and the Mini Mental State Examination (MMSE) ante-mortem. Plaque
and tangle counts were gathered for hippocampus, entorhinal cortex, frontal, temporal and parietal
cortices. Braak staging was performed as well.

Results—The GDS, FAST and MMSE correlated with plaque counts in all regions. The GDS,
FAST and MMSE correlated with tangle counts in in all regions. The three instruments also
correlated with the Braak score. The MMSE and GDS correlate better than the FAST in most
regions.

Conclusions—Accumulation of neuropathology appears to correlate with functional, global,
and cognitive decline as people progress from MCI through AD. In our study, both tangle and
plaque accumulation correlated to clinical decline but when AD is considered alone, the
correlations are not as robust.
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INTRODUCTION
Although AD has been investigated for more than 100 years, it was not until the 1960’s that
quantitative measures of the disease progression and severity in relation to function and
neuropathology were made by Blessed and his colleagues. The Blessed Dementia Scale was
found to be significantly correlated with senile plaques, neurofibrillary tangles (NFTs) and
the progression of dementia [1]. Later studies using the Blessed scale also found a high
correlation between neurofibrillary tangles of the cerebral cortex and symptoms of AD type
dementia and also concluding that density of NFTs was more predictive of AD than senile
plaques (SPs) [2, 3]. As with the Blessed scale, the MMSE and Clinical Dementia Rating
(CDR) have been used to correlate cognitive symptoms of dementia with neuropathology
[4–6]. Recently, this discussion became more relevant when a case series by Holmes and
Nicoll reported clearance of amyloid and plaques in a group receiving the active
immunotherapy AN1792 but the group continued to dement and the autopsy showed little
change in other pathological findings [7].

There are very few reported comparisons of the GDS to neuropathology of senile plaques
and NFTs [8]. Whereas the MMSE appears to be quite sensitive in earlier stages of AD,
when the focus is on cognitive decline, the GDS seems to be a more appropriate choice for
other aspects of decline such as global functioning [9]. As with the GDS, a limited amount
of research has been done using the FAST for this purpose. One study compared the FAST
and GDS to loss of hippocampal volume [10] and found that regional hippocampal volume
correlated inversely with increasing FAST and GDS scores. Another study addressed
neuronal loss and neurofibrillary changes [11] In that study, significant correlations were
noted between the FAST and the total number of neurons and the percentage of neurons
with neurofibrillary changes in CA1, CA4, and the subiculum. Neither study compared
clinical pathology to Braak staging [12]. No studies have been done to date that correlate the
FAST to plaque formation.

The goal of this study is to examine the relationship between functional decline as measured
by the FAST, global decline as measured by the GDS, and cognitive decline as measured by
the MMSE score and neuropathology changes (senile plaques and NFTs). We hypothesize a
correlation between worsening cognitive, functional and global decline and increasing
neuropathological changes.

METHODS
Participants

150 subjects were selected from a larger sample of 728 subjects prospectively evaluated as
participants of the Banner-Sun Health Research Institute Brain Donation Program between
1/1/97 and 12/31/07. After consent, patients received medical, neurological, and
neuropsychological assessments, and eventually underwent post-mortem neuropathological
analysis. The mean interval between last neuropsychological assessment and death was 12.5
± 8.7 months (S.D.) for the total sample. There was no difference identified in the MCI
group (13.9± 14.5 months).

All 150 subjects selected that had complete clinical, neuropsychological and pathological
data to evaluate. The sample included 16 MCI (MMSE range 24–29, FAST 2–3, GDS 2–3)
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and 134 AD (MMSE 0–23, FAST 4-7c, GDS 4–7). Included were 131 clinically diagnosed
and autopsy-confirmed AD patients diagnosed by National Institute on Aging (NIA) [13, 14]
criteria for definite or probable AD who also met NINCDS-ADRDA criteria for a clinical
diagnosis of probable or possible AD [15]. The 578 subjects that were excluded had missing
clinical or pathological data or had a primary diagnosis other than AD including dementia
with Lewy bodies [16]. Vascular dementia [17], Parkinson’s disease dementia [18], FTD
[19], etc.

