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Abstract
The processes by which new white-matter lesions in multiple sclerosis (MS) develop are only
partially understood. Much of this understanding has come through magnetic resonance imaging
(MRI) of the human brain. One of the hallmarks of new lesion development in MS is enhancement
on T1-weighted MRI scans following the intravenous administration of a gadolinium-based
contrast agent that shortens the longitudinal relaxation time of the tissue. Visible enhancement in
the MRI results from the opening of the blood-brain barrier and reveals areas of active
inflammation. The incidence and number of existing enhancing lesions are common outcome
measures used in MS treatment clinical trials. Dynamic-contrast-enhanced MRI (DCE-MRI) can
estimate the rate at which contrast agents pass from the plasma to MS lesions. In this paper, we
develop a principal component-based framework for the analysis of these data that provides
biologically meaningful quantification of blood-brain barrier opening in new MS lesions. To
accomplish this, we use functional principal components analysis to study directions of variation
in the voxel-level time series of intensities both within and across subjects. The analysis reveals
and allows quantification of typical spatiotemporal enhancement patterns in acute MS lesions,
providing measures of magnitude, rate, shape (ring-like vs. nodular), and dynamics (centrifugal vs.
centripetal). Across 10 subjects with relapsing-remitting and primary progressive MS, we found
subjects to have between 0 and 12 gadolinium-enhancing lesions, the majority of which enhanced
centripetally. We quantified the spatiotemporal behavior within each of these lesion using novel
measures. Further application of these techniques will determine the extent to which these lesion
measures can predict or track response to therapy or long-term prognosis in this disorder.
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1 Introduction
Multiple sclerosis (MS) is an inflammatory disease that causes demyelinating lesions in the
central nervous system. Although gray-matter lesions are common [Calabrese et al., 2010],
white-matter lesions are easiest to identify, both pathologically and radiologically, due to
their loss of normal myelin and often high degree of inflammation. In the first clinical stage
of MS, these lesions appear relatively frequently and can occur in unpredictable locations at
unpredictable times. The disease-modifying drugs that are currently used to treat MS can
reduce the incidence of these lesions [Vosoughi and Freedman, 2010].

The processes by which new lesions develop are only partially understood. Much of this
understanding has come through magnetic resonance imagine (MRI) of the brain. These
lesions have long been known to form around veins [Charcot, 1868, Dawson, 1916], where
inflammatory cells, especially T lymphocytes, form perivenular cuffs. One of the hallmarks
of newly forming lesions is enhancement on MRI following the intravenous administration
of gadolinium-based contrast agents that shorten the longitudinal (T1) relaxation time of the
tissue [Grossman et al., 1988]. This visible enhancement in the MRI results from opening of
the blood-brain barrier (BBB) and reveals areas of active inflammation. Lesion enhancement
typically lasts 4 to 8 weeks and may be accompanied by neurological signs and symptoms,
but enhancing lesions are often asymptomatic [Capra et al., 1992]. The incidence and
number of enhancing lesions are common outcome measures used in MS treatment clinical
trials.

The exact nature of BBB opening in new MS lesions and the selectivity of the resulting
permeability remain unclear. The analysis of contrast-agent uptake can provide only limited
insight into these issues. Dynamic-contrast-enhanced MRI (DCE-MRI) has been used for
the past two decades to quantify the rate at which contrast agents pass from the plasma to
MS lesions as a measure of BBB permeability [Kermode et al., 1990].

DCE-MRI data are typically analyzed using deterministic pharmacokinetic modeling
techniques based on multi-compartment tissue models with exchange [Davidian and
Giltinan, 1995]. These techniques are limited for four major reasons. The first is that the
tissue composition, specifically the number of compartments in the pharmacokinetic model,
is unknown, posing technical and interpretive difficulties. Second, the number of
compartments may vary within and between tissue types, which makes the a-priori choice of
a number of compartments for every single voxel in the brain a difficult proposition. Third,
saturation of these models leads to interpolation, which in itself does not help with the
quantification and dimension reduction. Finally, when fitting these models to the DCE-MRI
data from our study, we have found that standard deterministic algorithms fail to converge in
a majority of the voxels.

In this paper, we consider 10 subjects, 6 with relapsing-remitting MS (RRMS) and 4 with
primary-progressive MS (PPMS), who were evaluated as part of a natural-history protocol.
The RRMS subjects were selected for this imaging protocol because of their active disease,
as evidenced by the development of contrast-enhancing lesions on monthly scans. In each
subject, we observed one DCE-MRI scan recorded during a single clinical visit. The DCE-
MRI consisted of short T1-weighted scans recorded as the contrast agent flows through the
brain; details concerning the acquisition of these data can be found in Section 2. Our goals
were to: 1) provide a statistically principled platform for the quantification of observed
lesion enhancement; 2) introduce and analyze spatiotemporal models of lesion enhancement
with consistent interpretation within and between subjects; and 3) generate a set of
hypotheses for the cross-sectional and longitudinal analysis of MS lesions in a large
population of MS patients observed at multiple visits. To achieve these goals, in Section 3
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we use functional principal components analysis (FPCA) [Ramsay and Silverman,
1998Ramsay and Silverman, 2002] to study directions of variation in the voxel-level time
series of intensities in each of the 10 subjects. In Section 4, we consider the normalization
and simultaneous analysis of the data from all 10 subjects using similar techniques. We use
the principal components along with their corresponding scores (loadings) to study patterns
in the intensity time series, which are referred to as enhancements. We also develop a simple
method for testing whether a particular voxel (or group of voxels) has enhancing properties.
We finish the paper with a set of biological hypotheses that we intend to test in future
studies.

2 Experimental Methods
2.1 Participants

We analyzed the MRI data of 10 people with MS (6 with RRMS and 4 with PPMS) scanned
under an Institutional Review Board-approved natural-history protocol. All participants gave
written consent. Demographic, diagnosis, and treatment information may be found in Table
1. The study included both treated and untreated subjects with a wide range of EDSS scores
(0 to 7, where 0 corresponds to a normal neurological examination and 7 to essentially
wheelchair-bound). We included both treated and untreated patients in order to capture
features of lesion enhancement that are representative of a typical patient population.

2.2 MRI Protocol
As part of a comprehensive protocol, we performed whole brain DCE-MRI in a 3 tesla MRI
scanner (Signa Excite HDxt, GE Healthcare, Waukeska, WI) using the body coil for
transmission and an 8-channel receive coil array (Invivo Corp, Gainsville, FL) for signal
detection. We acquired T1-weighted images using a spoiled gradient echo sequence
(FSPGR) with flip angle (FA)=15deg; repetition time (TR)=5.6ms; echo time (TE)=1.84ms;
8mm3 isotropic voxels; and acquisition time (TA)=35s per volume. We repeated the
sequence before, during, and after a 60sec intravenous infusion of 0.1mmol/kg gadolinium-
DTPA (Magnevist, Bayer HealthCare, Leverkusen, Germany) via power injector
(MEDRAD, Inc., Warrendale, PA) over 58 to 155 minutes. We acquired three consecutive
T1-weighted volumes before the infusion of the contrast agent and 10 to 64 volumes during
and after the infusion.

