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Abstract
Background—Complex loading develops in multiple spinal motions and in the case of
hyperflexion is known to cause intervertebral disc (IVD) injury. Few studies have examined the
interacting biologic and structural alterations associated with potentially injurious complex
loading, which may be an important contributor to chronic progressive degeneration.

Objective—This study tested the hypothesis that low magnitudes of axial compression loading
applied asymmetrically can induce IVD injury affecting cellular and structural responses in a large
animal IVD ex-vivo model.

Methods—Bovine caudal IVDs were assigned to either a control or wedge group (15°) and
placed in organ culture for 7 days under static 0.2 MPa load. IVD tissue and cellular responses
were assessed through confined compression, qRT-PCR, histology and structural and
compositional measurements, including western blot for aggrecan degradation products.

Results—Complex loading via asymmetric compression induced cell death, an increase in
caspase-3 staining (apoptosis), a loss of aggrecan and an increase in aggregate modulus in the
concave annulus fibrosis. While an up-regulation of MMP-1, ADAMTS4, IL-1β, and IL-6 mRNA,
and a reduced aggregate modulus were induced in the convex annulus.

Conclusion—Asymmetric compression had direct deleterious effects on both tissue and cells,
suggesting an injurious loading regime that could lead to a degenerative cascade, including cell
death, the production of inflammatory mediators, and a shift towards catabolism. This explant
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model is useful to assess how injurious mechanical loading affects the cellular response which
may contribute to the progression of degenerative changes in large animal IVDs, and results
suggest that interventions should address inflammation, apoptosis, and lamellar integrity.
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Introduction
Mechanical factors are known to influence the biological response of intervertebral disc
(IVD) tissue through altering metabolic activity and matrix integrity [1–4]. Some evidence
suggests there is a threshold of mechanical loading beyond which structural damage occurs
and metabolic activity shifts toward catabolic remodeling [2, 3, 5], yet it is less clear
whether structural damage in the IVD is more dependent on load magnitude or loading
mode. Large magnitudes of dynamic compression (up to 2.5MPa) applied to IVDs was
shown to increase IVD metabolism with a slow rate of accumulation of degenerative
changes [6, 7]. Torsion does not appear to be particularly damaging to the IVD as the
amount of torsional rotation needed for structural failure of the human lumbar IVD (±10°) is
well above the physiologic rotations experienced (±2°) [8]. In addition large magnitudes of
torsion did not induce detrimental changes in biosynthetic activity or structural disruption in
a rat caudal model [9], and induced rotational instability (via facet removal) in a rabbit
model did not cause progressive IVD degeneration [10]. Together, results suggest that the
IVD can tolerate large amounts of loading in a single loading modality.

The combination of multiple loading modes, or complex loading, develops in many spinal
motions such as bending with compression. The extreme complex loading that develops in
hyperflexion has long been implicated in IVD injury [11, 12] with one possible mechanism
being the development of large amounts of shear strain [13, 14] in addition to the
compressive axial strain. However, the propensity for less extreme complex loading to cause
injury has also been documented in a study examining the combination of axial torque with
flexion-extension fatigue loading and found that the loading accelerated injury and failure in
porcine motion segments [15]. Biomechanical evaluations of injurious loading on the IVD
determined that extreme loading can lead to herniation or other IVD pathologies with
limited understanding of the corresponding biologic consequences. Improved understanding
of the interaction of biomechanical and biological factors with injurious loading is required
to inform effective strategies that provide functional restoration of intervertebral discs and
prevent progressive degeneration.

Small animal studies documented changes in annular organization [16–18] and a region
specific reduction in anabolic gene expression resulting from forced bending [16]. However,
effects on the biomechanical response of the IVD tissue to forced bending remain
inconclusive [16, 18] and additional measures of the corresponding catabolic response
would help characterize the effects of loading on cellular metabolism. Changes in cellular
and enzymatic activity as well as annular morphology have also been documented in IVDs
that experience compression with bending from animal models or scoliosis [16, 17, 19–21].
Yet, the contribution of complex loading in influencing these cellular and structural changes
is difficult to quantify in small animal models and difficult to separate from underlying
disease processes in scoliosis.