MCI subjects were diagnosed clinically according to Petersen criteria for single or multi-
domain amnestic MCI [20]. These MCI (n = 16) subjects had subjective complaints of
memory loss and objective impairment in memory, but the magnitude of the cognitive and
related deficits was insufficient for a diagnosis of dementia or AD [15, 21]. Only MCI
subjects who came to autopsy prior to conversion to dementia were included in this sample.

Global Assessment
Subjects were evaluated globally utilizing the Global Deterioration Scale (GDS) [22, 23].
The GDS has seven ordinal stages (1–7) on a scale starting with Stage 1 (no cognitive
decline) and ending with Stage 7 (very severe cognitive decline). The GDS incorporates
both cognitive and functional aspects of aging and dementia [24, 25]. These were
administered by the study clinician.

Functional Assessment
Patients were functionally assessed by utilizing the Functional Assessment Staging
procedure (FAST) [26]. It is used to assess functional decline in AD. Patients who are
functionally more impaired also show continuing increments in cognitive loss. The FAST
contains 16 stages. Stage 1 marks no difficulties for the patient while Stage 7(f) describes
the patient who is unable to hold his/her head up [22]. The latter eleven stages subdivide the
FAST in the late stages of 6 and 7. These were administered by the study clinician.

Cognitive Assessments
The Mini Mental State Examination was administered as a measure of cognitive status [27].
This was administered by the clinical coordinator.

Neuropathological Examination
Pathological assessment was performed at the Civin Laboratory for Neuropathology at
Banner-Sun Health Research Institute (SHRI). The average post-mortem interval was
approximately 3 hours. Sections from paraffin blocks were cut at 5 μm and stained with
hematoxylin and eosin (H & E). Paraffin sections from the anterior cingulate gyrus,
entorhinal cortex, middle frontal gyrus, middle temporal gyrus, inferior parietal lobule and
anterior medulla were stained immunohistochemically for α-synuclein (LB509 monoclonal
antibody) to identify Lewy bodies and Lewy-related neurites. Sections from frozen blocks
were stained with Campbell-Switzer, Gallyas and Thioflavine S methods for plaques,
tangles and other inclusions. Large 4 × 3 cm frozen sections containing coronal planes
through most of the frontal, temporal, parietal and occipital lobes, were stained with H & E
and Luxol Fast Blue to detect cerebral white matter rarefaction (leukoaraiosis). Additional
immunohistochemical procedures were used as needed, including those for ubiquitin to
detect intraneuronal inclusions of motor neuron disease with dementia and αB-crystallin and
phosphorylated neurofilament to detect swollen neurons in corticobasal degeneration. For all
stains except H & E and Luxol Fast Blue, both positive and negative control sections were
processed with every batch of slides.
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Densities of plaques and neurofibrillary tangles were determined in the hippocampus,
entorhinal cortex, temporal lobe, parietal lobe, and frontal lobe using CERAD [14] criteria
and rated on a scale of 0 (none) to 3 (frequent). Totals of the five areas had a range with a
possible maximum score of 15. Both neuritic (large and encompassing neurites) and diffuse
(more minute and not surrounding neurites) plaques were included in plaque density ratings.
Braak staging was performed according to Braak and Braak [12] involving evaluation of
NFT progression.

Statistical Analysis
The demographics of the sample are found in Table 1. In order to graph and analyze FAST
sub-stage scores of 6(a)–6(e) and 7(a)–7(f), 6(a) was converted to 6.0, 6(b) to 6.2, 6(c) to 6.4
and so forth [28]. AD/MCI subjects were analyzed together to encompass a full range of
cognitive and functional impairment. MCI subjects were not analyzed separately as the
sample size was too small to make any observation seem valid. Density scores of plaques
and tangles in tissue from the hippocampus, entorhinal cortex, temporal lobe, parietal lobe,
frontal lobe and a total of these scores were correlated with the FAST, GDS, and MMSE
using Spearman’s rho. The nonparametric Spearman rho statistic was used for the
correlations because the FAST and GDS scales were ordinal and because the scores for the
MMSE were not normally distributed. All analyses were conducted using either Microsoft
Excel or SPSS (SPSS, Chicago, IL).