We also acquired a sagittal T1-weighted 3D FSPGR-Brain Volume (BRAVO) before and
approximately 35min after the administration of the gadolinium chelate (TR=8.8ms,
inversion time (TI)=450ms, TE=3.84ms, FA=13 deg, voxel size=1mm3, TA=4.2min) as
well as a sagittal 3D Fluid Attenuation Inversion Recovery (FLAIR) image approximately
40min after gadolinium administration (FA=90deg, TR=6000ms, TE=12.7ms, TI=1861ms,
voxel size=1mm3, TA=8min).

2.3 Image Post-Processing
For the initial image processing, we used Medical Image Processing Analysis and
Visualization (MIPAV) (http://mipav.cit.nih.gov) and Java Image Science Toolkit (JIST)
(http://nitrc. We rigidly coregistered all acquired dynamic volumes to the first volume in
which we detected enhancement in the arteries, resampling at 1 mm isotropic resolution. We
then rigidly aligned all images to the Montreal Neurological Institute standard space and
removed the extracerebral voxels using a skull-stripping procedure [Carass et al., 2007]. We
used the high-resolution T2-weighted and FLAIR images (shown for the first two subjects in
Figure 1) to automatically segment the brain into separate compartments for cerebrospinal
fluid, gray matter, white-matter lesions, and normal appearing white matter (NAWM) [Shiee
et al., 2010].

Shinohara et al. Page 3

Neuroimage. Author manuscript; available in PMC 2012 August 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://mipav.cit.nih.gov
http://nitrc


3 Single-Subject Methodology
We start by introducing some prominent characteristics of the data. As the contrast agent
propagates through the areas under observation via MRI, the signal intensity on T1-weighted
images increases because the gadolinium shortens the T1 relaxation time of the tissue. This
increase in the signal is related to the concentration of the contrast agent in the tissue.
However, exact calibration is not possible without careful T1 mapping, which we explicitly
avoided in order to decrease scan time, reduce variability, and limit the number of
assumptions of our analysis. Without such mapping as well as knowledge of the relaxivity
properties of gadolinium, units of MRI signal cannot be taken as indicative of gadolinium
concentration [Tofts, 1997]. The interpretation of the recorded intensity varies with respect
to the location and baseline magnetic properties of the various voxels in the brain.
Quantifying the temporal and spatial behavior of the signal intensity in white matter is the
primary goal of this paper.

For illustration, the intensity maps for two subjects in a sagittal slice are displayed in Figure
2 at four time points: before the injection and 2, 4, and 32 minutes afterward. Although we
only show four time points, many more volumes are typically observed for each subject. The
10 subjects analyzed in this paper were scanned over 58 to 155 minutes, and between 13 and
67 volumes were acquired during a single scan. The solid black contours in Figure 2 are the
reconstructed in-slice boundaries of the lesions obtained using the Lesion-TOADS
automatic segmentation algorithm [Shiee et al., 2010]. Most of the delineated lesions had
been present on previous scans of the same subject and did not enhance with contrast.

Several characteristics of the data are immediately apparent. First, in the time point
measured 2 minutes after contrast injection, the blood vessels are bright, indicating a high
concentration of the contrast agent. The rest of the brain remains essentially unchanged at
this time. Second, as time progresses some of the voxels in regions of interest (ROI) within
the lesions enhance. Third, lesion enhancement is also different between the two subjects: on
the scan at 32 minutes, the enhancing lesion in the first subject exhibits homogeneous
enhancement, whereas the enhancing lesion in the second subject shows a ring-like
enhancement.

Another way of looking at the data is to plot the time series for each voxel. More
specifically, the data from a single subject can be written as a T × V matrix, where T is the
number of time points and V is the number of voxels. For the first subject, T=67 and V =7.2
million (corresponding to the volume of dimension 182 × 218 × 182, where each voxel is
interpolated to 1mm × 1mm × 1mm cuts from an acquired resolution of 2mm3). The skull-
stripping procedure [Carass et al., 2007] reduces V from 7.2 million to 1.6 million. The time
series for these 1.6 million voxels are displayed in Figure 3 for the same two subjects.
Unfortunately, the sheer number of voxels masks important features in the data.

A more careful look at the data reveals hidden patterns. Figure 4 displays the time series for
four different regions of the brain in the first subject: blood vessels, NAWM, a non-
enhancing lesion and an enhancing lesion. The patterns are strikingly different and indicate:
1) sudden jumps in the intensity of blood vessel voxels immediately following injection as
the blood enters the brain, followed by exponential decay characteristic of single-
compartment pharmacokinetic modeling [Davidian and Giltinan, 1995] as the blood is
evacuated; 2) time-independent trajectories in the NAWM and non-enhancing lesion voxels,
indicating that perfusion is low in these regions and that the BBB is for the most part
impermeable to the contrast agent; and 3) gradual increases in the intensity of enhancing
lesion voxels during the first hour after injection, followed by a plateau during the second
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hour and small decreases in the third hour. From a physiological perspective, this indicates
that the plasma seeps into these areas slowly after being delivered by the blood vessels.

Given the complexity and size of the data, a natural next step in the exploratory data analysis
is to find the number and shape of patterns at the subject level. Our primary goal is to
quantify these patterns in the population. We start by applying FPCA to the collection of
time series from each subject. For illustration, consider the data for the subject displayed in
Figure 4. The first five principal components (PCs) from this analysis are depicted in Figure
5(a). The first PC (orange) is roughly a vertical shift; this corresponds to baseline
discrepancies between voxels. For example, the intensity in gray matter voxels and NAWM
voxels changes little over time; however, the gray matter voxel intensities tend to be shifted
downward compared to the white matter due to their longer intrinsic T1. Similarly, there is
variance in the baseline intensity within each of these sections in the brain; some parts of the
gray matter are darker than other parts. We conclude that the first PC captures natural
differences in the magnetic properties of voxels that are independent of the contrast agent’s
presence. The second PC (red) depicts a sudden increase in intensity after injection followed
by an exponential decline. This behavior is identical to that seen in blood vessels in Figure
4. In terms of physiology, this is consistent with the delivery of the contrast agent in high
concentrations immediately following injection, followed by its efficient clearance. The
third PC (blue) is a gradual increase in intensity followed by a plateau, which is strikingly
similar to the shape of the time series in the enhancing ROI. This indicates that blood is not
rapidly introduced to these regions; rather, it slowly seeps in over time.