One potential outcome of complex loading is an initiation of an inflammatory response via
increases in pro-inflammatory mediators in response to abnormal tissue stress [9, 22]. Pro-
inflammatory cytokines are expressed by IVD cells [23] and are known to influence cellular
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metabolism, suggesting that IVD cells may be capable of inducing a localized inflammatory
response. Little is known concerning the role that such an inflammatory response plays in
reaction to mechanical loading but one possible consequence would be an increase in
catabolic activity due to pro-inflammatory mediators [24, 25].

The aim of this study was to develop an IVD explant model of injury using hyperflexion as
an example of complex loading in order to evaluate the early mechanical and biological
response of IVDs to injurious loading. Improved understanding of the early response to
injury will improve understanding of the role of injury (or micro-injury) in progression of
disease and may also help inform the most promising treatment options. A large animal ex-
vivo model was used because its cell type and size approach the human condition [26–28]
and the large amount of tissue enabled concurrent measurements of the short-term
mechanical and biologic responses to complex loading. It was hypothesized that the
complex loading would result in structural disruption (detectable both histologically and
mechanically), and an associated cellular adaptation involving a catabolic shift in protein
synthesis, that is at least partly mediated by up-regulation of pro-inflammatory cytokines.
This hypothesis was tested by applying axial compression asymmetrically via a 15°
angulation to bovine caudal IVDs in an explant culture model. The mechanical and cellular
responses were evaluated through confined compression, qRT-PCR, histology and
compositional measurements including western blot to evaluate aggrecan degradation
products.

Methods
Organ Culture Set-Up

Thirty two IVDs were harvested from 3 caudal levels (c2-3, c3-4, and c4-5) of 12 bovine
tails (ages 18–24 months) obtained from a local abattoir. Isolated discs were assigned to
either a Control group or a Wedge group so that from each tail one IVD was assigned to the
control group and the remaining IVDs were assigned to the Wedge group. For analysis of all
quantitative results the two IVDs assigned to the wedge group from each tail were averaged
so that from each animal there was one control IVD and one averaged wedge IVD to
provide N=12 animals per group (Appendix). IVDs from different caudal levels were
systematically distributed between groups to minimize potential level effects, although it
was previously reported that there were no effects of level on bovine caudal IVDs for GAG,
collagen, denatured type II collagen or DNA contents and small or negligible effects on IVD
water content for IVDs of this age [29]. All dissections were conducted under sterile
conditions and included careful removal of endplates, after which discs were immediately
rinsed in ethanol, phosphate buffered saline (PBS) containing 3% penicillin/streptomycin
and 1.5% fungizone (Invitrogen, Carlsbad, CA), and PBS. Both groups were cultured for 7
days to allow for cellular adaptation at both the gene and protein level and loaded with 0.2
MPa baseline static compression, previously shown to be an appropriate baseline loading
condition for this culture system [27]. Wedge specimens were cultured in a modified
chamber that applied baseline compressive load at a prescribed 15° angle (Figures 1a) while
control specimens were uniformly loaded with the baseline compressive load alone. The
convex and concave sides of each wedged disc (Figure 1b) were analyzed for all dependent
variables. The loading conditions were chosen to induce injury but fall within the high end
of physiological conditions while also allowing a reproducible loading regime in a
previously established culture system. The 15° angulation is within the range observed in
scoliotic spines [30], and a pilot study using a hexapod [31] demonstrated the angulation
induced a shear force approximately 25% of axial force which is a similar proportion to that
found in vivo in humans during asymmetric lifting exertions [32]. To additionally
characterize the stress state of the tissue the axial stress distribution was assessed using
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LLLW Fuji Prescale Film (Tekscan, South Boston, MA) following manufacturer
instructions (Control N=2, Wedge N=2).

Structure & Composition
To evaluate whether any changes in matrix integrity occurred multiple structural parameters
were assessed. IVD height and diameter were recorded at the set up and take down of the
experiment. Media was collected at days 4 and 7 of the culture and used to analyze
glycosaminoglycan (GAG) content released into the culture media through dimethyl
methylene blue (DMMB) colorimetric assay [33] (Control N=12; Wedge N=12) and
normalized to the initial volume of the intact IVD (calculated from initial dimensions). To
characterize how AF disruption influenced aggrecan content and structure, AF tissue (taken
adjacent from mechanical testing specimens) was analyzed for protein level changes in
aggrecan content (Control N=2; Wedge N=2) using western blot analysis as previously
described [34]. Water content was calculated from samples of AF tissue collected from the
two sides of the IVD (Control N=6; Wedge N=6) following tissue dissection, weighing and
lyophilization. A sagittal section of tissue was fixed in 10% formalin for 7–10 days, paraffin
embedded, sectioned and stained using picrosirius red and alcian blue (Sigma Aldrich) to
examine tissue structure (Control N=6; Wedge N=6) [35].