RESULTS
For statistical purposes, MCI subjects were added to the AD subject group since amnestic
MCI is widely considered a prodromal condition and to broaden the spectrum of the AD
disease process observation window. No significant differences in age or brain weight were
found between AD and MCI subjects. All patients were Caucasian and a approximately half
were female. The mean age of the cohort at the time of death was 83.6 years. The mean
disease duration was 7.95 ± 5.18 years. The demographics are summarized in Table 1.

When the entire sample was examined, the FAST correlated significantly with plaque counts
in the frontal, temporal, parietal, hippocampal and entorhinal cortices (Fig. 1). The data are
also presented in a tabulated manner with Fig. (1). The GDS correlated significantly with
plaque counts in all brain regions investigated. Similarly, the MMSE correlated with plaque
counts in all brain regions investigated. (Fig. 1). There were no significant differences
between the FAST, GDS and MMSE in their respective correlations to regional plaque
counts. Correlations were better in the neo-cortices than the hippocampal and entorhinal
cortices.

For NFTs, significant correlations were observed for all regions and the FAST, GDS and
MMSE scores (Fig. 2). The data are also presented in a tabulated manner with Fig. (2). The
FAST, GDS, and MMSE correlated strongly with tangle counts in the neocortex but less
robustly entorhinal cortex and the hippocampus. For Braak staging, all three measures
showed significant correlations. There were no differences between the groups in terms of
correlations with regional tangle counts or Braak staging.

Because of concerns about the possibility of dilution of correlation when combining AD and
MCI, we repeated correlations in the AD subjects alone. These data are tabulated in Table 2.
As can be seen, tangles continue to correlate quite well with MMSE, GDS, and FAST in the
neocortex but not in the archicortex (hippocampus and entorhinal cortex). Plaque
correlations are considerably weaker by region but not diluted entirely. Again, they appear
more robust in neo-cortex than in the archicortex. The FAST does not correlate significantly
with total plaque counts.
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DISCUSSION
Though this topic has been investigated extensively, our study has several important
contributions. First, it is the first study to look at the interaction between cognitive,
functional, and global decline by different anatomical regions in AD. Second, it is the largest
study of its kind to date; incorporating several clinical instruments, and is the first study of
its kind to incorporate MCI subjects. Third, unlike other clinical pathological correlations,
we find that cognitive, functional and global measures correlate to plaque counts. In this
study, we find that global (GDS), cognitive (MMSE) and functional levels (FAST) in
subjects ranging from MCI through the spectrum of AD severity correlate with
accumulation of AD pathology in the neocortical areas of the brain. The major finding of the
study is that the more post-mortem AD pathology, the worse the cognitive, functional, and
global decline.

There has been continued debate about the role of senile plaques and NFTs in the
progression of AD. In general, NFT counts have been shown to be a slightly better predictor
of functional, global, and cognitive functioning than plaques, especially in the hippocampus
and entorhinal cortex. Some have found that senile plaques are the primary correlate with
AD progression [29–32]. Others have supported NFTs as more accurate predictors of
clinical symptoms [3–5, 12, 33–38]. Still others suggest other markers such as synapse or
neuron counts correlating with cognitive decline[39, 40]. It has also been suggested that
there is a dependent relationship between the two pathologies in correlating with AD
progression [41]. Discrepancies may reflect differences in staining and sampling techniques
performed [29, 32]. In contrast to the majority of studies finding superior correlation with
tangle pathology, we find that plaque correlations with cognitive, functional, and global
decline were similar in extent to NFT correlations in all areas of the brain when AD and
MCI are considered together. We find that tangle counts correlate better than plaque counts
when AD is considered alone and our tangle count correlations are similar to those which
have been previously reported. That finding more closely approximates what other
investigators have found. Also, in contrast to other studies finding that AD dementias are
associated with an increase in hippocampal neuropathology, the hippocampus and entorhinal
plaque count correlations were lowest with all three instruments but better with tangle
correlations. This may reflect the prior observations that plaques and tangles have different
distributions throughout the brain.