The first three PCs, which explain 99% of the variation in the data for this subject, are
interpretable and apparently correspond to real features in the observed time series. To
further investigate our empirical findings, we analyze the spatial patterns associated with the
loadings of the voxel time series. To accomplish this, we calculate the PC loadings on each
of these components for each voxel. Specifically, for a voxel v with corresponding observed
time series YO(t, v) and a principal component φ;j(t), we find the loading ξ(v) = < YO(t, v),
φj(t) > = Σt YO(t, v)φj(t). We then map these scores, ξ (v), back to the three-dimensional
brain volume. Figure 6 is a map of the spatial patterns of these loadings for the second and
third PCs in the same sagittal slice from Figure 4 (top row). We have omitted the map for
the first PC as it only shows baseline differences and is not of general interest. The second
PC loads heavily only in the blood vessels (yellow spots), as expected. The third PC loads in
the enhancing ROI and in residual highly vascularized extracerebral tissues (such as the
meninges).

Similar results are shown in Figures 3(b)–5(b) for the second subject. This subject is only
observed for half as long as the first subject (61 minutes versus 146). Remarkably, the first
three PCs from the two subjects share similar shapes (Figure 5(a) versus 5(b)) and
interpretations. The loading maps also yield similar findings (Figure 7).

Our voxel-level FPCA methodology does not incorporate any a priori knowledge about the
spatial correlation of the data. This correlation is manifested as similarities in the time series
from adjacent voxels. The FPCA method incorporates information related to spatial
correlation once the loading maps are drawn (Figures 6–7), when the results are interpreted
with respect to their spatial trends. To validate these voxel-level methods, we conducted two
simulation studies that showed our methods to be sensitive and specific to spatial trends in
enhancement. The simulations also demonstrated that the principal components capture the
enhancement-related patterns in the spatially-dependent time series. The simulation schemes
and results are given in the Appendix.

Shinohara et al. Page 5

Neuroimage. Author manuscript; available in PMC 2012 August 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The above subject-by-subject analysis is enlightening, but each analysis is subject-specific,
and the measures defined therein are therefore only valid within the particular subject.
However, our primary goal is to quantify these subject-specific patterns using measures that
are meaningful across subjects. Thus, in the next sections we: 1) normalize and interpolate
the data to a common grid; 2) obtain population-level PCs; 3) ensure that the features
identified by the above subject-level analyses are also identified by the population-level
method; and 4) generate hypotheses concerning the nature of enhancement patterns and
outline appropriate statistical methods.

4 Multiple-Subject Methodology
4.1 Normalization and Interpolation

An important first step in the analysis of populations of images is to calibrate measurement
units across subjects to ensure that they have the same interpretation. This process, often
referred to as normalization, depends on the particular application and scientific question.
We propose a subject-by-subject normalization procedure so that the construction of the
normalized data from one subject will not be affected by the data from other subjects or a
priori norms.

Because the focus of this research is the enhancement of MS lesions in white matter, we
propose a procedure that emphasizes departures from the subject’s NAWM. Let  be
the observed intensity at time t of voxel v from subject i and normalize the data as:

(1)

where μi, 0 and Vi, 0 denote the mean and variance of the observed intensities, , over
all time points before the injection, t, and voxels in the subject’s NAWM, v. These
normalized values, , are deviation measures from the mean baseline intensity of
NAWM voxels of that particular subject expressed in standard deviation units of the
baseline NAWM intensities. For example, in Figure 4, we display the raw intensities on the
left side of the y-axis and the normalized values of intensity on the right side. As expected,
the normalized intensity values in NAWM are very close to zero and vary from −2 to 2
(middle plot). In the enhancing ROI, the normalized time series vary between −2 (before
injection) and 5 (around 100 minutes after injection). The blood vessel time series display
more extreme changes, and they start as low as −5 (before injection) and peak around 15
standard deviations (immediately following injection). Note that the normalization does not
change the structure of the distribution of time series and that all information is maintained
as long as the μi, 0 and Vi, 0 are recorded;  can easily be
recovered. Furthermore, the values μi, 0 and Vi, 0 themselves may be of interest as global
predictors, but we do not present this here.

An additional complexity is that both in our study and in clinical practice, the MRI scans are
not always recorded at the same times. For example, Figure 8 displays the time points at
which the scans were recorded for the 10 subjects. Each subject was scanned several times
before contrast injection (time 0, indicated by the red vertical line), several times
immediately following the injection (in the 5 minutes following injection), and at other
times scattered over the remaining scanning period. The first subject (the bottom row) was
scanned for about twice as long as the other eleven. For convenience, we truncate all
observations after 85 minutes (dashed blue vertical line). The other 9 subjects were scanned
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in only two later time regions, the first around 30 minutes and the second around 1 hour
after the contrast injection. Half of the subjects (subjects 3 to 8) were scanned at only one
time point in each of these regions. Although this sampling scheme may seem unusual, it
allows measurement of faster enhancement (such as that in blood vessels) at times
immediately following injection and slower enhancements (for example, that in enhancing
ROIs) over the remaining hour. The random scatter of the remaining subjects creates
technical difficulties, but it helps in the population-level inference. More specifically, having
a random distribution of observation times allows us to build information across subjects
about enhancement behaviors over the time frame.

Because the sampling time grid across subjects is irregular, we first interpolate the time
series for every brain voxel of every subject. To accomplish this, we simply use linear
interpolation within the range of the data and fix values beyond the observed data to those of
the nearest data points. This choice is reasonable because the time series display rather
simple temporal features and the measurement error is relatively small compared to the
enhancement patterns. We take these interpolated values for each subject on an equally
spaced time grid, {t1, …, tT}, of T = 100 points from 8 minutes before the contrast injection
to 83 minutes after the injection. We denote these normalized and interpolated data by fi(t,
v). To check that salient features of the data are not diluted in this process, we review the
interpolated scans and confirm that the enhancement properties are still visible. Indeed, all
the features (except scanner-related noise) identified in the subject-level analyses for our 10
subjects are preserved after normalization and interpolation.

4.2 Population-Level Analysis
In order to analyze the data from the 10 subjects simultaneously, we stack all time series
across all of the subjects and all voxels in the brain, which creates a matrix of size (Σi Vi) ×
T, where I = 10, Σi Vi ≈ 16 million, and T = 100. The rows of this data matrix are voxel-
specific time series with the same interpretations across subjects and measured at the same
time grid. On this matrix, we perform an FPCA analysis [Ramsay and Silverman, 1998,
2002, Greven et al., 2010, Di et al., 2009]. In particular, we treat fi(·, v) as independent
observations with covariance operator Σ(s, t) = Cov[fi(s), fi(t)] for s ≤ t. This treats voxels
from the same subject and different subjects exchangeably. A consistent estimator of the
covariance operator on the time grid is:

(2)

where s, t ∈ {t1,…, tT} and  is the mean normalized intensity at
time t across subjects. Due to the size of the data, it is not feasible to simultaneously load
data from more than one subject in memory. However, the form in (1) is computable by first
obtaining f̄ (t) and then cumulatively summing each subject’s contribution; thus, we may
calculate (1) by sequentially loading each subject-specific data file in memory. Since Σ is a
T × T (100 × 100) matrix, we can easily continue with the eigendecomposition to find the
eigenvectors Φj(t), for j = 1, …, T. The first nine of these population-level PCs (PLPCs) are
shown in Figure 9 and explain over 99.9% of the variation in time series from all voxels in
the 10 brains. We now proceed with the careful study and interpretation of these PLPCs.