Tissue Mechanics
To characterize how structural disruption impacted the mechanical behavior of the AF the
mechanical properties were assessed through stress relaxation tests in confined compression
on Control (N=6) and Wedge specimens (N=6). IVDs used for mechanical assessment were
flash frozen and stored at −20°C until testing. Frozen IVD’s were divided in half reflecting
the concave or convex halves or opposing sides of the control and microtomed to a thickness
of 1.0±0.08 mm after which a 5.0mm-diameter plug was taken from the AF of each half
with a biopsy punch (Figure 2). Confined compression stress relaxation experiments were
performed as previously described [36]. Aggregate modulus (HA) was calculated from the
slope of the equilibrium stress-strain plots using a linear approximation (R2 >0.99) and peak
stress/equilibrium stress ratio was calculated at 15% strain to assess relative viscoelastic
contributions.

Gene Expression
To evaluate any changes to cellular metabolism, qRT-PCR was performed on tissue isolated
from the AF and NP regions of control (N=6) and both concave and convex sides of the
wedged (N=6) IVDs. Briefly, tissue was dissected using a custom dissection tool that cut
~4mm wide strips on either side of the center of the IVD. The AF and NP regions were
separated and the inner AF was discarded. The tissue was then flash frozen in liquid
nitrogen, pulverized and mRNA was extracted using the Qiagen RNEasy Kit (Qiagen,
USA). Gene expression levels were quantified using SYBR green (Applied Biosystems, CA)
bovine specific primers for aggrecan, collagen types I and II, ADAMTS-4, and MMP-1
target genes and the house-keeping 18S rRNA. The AF region was additionally assessed for
expression of pro-inflammatory cytokines TNFα, IL-1β, and IL-6. All primers except IL-6
were previously designed and validated [37, 38]. IL-6 was designed using Beacon software
with the following sequence: IL-6 Forward; CCA-GGA-ACG-AAA-GAG-AGC Reverse;
GGA-GTG-GTC-AGA-AGT-AGT-C with Ta of 60°C and Tm of 84°C. All target gene
expression levels were analyzed using the comparative ΔΔCT method and normalized to 18S
expression levels and to tail-matched controls, as described by Livak et al. [39].
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Cell Viability/Apoptosis
To evaluate if cells died in response to the altered loading and lamellar disruption, viability
and apoptosis were measured. Cell viability was assessed (Control N=3; Wedge N=3) using
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, Sigma-Aldrich, St.
Louis, MO) which stains viable cells [27], and 4′,6-diamidino-2-phenylindole (DAPI, Roche
Diagnostics, Germany) which stains the nuclei of all cells. Cells double stained for DAPI
and MTT were viable, and those with DAPI without MTT were nonviable. Following
culture, full diameter tissue sections were dissected in the sagittal plane of the disc and
placed into PBS containing 1mg/mL MTT for 3 hours. Tissue was washed, flash frozen and
stored at −80°C until sectioning on a cryotome. Three 10μm thick sections were taken from
each disc, beginning at the tissue surface and every 100μm thereafter. Slides were fixed with
10% formalin, counter-stained with DAPI, and cover slipped. Representative images were
captured at 20x magnification first under fluorescent light to capture cell nuclei stained with
DAPI (Ultraviolet filter) and then under bright field light to capture vital cells stained with
MTT; the images were then merged. The total number of cells (DAPI) and dual stained cells
(DAPI+MTT) were counted using ImageJ (National Institutes of Health, Bethesda, MD) and
a viability percentage [Live (MTT+DAPI)/Total (DAPI)] was calculated for each image.