One strength of this study was the ability to analyze pathology in many regions providing
more details about plaques and NFTs as indicators of AD progression. Another strength of
this study is the inclusion of MCI subjects as MCI progresses to AD much faster than age-
matched individuals. MCI progresses to AD at a rate of 10% – 15% per year compared to
cognitively intact individuals who convert at a rate of 1% – 2% per year [42, 43]. In some
studies, it has been found that up to 80% of MCI subjects will convert to AD [20, 44, 45].
Yet another strength of this study is the use of data that has been prospectively collected
rather than in a post hoc manner. This may increases the quality of the data being obtained.
Using prospective data helps to identify the strength of the association between clinical
measures and pathological changes by specific regions of the brain. The subjects were also
similar in several ways including ethnic background, education, and age which may result in
minimizing variability. On the basis of this report, future studies should take into
consideration other parameters besides cognitive scales and should investigate several brain
regions. Weaknesses of this study include possible methodological insensitivities of the
quantification techniques.

Further research should include an even larger number of MCI subjects. This would help to
clarify further whether a continuous progression in neuropathology correlates with AD
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clinical progression. However, few MCI subjects expire in this phase and thus autopsy tissue
is difficult to acquire. Overall this study contributes to identifying the interaction between
pathological changes in the brain and the clinical changes that occur as progress from early
cognitive changes to Alzheimer’s disease. On the basis of this report, future studies should
take into consideration other parameters besides cognitive scales and should investigate
several brain regions.
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Fig. (1).
Correlations between Clinical Assessments and Plaque Densities shown graphically and
tabulated. *p <0.05, ** p <0.01.
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Fig. (2).
Correlations between Clinical Assessments and Neurofibrillary Tangles and Braak Stage
presented graphically and tabulated.
*p <0.05, ** p <0.01.
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Table 1

Demographics and Clinical Assessments

Characteristic N=150

Age at death (years)(mean ± SEM) 83.6 ± 0.7

Gender (% female) 48.3

Education (years)(mean ± SEM) 14.7 ± 0.2

MMSE (mean ± SEM) 17.0 ± 1.3 Range (0–29)

FAST (mean ± SEM) 5.1 ± 0.2 Range (2-7c)

GDS (mean ± SEM) 4.8 ± 0.2 Range (2–7)

SEM, standard error of the mean;

MMSE, Mini Mental State Examination;

FAST, Functional Assessment Staging;

GDS, Global Deterioration Scale.
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Table 2

Table 2a. Correlations between Clinical Assessments and Plaque Densities for AD Only

Brain Region FAST Spearman GDS Spearman MMSE Spearman

Frontal
Correlation .30** .43** −.36**

p value <0.05 <0.001 0.02

Temporal
Correlation .24** .36** −.41**

p value 0.06 0.006 <0.01

Parietal
Correlation .21** .0.34** −.32**

p value 0.12 <0.01 0.04

Hippocampal
Correlation .26** .33** −.34**

p value <0.05 0.01 <0.05

Entorhinal
Correlation .09** .18** −.15**

p value 0.50 0.17 0.33

Total
Correlation .22** .32** −.30**

p value 0.10 0.01 0.05
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Table 2b

Correlations between Clinical Assessments and Tangle Densities for AD Only

Brain Region FAST Spearman GDS Spearman MMSE Spearman

Frontal
Correlation .40** .51** −.058**

p value 0.002 0.0001 0.0001

Temporal
Correlation .31** .41** −.46**

p value 0.02 0.0013 0.002

Parietal
Correlation .45** .55** −.62**

p value 0.0004 0.0001 0.0001

Hippocampal
Correlation .29** .27** −.19**

p value <0.05 <0.05 0.21

Entorhinal
Correlation .18** .22** −.22**

p value 0.16 0.10 0.15

Total
Correlation .41** .49** −.54**

p value 0.0013 0.0001 0.0002

*
p <0.05,

**
p <0.01.
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