4.3 Population-Level Principal Components
The first and second population-level principal components (PLPCs) in Figure 9 are similar
to the subject-level principal components (SLPCs) in Figure 3. The first PLPC corresponds
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to baseline time-independent differences in intensity between voxels, and the second
corresponds to the enhancement behavior in large blood vessels. Loadings on the third and
fourth PLPCs are high in enhancing lesions. The remaining PLPCs are more difficult to
interpret. However, they only explain 0.2% of the total voxel-level time-series variability
and may well be due to artifacts such as subject motion.

To better understand the first four PLPCs, we proceed as in the subject-level analysis by
producing maps of the loadings in the 3D brain volumes. Figure 10 provides the second
through fourth PLPC maps of a sagittal slice for the first subject. Figure 10(a) confirms that
the second PLPC captures the blood vessel behavior. The enhancing ROI loads primarily on
the third and fourth PLPCs. This is more complex than the subject-level analysis where the
enhancement was explained by one SLPC in the majority of cases. To understand this, recall
that using the PLPC basis, the time series in each voxel can be expressed as:

(3)

where ξi, j(v) = < fi(t, v), Φj(t) > is the jth PLPC loading for voxel v in subject i. Thus, a
linear combination of the third and fourth PLPCs explains the behavior in the enhancing
ROI. The third PLPC starts below baseline and increases gradually over time. This is
characteristic of the behavior of voxels in the enhancing lesions. The fourth PLPC shows a
similar behavior after a dip around the injection time. The major discrepancy between the
third and fourth PLPCs is a temporal shift; the fourth PLPC represents enhancement that
peaks about 30 minutes after the contrast injection, whereas the third corresponds to a
continual increase over the post-injection period of observation. Combinations of these two
PLPCs explain mixtures of such patterns. These first four PLPCs explain more than 99.8%
of the variation between all voxels in the 10 brains. As our interest in this paper centers
around enhancement in white matter, we do not consider it here. Comparisons of these
PLPCs to the SLPCs from the twelve subjects can be found in the Appendix.

We note that there are no parametric assumptions in the principal component-based
framework, which is not the case in biophysical models of vascular permeability. In the next
section, we use the scores from the population-level techniques described above to
discriminate between enhancement patterns using flexible modeling techniques. We further
suggest quantitative measures of degree of enhancement, temporal behavior, and spatial
properties.

5 Quantification of Lesion Enhancement
In this section, we suggest a framework for quantitatively describing enhancements in
enhancing lesion voxels. This framework is based on our 10 subjects and will require
validation in larger data sets. In order to quantify the enhancements, we will use the PLPCs
and the associated scores, as described in Section 3. As the third and fourth PLPCs
accounted for the enhancement properties, we consider loadings of all white-matter voxels
on these PLPCs. A scatterplot of these scores for the 10 subjects, indicated in differing
colors by subject, can be found in Figure 11.

As the loadings were estimated from the data, they are susceptible to measurement error
propagating from noise in the observed intensity data. In principle, to address this problem,
measurement error corrected methodologies [Carroll et al., 2006] could be applied. Here, we
used a resampling procedure to estimate the reliability of the scores in an ROI from the first
subject (details provided in the Appendix). The reliabilities of the first four PLPC scores
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were estimated to be uniformly above 99.5%. Given the high reliability of the scores in our
data, we proceed treating the estimated PLPC scores as fixed.

There is a clear grouping of the scores around the origin (0, 0) for each subject. The “potato-
like” shape dominating the center of the distribution is indicative of a bivariate normal
distribution. There are also voxels that deviate from the central cluster in all four quadrants.
After examining the voxels that deviate in the top-left, bottom-left, and bottom-right
quadrants in the raw four-dimensional data, an experienced MS neuroradiologist found that
these are all artifacts from patient movement and registration. We thus focus on deviations
from the central part of the distribution in the top-right quadrant only.

Each point in the top-right quadrant beyond the central cluster (roughly in the region with
ξi, 3(v) > 5 and ξi, 4(v) > 0) represents a voxel that enhances according to a mixture of the
third and fourth PLPC behaviors. At the subject level, these deviations (visible in Figure 11)
tend to be linear arms reaching outward and consisting of voxels from enhancing ROIs
inside MS lesions. To locate these enhancements, we first identify the non-enhancing voxels
for each subject; the scores associated with these voxels tend to be contained in the central
section of the bivariate normal distribution discussed above. For this, we use quantile-based
estimation of the parameters of the multivariate normal distribution of the non-enhancing
white matter voxels on a subject-by subject basis. For each subject i, we:

1. Choose five points ( ), for j = 1, …, 5, in the central cluster around the
origin. To choose these points, we first fit a linear regression of ξi, 4(v) on ξi, 3(v)
and take the 25th, 50th, and 75th quantiles of the fitted values as the first three
points. We then take two more points that are on the line perpendicular to the fitted
line and crossing through the median, each of which is one residual standard
deviation away from the median.

2. Calculate the empirical distribution of the scores evaluated at each of these points;

that is, find .

3. Minimize the function

(4)

in terms of the parameters μ, Σ, where Φ (· | μ, Σ) denotes the distribution function
of a multivariate normal with mean μ and covariance matrix Σ.

The algorithm above gives us an approximation to the distribution of non-enhancing white
matter voxels. This approximation method is especially useful in our scenario as it is not
sensitive to the arm-shaped deviations in the top-right quadrant of Figure 11 that represent
the enhancement behaviors of interest. Although the regression does use these points in the
estimation, their influence is low as the central mass consists of many more points. The
results from this fit are shown in Figure 15 in the Appendix for the first two subjects. This
allows us to tackle one goal of our analysis, specifically to construct a hypothesis test to
determine whether a particular white-matter voxel is enhancing.

The above method defines the distribution of the third and fourth PLPC scores in non-
enhancing white matter for the individual. We then estimate the probability of observing
scores as or more extreme than those observed for the voxel of interest using the fitted
bivariate normal approximation. The resulting p-value for each voxel allows us to judge
whether there is evidence of enhancement. In Figure 12, we show maps of transformed p-
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values for the first two subjects in the same sagittal slices in Figure 2. Purple areas are those
with very low p-values and thus suggest the presence of enhancement.

In order to partition the white matter into voxels that are non-enhancing and those that are
enhancing for each subject, we set a threshold for the p-values calculated above. For our
analysis, we chose this cutoff to be 10−15. We then partition the enhancing voxels in each
subject by grouping spatially connected voxels and refer to each connected set of enhancing
voxels as an enhancing ROI.

An important note concerning our FPCA-based procedure is that it does not use prior
knowledge of spatial correlations. Our approach does, however, incorporate this information
in the final steps as we map our results back into the 3D brain volume, and the voxel-level
results are interpreted in the context of their spatial location. Although this working
assumption of independence between voxels in clearly violated as enhancing and non-
enhancing regions tend to occur in clusters, it is useful as it allows for easily interpreted
results that depict and quantify the rich spatial information.