Apoptosis was assessed using immunofluorescence for caspase-3 and performed as
previously described [40] on both control (N=2) and wedge (N=2) samples. A primary
rabbit anti-bovine polyclonal cleaved caspase-3 antibody (1:250 dilution, Catalog #9661S;
Cell Signaling Technology, Boston, MA) and goat anti-rabbit secondary antibody (2mg/mL,
Alexa 555; Invitrogen, Carlsbad, CA) were applied. Positive controls (mouse thymus treated
with dexamethasone) and negative controls (omission of primary antibody) were included in
the experiment. Representative images were captured at 25x magnification on a confocal
microscope (Zeiss LSM 510).

Statistical Analysis
All results were assessed for normality using a Ryan-Joiner normality test. A repeated-
measures ANOVA with a Tukey post hoc test was used to evaluate the effects of complex
loading on structural and compositional measurements comparing control, concave and
convex conditions. A one-way ANOVA (non-repeated measures) was used for mechanical
testing since four data points from different tails were not collected due to technical issues
during the testing (the actuator became unstable since we ‘tuned’ the actuator on the control
tissue but stiffness of concave and convex samples were substantially different). A paired t-
test compared GAG released into media between wedge and control groups. For qRT-PCR,
one sample t-tests were done on the ΔΔCT values to assess differences from control
(ΔΔCT=0) and paired t-tests were done to determine difference between concave and convex
sides. All values are reported as average (95% confidence interval). All statistical analysis
were conducted with GraphPad Prism 3 (La Jolla, CA) with p<0.05 considered significant.

Results
Structure & Composition

There was a significant increase in water content (p=0.0016) on the convex side 68.9%
(66.7–71.1%) of the wedged IVDs compared to concave side 64.8% (62.8–66.7%) and
compared to the control 63.8% (60.7–66.8%). There were no significant differences between
the changes in disc diameters in all groups. There were significant differences in disc height
compared to control (p<0.0001); the control decreased on average 38.1% (31.1–45.1%), the
concave side decreased on average 74.1% (70.2–78.1%), and the convex side decreased on
average 5.4% (4.5-increase 15.4%). There were no significant differences in GAG released
to media between control and wedge groups at any time point. Western blot analysis showed
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a lower content of aggrecan core proteins including degraded aggrecan fragments in the
concave side of wedged IVDs compared to control while the convex side was similar to
control (Figure 3). Annular disruption and NP migration were observed histologically in the
wedge loaded group compared to the control group and the concave AF of the wedged IVDs
showed lamellar buckling while the convex annulus appeared to show a limited increase in
proteoglycan staining (Figure 4).

Tissue Mechanics
The Fuji Prescale Film analysis demonstrated the 15° angulation induced a repeatable axial
stress distribution (Figure 1c) with control IVDs experiencing a uniform stress distribution
(~0.23MPa) and the wedged IVDs experiencing an axial stress of up to ~0.45MPa in
concave AF regions and ~0.23MPa or less in convex AF regions. For confined compression
the concave AF exhibited the highest aggregate modulus which was significantly different
from the convex side (p=0.033) and trended higher than the control (Table 1). The confined
compression peak stress/equilibrium stress on the convex side was significantly greater than
the concave side (p=0.013) and trended greater than the control.

Gene Expression
When examining changes at the gene expression level, no significant changes were observed
in the NP of wedge loaded IVDs compared to control (data not shown). In the convex AF of
wedged IVDs, MMP-1 (3.2 fold), ADAMTS4 (3.8 fold), IL-1β (3.8-fold), and IL-6 (2.8-
fold) mRNAs were significantly up-regulated compared to control (Table 2). There were
significant differences in MMP-1 (p=0.04) and ADAMTS4 (p=0.005) gene expression
between the concave and convex sides of the wedged discs. TNFα was not consistently
expressed in any sample.

Cell Viability/Apoptosis
There was consistent nuclear staining (DAPI) in all regions of all IVDs, demonstrating a
uniform presence of cell nuclei in the tissue. Control tissue contained no regional differences
in live cell staining with 83.8% (71.6–95.9%) tissue viability in the AF. However, wedge
tissue exhibited a disparity in live cell staining (p=0.005) (MTT+DAPI) with a significant
decrease in tissue viability of the concave AF (13.2% (0–57.1%)) compared to control while
the convex AF (77.6% (18.0–100%)) was similar to control (Figure 5a). No differences in
viability were observed between the NP of all groups. To probe the potential mechanism of
cell death a small subset of wedge and control IVDs were analyzed for caspase-3, an
apoptosis specific protein. Greater caspase-3 staining was observed on the concave side
compared to the convex side of the wedged IVD and compared to the control. Some sparse
caspase-3 staining was present in the convex AF and in one of the controls (Figure 5b).