In Figure 13, we show the enhancing ROIs (as determined by the above procedure) in the
enhancements from the first two subjects as depicted in Figure 2. We calculate three simple
summary measures to describe the enhancements in each of these subjects. First, we take the
median norm (Euclidean distance from the origin in the (ξi, 3(v), ξi, 4(v)) planes) of the
enhancing candidate voxels. This measures the magnitude of the enhancement, which is
related to the maximum intensity of the enhancing voxels. In Figure 13, we show this as the
radius of the gray circle; subjects with larger circles have more prominent enhancements.
The second measure is the slope β3, 4 of the regression (solid red line) of ξi, 4(v) on ξi, 3(v).
This measures the velocity of the enhancement since voxels that load more on the fourth
PLPC peak in intensity earlier than those that load primarily on the third PLPC. Thus,
enhancements with steeper (larger) slopes tend to enhance earlier (subject 1), whereas those
with shallower (smaller) slopes enhance more slowly (subject 2). Third, we calculate the R2

for this regression fit, which is also given in Figure 13. This measures the variance of the
observed scores around the linear fit, which is a proxy for the spatiotemporal variation in
intensity patterns across the ROI. Enhancements with larger values of R2, as in Figure 13(a),
are more homogeneous, meaning that the enhancement time course is similar across voxels.
On the other hand, enhancements with smaller R2, as in Figure 13(b), are more
heterogeneous and for the most part appear ring-shaped. Overall, these three measures
summarize the magnitude, velocity, and spatiotemporal variation of lesion enhancement.

Based on our empirical observation that lesions tend to enhance either centripetally (from
the periphery to the center) or centrifugally (from the center to the periphery), we develop a
fourth measure to quantify the temporal enhancement dynamics within lesions. We first
calculate the distance from each voxel to the boundary of the ROI, which we denote d(v).
We then consider the relationship between d(v) and the principal component loadings ξi, 3(v)
and ξi, 4(v). The values of these loadings must be interpreted with caution, however;
although for the most part voxels with higher fourth PLPC loadings enhance earlier, a high
fourth PLPC loading may also indicate more intense enhancement. We therefore consider
the proportion of enhancement in each voxel from the third and fourth PLPCs and the
relationship between these quantities and d(v), which is shown in the first column of Figure
14 for the enhancing ROI from the first two subjects. (Note that the points in these plots fall
in discrete clusters due to the coarse resolution of the images relative to lesion size.) This
relationship is captured in linear fits to these quantities:
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(5)

(6)

Because a voxel that loads relatively more on the fourth PLPC than on the third PLPC has
earlier enhancement, we interpret βd4 > 0 as evidence for centrifugal enhancement, while
βd4 < 0 is indicative of centripetal enhancement. Using this regression framework (of
Equation 5), we test the hypotheses that βd4 > 0 or βd4 < 0, and the p-values from these tests
are also presented in Figures 14(a) and 14(c) as p−d4 and pd4 respectively. From these plots,
we can see that there is a centripetal enhancement in both the ROIs under consideration in
Figure 14.

In the second column, we present the data and fit from Equation 6, which examines spatial
patterns in total enhancement magnitude. It is clear from Figure 14(b) that the center of the
ROI in subject 1 is enhancing the most in magnitude. In subject 2, however, this is not the
case; Figure 14(d) shows that some areas of the boundary of the ROI enhance more than the
center (this is also apparent in Figure 12(b)). Indeed, the linear fit of model 6 is not ideal in
this particular case, and perhaps a quantile regression-based approach would be more
helpful. On average, however, there is a trend of more enhancement closer to the center of
the ROI as captured by the estimated βd of 50 (p < 0.01). The units of βd (and similarly βd4p)
are in proportion per unit increase in distance (in our case, 1mm). This may be standardized
in terms of the radius of the enhancing ROI, for example, in order to allow comparisons
between lesions of different sizes captured using different resolutions. Similarly,
transformations of variables and more complex models for Equations 5 and 6 may be
considered, although for the goals of this analysis the above methods proved sufficient in
our 10 subjects.

6 Results
We applied the above methodology to the 10 subjects in this study. We used the
thresholding procedure was used to detect enhancing lesions within the white matter as
segmented by the Lesion-TOADS method. Lesions smaller than 8 mm3 (the nominal volume
of an acquired voxel) in volume were excluded as they were indistinguishable from noise. In
each enhancing ROI, we calculated the magnitude, β3, 4 (the slope of the regression of
loadings on PLPC 4 against loadings on PLPC 3), and the corresponding R2 (Table 2). For
enhancing lesions sufficiently large to have interior (non-boundary) voxels, we also
calculated the distance-based spatiotemporal indices. Summaries of these measures are also
presented in Table 2.

The subjects had between 0 and 12 enhancing lesions, and the median magnitude of the
enhancements varied between 3.9 and 5.6 units. The median slope β3, 4 ranged between 0.15
and 0.36, except in subject 8 who had a negative estimated slope. In this subject, the small
volume of the enhancing lesions made the estimation of this slope imprecise. The median R2

ranged between 0.16 in subject 2 to 0.66 in subject 1. The estimated βd4 and βd are presented
in Table 2. In the two rightmost columns, the number of significantly centripetally and
centrifugally enhancing lesions are presented (calculated by testing βd4 < 0 and βd4 > 0,
respectively, in each lesion with a type I error rate of 0.05).
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7 Conclusion
In this paper, we have developed techniques for the analysis of DCE-MRI scans of MS
patients. Using FPCA techniques, we have studied the voxel-level behaviors of MR
intensities that capture permeability in new MS lesions. These techniques allow us to
identify and quantify the dynamics of vascular enhancement in these lesions, which will
enable a better understanding of BBB opening in this disorder.

A key step in this analysis is the normalization of the data from each subject in order for
inference to be meaningful at the population level. Our simple normalization procedure is
internal and does not depend on data from other subjects or external quantities. It
emphasizes discrepancies in white matter, the very discrepancies that we wish to study, but
it does not compress the data (that is, the structure of the data is conserved and no
information is lost). Our analytical methodology, however, is general and valid after any
alternate normalization scheme is applied.

Several complexities of DCE-MRI data make their statistical analysis difficult. The first is
that the scans are large; although they may be stored on a hard disk in less than 1Gb each,
interpreted statistical packages, without substantial novel programming, require additional
memory. This makes the simultaneous analysis of many subjects difficult even with modern
statistical computing facilities. In order to summarize these vast data, innovative exploratory
data analysis and dimension reduction techniques are key. Our methods achieve this while
remaining scalable to large studies with hundreds of patients observed at multiple visits.

Our methods are also automatic in that they do not require the manual construction of masks
describing the locations where enhancement occurs. In this paper we did, however, use the
TOADS white matter segmentation which suffered from some minor errors, mainly that the
masks included a few voxels outside of the white matter. Erroneous ROI recognized by our
methods were removed by manual inspection of the locations in the FLAIR images. One
may alternatively consider analyzing all brain voxels in a similar fashion to avoid the white
matter segmentation, but in that case meningeal enhancement might result in false positives.

Simple parametric models, motivated by our nonparametric principal components-based
analysis, can be obtained. Specifically, we may model:

where θ is low-dimensional and ε (v) is an (independent) error process. These models may
be fit using, for example, nonlinear least squares estimation. They will be easy to use and
will be independent of any reference population.

Our methods are not designed to supplant parametric models based on pharmacokinetics
[Tofts, 1997]. Such models are very useful for understanding tissue biophysics and in
particular the interaction between tissue compartments. Rather, we have built our methods to
allow us to generate and address hypotheses on both voxel and lesion levels about the
spatiotemporal properties of tissue enhancement, and the methods could also be applied to
study enhancement outside new MS lesions. For example, in Section 4, we derive an
approximation to the distribution of non-enhancing white matter voxels in each of the
subjects. Although this is sufficient to enable us to identify enhancing lesions, which was the
focus of this study, we could also investigate these non-enhancing voxels more closely. This
could be accomplished using the techniques we have presented by considering the union of
the central clusters in the (ξi, 3(v), ξi, 4(v)) plane. It also provides a natural framework for the
quantification of spatial features in enhancement as described in Section 5.
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This work opens several directions for future studies, including extension of the analysis to
many more subjects, as well as the characterization of differences between brain regions
(e.g., white vs. gray matter). The methods we have presented are computationally scalable to
these situations, and based on our initial findings we expect the number of principal
components that characterize enhancement to be small even in larger studies. Such studies
could determine, for example, whether lesions within one subject will be more similar in
enhancement patterns than those from different subjects.

The methods can also be extended to serial studies of enhancing lesions from the same
subjects. Our preliminary work has shown that enhancing white-matter lesions may evolve
over time, changing their spatiotemporal enhancement characteristics. This process may be
modeled through the measures developed in this paper. For example, the magnitude of

enhancement in a lesion  may decrease over time. In addition, we have found
instances of centrifugally enhancing lesions evolving into centripetal enhancements. This
may be assessed by extending the model 5 to:

where the t denotes the date of a study visit. Enhancement in new MS lesions tend to
diminish after 4–8 weeks, while other enhancing lesions may develop. Our methods can also
be extended to address this problem.
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Appendix

Results from Bivariate Fitting Procedure
Comparing the Subject-level and Population-level Analyses Results

Since there are obvious similarities between the SLPCs and the PLPCs, we consider their
comparisons. In order to make these comparisons, we first repeat the FPCA procedure from
Section 2 on the normalized and smoothed data for each subject. This gives twelve new

bases for ℛT in addition to the PLPC basis. We now quantify discrepancy; let  denote the
ith SLPC from the kth subject and Φj denote the jth PLPC. We begin by calculating the

projection of  on Φj, say . Then, the norm of the difference  measures the
discrepancy between the vectors. We calculated this measure for each PLPC and each SLPC
for each subject, and results are shown in Figure 16. Each rectangle corresponds to a
comparison, and the brightness of the rectangle represents the discrepancy measure; darker
rectangles indicate similarity between the components and brighter rectangles indicate major
differences. In all of the subject-level analyses, the first SLPC is very similar to the first
PLPC. The second SLPCs also tends to be very similar to the second PLPC. The third
SLPCs, which generally correspond to the behavior in the enhancing ROI, are explained by
the third and fourth PLPCs as noted above in Section 4. This chart helps make these
comparisons more concrete and allows us to better understand the differences between
enhancement behaviors at the population level.

Simulation Studies: One-Dimensional
To validate our methods, we performed two simulation studies; the first was a simple two-
dimensional example, and the second was a more complex four-dimensional example that
approximated the behavior of the DCE-MRI data. In the 2D example, we considered
observations on a one-dimensional space over a temporal dimension. In each simulation we
observed data on a spatial grid x1 = 1, x2 = 2, …, xL = L of length L = 1000 over a time grid
t1 = 1, …, tT = T of length T = 100. We simulated noise and stipulated spatially-correlated
enhancement over time in simulated ROIs. We then used our FPCA-based methods to
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identify and quantify these enhancement behaviors. We simulated data, for b = 1, …, B = 50
as follows:

1. We generated white noise independently at each location and each time point:

2. We sampled the number of enhancing ROI Nb randomly:

3. We randomly assigned half of the enhancements to the temporal behavior:

and the remainder to:

4. For each enhancement i = 1, …, Nb:

a. We sampled the radii of enhancements randomly:

b. We sampled the center, ci, randomly from the locations x1, …, xL.

c. We assigned enhancement i one of two possible enhancement behaviors.
Then, within the enhancement i, we made each voxel enhance by setting
the time series to:

where d(y, i) denotes the distance from the location x to the center of
enhancement i, and f(i) ∈ {f1, f2} denotes the assigned temporal behavior.

An example of the observed data is shown in Figure 17, where color indicates function value
along the locations on the horizontal axis, and time is shown on the vertical axis. In this
example, there are 5 enhancements which are depicted in yellow and orange in later times.
Some of the enhancements are visible earlier in time than others; these correspond to the f1
enhancement behavior.

We applied the methodology described in Sections 3 through 5, and the observed principal
components across the 50 simulations are shown in Figure 18(a) for one set of parameter
choices. As some simulations had only one enhancement and thus only one enhancement
pattern, these plots are difficult to read. To clarify the results, we split the simulations in
Figures 18(b) and 18(c) by the number of enhancements simulated in each trial. From Figure
18(b), it is clear that the FPCA analysis revealed the true enhancement behavior f1 or f2 in
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each trial with only one simulated enhancement. In the case where both behaviors were
imposed in the trial, Figure 18(c) shows the stability of the estimated PCs. Note that
although these behaviors appear to differ from the simulated enhancement shapes, the FPCA
methodology forces the PCs to be orthogonal. In Figure 19, we show that these are simply
rotated versions of the parametric functions f1 and f2; the black lines indicate the true
underlying enhancement behaviors and the red show the projections of the first two PCs
onto these functions. To assess the spatial performance of our method, we estimated the
number of enhancements that we captured using the multivariate normal fitting on the first
and second principal components, using a threshold on the fitted p-value of < 10−50 in more
than two consecutive locations to define an enhancement. We compared these spatially with
the true data-generating enhancement locations to estimate the ROI-level sensitivity of our
method and the number of simulated scans with fictitious ROI estimated by our method, and
the results are shown in Tables 3 and 4, respectively.

Simulation Studies: Three-Dimensional
To assess the performance of our methodology in a more realistic simulation study, we first
downsampled brain and white-matter masks from subject 1 from our data set to 91×109×91.
Using this as our canvas, we then simulated enhancement behaviors for replicates b = 1, …,
B = 50, in white matter voxels v ∈ VWM ⊂ ℛ3 over the time grid t1 = 1, …, tT = 100.
Specifically, for each b:

1. We generated noise in each voxel and each time point:

where I(v) is the indicator that voxel v is in the white matter.

2. We sampled the number of enhancements Nb randomly:

3. We randomly assigned half of the enhancements to the the temporal behavior:

and the remainder to:

4. For each enhancement i = 1, …, Nb:

a. We sampled the radius of enhancements randomly:

b. We sampled the center, ci, randomly from the white matter voxels v ∈
VWM
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c. We assigned enhancement i one of two possible enhancement behaviors to
all white matter voxels within the radius ri of the center ci. Then, we made
each voxel in enhancement i enhance by setting:

where d(y, i) denotes the distance from the voxel v to ci, and f(i) ∈ {f1, f2}
denotes the assigned temporal behavior.

In this example, the simulated data have more complex features; we depict an example in
Figure 20. Applying the FPCA techniques described above, the principal components for
each simulated scan were calculated, and these are shown in Figure 21 for a particular
choice of parameters (σ = 0.1, λN = 5, λr = 5). Other parameter choices yielded similar
results. The first principal component is a vertical shift up or down in the average intensity
at each voxel, attributable to both the voxel-specific noise process  and the differences
stipulated between white and gray matter. The second and third principal components
describe the enhancement and are very similar to those estimated in the 2D example. We
thus robustly fit a bivariate normal distributions to the non-enhancing central clusters in their
respective score space and thresholded the fitted voxel-level p-values at 10−50. As each case
in these simulations consisted of approximately 200,000 as opposed to 1.6 million voxels of
the observed data, we chose the 5 points for our quantile-based procedure to be closer
together, but the fitting procedure was identical. As each case in these simulations consisted
of only 1000 spatial locations as opposed to 1.6 million voxels in the observed data, we
chose the 5 points for our quantile-based procedure to be closer together, but the fitting
procedure was identical.

To assess the spatial performance of our methods, we then compared the estimated
enhancing ROI to the true ROI, and the results are shown in Table 5. The left side shows
shows the performance measures for the choice of noise parameter σ motivated by the
observed data in our study. Under these realistic parameter choices, the method performed
well. We also increased σ to 0.5 to show how our method performs when there is
significantly more noise, and these results are shown to the right of the table. In these more
noisy scenarios, the performance suffered but the method still yielded useful results. For all
of the parameter choices, there were no fictitious enhancements detected by the method; that
is, there were no false positives. Finally, we considered cases in which there was no
simulated enhancement and all variation was from the noise process εb(v, t), and for both
choices of σ = 0.1 and 0.5, our method had no false positives in the 50 simulated cases.

Reliability of the PLPC Scores
To investigate the reliability of the scores, we used a resampling-based procedure in a region
of interest of V* = 1000 voxels from the first subject including part of the enhancing ROI
shown in Figure 4. We denote the observed data in this ROI by:

And the observed PLPC scores:

To estimate the reliability:
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1. We estimated the noise in the scan by taking a random sample of 1000 voxels from
the brain in this subject. Then, we extracted the pre-contrast intensity time series at
these voxels and subtracted the mean of each time series. The residuals from this
procedure, which we call estimated errors, are assumed to be independent draws
from a distribution that approximates the measurement error distribution of ε0, i(t,
v).

2. We created two new simulated datasets in the ROI:

Where εi, 1(t, v) and εi, 2(t, v) were sampled randomly from the estimated errors.

3. We calculated the scores ξij, 1(v) and ξij, 2(v) for j = 1, …, 5

4. We estimated the reliability by

Using the above procedure for the ROI described above, we estimated the reliability of the
first four PLPC scores. The results from this analysis may be found in Table 6. As all of
these are above 99.5%, the measurement error is minimal and thus the estimated scores are
treated as fixed in the quantifications in Section 5.

Shinohara et al. Page 18

Neuroimage. Author manuscript; available in PMC 2012 August 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Research Highlights

We study DCE-MRI scans in 10 subjects with multiple sclerosis (MS)

We provide a statistically principled platform for the quantification of enhancement

We introduce spatiotemporal models of lesion enhancement within and between
subjects

We generate a set of hypotheses for cross-sectional and longitudinal analysis.
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Figure 1. FLAIR Images
T2-weighted FLAIR scans in the first two subjects. Black contour lines indicate the spatial
extent of the lesions.
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Figure 2. DCE-MRI Scans
DCE-MRI scans in two subjects at four time points both before and after contrast injection.
Black contour lines indicate the spatial extent of the lesions as seen on T2-weighted FLAIR
scans obtained during the same session.
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Figure 3. Intensity Time Series
Raw MR signal time series for the first subject two subjects plotted over time. Intensity is
measured in arbitrary units.
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Figure 4. Intensity in Different Regions
Diagram indicating the different dynamic behaviors of anatomical sections of the brain. The
black contours in the white matter depict MS lesions. The time series on the right describe
the enhancement behavior of voxels in the different sections. The intensity scale on the left
is the observed arbitrary scale, and the normalized scale on the right is in terms of standard
deviations of NAWM intensity before contrast injection.
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Figure 5. Subject-Level Principal Components
First several PCs from the FPCA of the first two scans. In both plots, the color indicates the
index of the PC. Most of the noticeable jumps in intensity are noise, likely related to scanner
drift, onset of scanning, subject movement, and possibly other factors.
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Figure 6. SLPC Loading Maps in Subject 1
Maps indicating the second and third PCs loadings in sagittal slice 58 of the first subject.
Intensity scale is arbitrary.
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Figure 7. SLPC Loading Maps in Subject 2
Maps indicating the second and third PCs loadings in sagittal slice 117 of the second
subject.
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Figure 8. Scanning Times
Raster plot indicating the differing irregular time grids on which the MR scans are observed.
The time of contrast agent injection is indicated by the solid red line and the dashed blue line
indicates the time point 85 minutes after injection.
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Figure 9. Population-Level Principal Components
The first nine PLPCs plotted over their time grid. The first four PCs explain 99.8% of the
variance in voxel time series across the 10 subjects.
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Figure 10. PLPC Loading Maps
Maps indicating the second through fourth PLPC loadings in sagittal slice 58 of the first
subject.
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Figure 11. White Matter Scatterplot
Scatterplot of the scores from white matter voxels in each of the 10 subjects. The horizontal
axis is the score for the third PLPC, and the vertical axis is the score for the fourth PLPC.
Each color represents voxels from a different subject.
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Figure 12. P-value Maps
Maps of transformed (negative log) p-values in sagittal slices from the two first subjects.
Purple areas are those with very low p-values and thus denote candidate enhancing voxels.
The light blue region indicates non-enhancing white matter.
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Figure 13. Within-ROI PLPC Loading Scatterplots
Scatterplots of the third PLPC versus fourth PLPC loadings in enhancing voxels in
enhancing ROIs in the first two subjects. The color of the points indicates the distance from
that voxel to the nearest boundary of the enhancing ROI. The red lines indicate the linear
regressions of the fourth PLPC on the third PLPC, and the R2 for these fits are indicated in
the top right of each plot. The gray circles have diameters equal to the median Euclidean
norms of the points in the depicted planes and measure the magnitude of the enhancements.
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Figure 14. Distance to Boundary Scatterplots
Scatterplots of distance to boundary versus the proportion of fourth PLPC enhancement and
total enhancement magnitude in enhancing voxels in enhancing ROIs in the first two
subjects. The blue lines indicate the fit of corresponding linear regressions.
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Figure 15. Bivariate Approximation Results
Results from the bivariate fitting algorithm for the first and second subjects. The fitted
central quantile ellipsoids at the median and 75th, 95th, 99th, 99.9th, and 99.9999th
percentiles are indicated in darkening shades of blue. The gray dots indicate observed scores
in white matter voxels.
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Figure 16. SLPC versus PLPC Comparisons
Comparison between the first several population-level and subject-level PCs for each
subject. Intensity in each rectangle indicates similarity between the corresponding
population-level and subject-level PCs.
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Figure 17. 2D Simulated Data
Example of 2D simulated data, where spatial location is shown on the horizontal axis and
time on the vertical axis. Color indicates the intensity value with red denoting lower
intensity and yellow higher intensity.
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Figure 18. Estimated PCs from 2D Simulations
The first three functional principal components for the 50 simulated datasets superimposed
upon one another for the choice of noise parameter σ = 0.1, enhancement incidence rate of
λN = 3, and enhancement radius rate parameter of λr = 3.
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Figure 19. Comparison of Estimated PCs from 2D Simulations
Comparison of the estimated enhancement behavior, calculated by projecting the first two
PCs from Figure 18(c) onto the true enhancement functions f1 and f2. Black lines indicate
the truth, and red lines indicate the estimated behaviors across the trials.
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Figure 20. 4D Simulated Data
Example of a sagittal slice from a simulation with parameter choices σ = 0.1, λN = 3, and λr
= 3, shown at t=1, 34, 67, and 100. The boundaries of simulated enhancing lesions are
shown in orange.
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Figure 21. Estimated PCs from 4D Simulations
First four principal components from the 50 simulated 4D trials with parameter choices σ =
0.1, λN = 5, and λr = 5 superimposed.

Shinohara et al. Page 40

Neuroimage. Author manuscript; available in PMC 2012 August 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shinohara et al. Page 41

Ta
bl

e 
1

D
es

cr
ip

tiv
e 

st
at

is
tic

s f
or

 1
0 

su
bj

ec
ts

 w
ith

 M
S,

 in
cl

ud
in

g 
di

se
as

e 
su

bt
yp

e 
(R

R
M

S/
PP

M
S)

, a
ge

, s
ex

, e
xp

an
de

d 
di

sa
bi

lit
y 

st
at

us
 sc

al
e 

(E
D

SS
) [

K
ur

tz
ke

,
19

83
], 

an
d 

tre
at

m
en

t i
nf

or
m

at
io

n.

Su
bj

ec
t I

D
Su

bt
yp

e
A

ge
Se

x
E

D
SS

T
re

at
m

en
t

1
R

R
M

S
40

M
2.

5
N

on
e

2
R

R
M

S
41

M
2.

5
N

on
e

3
PP

M
S

58
F

6
N

on
e

4
R

R
M

S
26

F
1

In
te

rf
er

on
 β

 −
 1

a

5
PP

M
S

50
M

2
N

on
e

6
R

R
M

S
25

F
0

N
on

e

7
R

R
M

S
30

F
1.

5
G

la
tir

am
er

 a
ce

ta
te

8
R

R
M

S
48

M
1.

5
N

on
e

9
PP

M
S

54
M

7
N

on
e

10
PP

M
S

62
M

6.
5

N
on

e

Neuroimage. Author manuscript; available in PMC 2012 August 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shinohara et al. Page 42

Ta
bl

e 
2

R
es

ul
ts

 fr
om

 a
na

ly
si

s o
f D

C
E-

M
R

I d
at

a 
fo

r 1
0 

su
bj

ec
ts

 w
ith

 R
R

M
S 

or
 P

PM
S.

Su
bj

ec
t I

D
N

um
be

r 
of

 E
nh

an
ce

m
en

ts
M

ag
ni

tu
de

 (m
ed

ia
n 

(I
Q

R
))

β 3
, 4

 (m
ed

ia
n 

(I
Q

R
))

R
2  (

m
ed

ia
n 

(I
Q

R
))

β d
4.

p (
m

ed
ia

n 
(I

Q
R

))
β d

 (m
ed

ia
n 

(I
Q

R
))/

10
0

# 
C

en
tr

ip
et

al
 E

nh
an

ce
m

en
ts

# 
C

en
tr

ifu
ga

l E
nh

an
ce

m
en

ts

1
4

5.
6 

(4
.6

,6
.9

)
0.

29
 (0

.2
7,

0.
30

)
0.

66
 (0

.5
9,

0.
73

)
−
1.

5(
−
1.

7,
 −

0.
6)

24
 (1

7,
54

)
2

0

2
2

6.
5 

(5
.3

,7
.7

)
0.

15
 (0

.1
4,

0.
16

)
0.

16
 (0

.1
3,

0.
19

)
0.

03
 (−

0.
2,

0.
3)

31
 (2

2,
41

)
1

0

3
0

0
N

A
N

A
N

A
N

A
0

0

4
0

0
N

A
N

A
N

A
N

A
0

0

5
0

0
N

A
N

A
N

A
N

A
0

0

6
12

3.
9 

(3
.4

,5
.1

)
0.

36
 (0

.2
7,

0.
40

)
0.

51
 (0

.3
2,

0.
66

)
−
0.

8 
(−

8.
2,

2.
4)

18
 (1

3,
38

)
4

2

7
3

4.
9 

(4
.0

,5
.7

)
0.

22
 (0

.2
1,

0.
33

)
0.

58
 (0

.4
9,

0.
60

)
−
0.

07
 (
−
0.

2,
2.

4)
34

 (2
0,

36
)

0
0

8
3

3.
9 

(3
.3

,3
.9

)
−
0.

34
 (
−
0.

42
, 
−
0.

03
)

0.
43

 (0
.2

9,
0.

55
)

−
0.

04
1

20
0

2

9
0

0
N

A
N

A
N

A
N

A
0

0

10
0

0
N

A
N

A
N

A
N

A
0

0

Neuroimage. Author manuscript; available in PMC 2012 August 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shinohara et al. Page 43

1Subject 8 had only one enhancing lesion with non-boundary voxels; thus, the distance-based indicies are provided only for this lesion.
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Table 6

Estimated reliability of the scores on the first four PLPCs in an ROI from the first subject.

PLPC 1 PLPC 2 PLPC 3 PLPC 4

Reliability (%) 100 99.5 100 99.7
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