Discussion
This study investigated how complex loading via asymmetric compression affects the tissue
and cellular response of the IVD, to test the hypothesis that complex mechanical loading can
lead to IVD injury, detectable mechanically and cellularly. Asymmetric compression was
found to be injurious throughout the tissue affecting IVD cellular biology and the structural
integrity. At the cellular level there was a loss of viable cells via apoptosis in the concave
annulus and an up-regulation of both catabolic and pro-inflammatory cytokine mRNA
expression in the convex annulus. At the tissue level, there was annular disruption evident
through altered histology, tissue compaction, decreased viscoelastic responses, and some
evidence of aggrecan loss. The most notable finding was the extent of injury resulting from
low magnitudes of axial compression applied at high levels of angulation which strongly
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contrasts loading in a single modality [7] and is likely to be associated with shear-induced
structural disruption to the tissue matrix.

The removal of endplates was necessary to maintain cell viability in this organ culture
model [41], although the extent of the resulting structural disruption was likely greater than
would be expected in-vivo. The injurious response observed in this study with compression
magnitudes of only 0.2 MPa strongly contrasted a prior study that also removed vertebral
endplates and found that IVDs subjected to dynamic compression (up to 2.5 MPa) increased
biosynthesis without evidence of structural disruption or cell death [7]. This comparison
reinforces the concept that asymmetric compression leads to injury on cellular and structural
levels, while dynamic compression was suggestive of a healthy loading condition for the
IVD [6, 7]. The static baseline load has been used previously [27], and may reduce
biosynthesis rates but should not affect comparison relative to control and was considered a
reasonable baseline condition in this study. The applied angulation is similar to that found in
scoliosis so that relative changes in disc height from concave to convex sides is similar to
that found in scoliotic spines. However, the change in disc height for both control and wedge
groups is larger than expected compared to the in vivo situation and is likely due increased
bulging related to endplate removal and postmortem muscle relaxation/swelling prior to the
start of culture.

The decrease in cellular viability observed in the concave AF was the most dramatic cellular
response to the altered loading. This is consistent with findings in scoliotic tissue where
DNA levels were significantly lower in the concave annulus as well with other small animal
bending models [16, 19, 42]. The increased caspase-3 staining in the concave AF suggests
that the observed cell death is mediated through apoptosis and is consistent with other small
animal models that showed TUNEL staining in the concave AF of murine caudal IVDs
subjected to static bending [16].

While asymmetric compression induced cell death in the concave annulus the altered
loading also provoked an inflammatory response with significant up-regulation of mRNA
for pro-inflammatory cytokines IL-1β and IL-6 in the convex annulus. IL-1β has been
strongly associated with matrix degradation through the up regulation of both mRNA and
activation of MMP levels in the IVD [43–45], suggesting that the increase in IL-1β observed
here may have contributed to the observed increase in MMP-1. TNFα has been implicated in
the initiation of the inflammatory response with downstream up-regulation of IL-1 [44];
hence, observing no changes in TNFα expression at 7 days may be due to the endpoint
assessment missing earlier expression. This disc-specific inflammatory response is
particularly interesting in the absence of any systemically mediated processes, and when
taken with another study demonstrating increases in pro-inflammatory mRNA in response to
torsion [9], may suggest a cellular sensitivity to shear loading leading to pro-inflammatory
cytokine expression.

Structural disruption in the AF was evident through changes in water and GAG content and
also mechanical properties. The increase in aggregate modulus of the concave AF implies
that tissue compaction occurred and would suggest a decrease in permeability (i.e., an
increase in peak to equilibrium stresses). However, the opposite was observed, and the
concave side was shown to have a decreased peak to equilibrium stress suggesting that
structural disruption from asymmetric compression may increase water transport. Water
transport within the AF that occurs in the axial direction is thought to be via microtubules
oriented parallel to the collagen fibers [46] and the increase in axial water transport in this
study may result from microtubules parallel to the direction of the compaction becoming
enlarged due to the Poisson effect, which is consistent with histology where the AF was
compacted axially (loss of height) and was stretched laterally (NP shift). Furthermore, the
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suggestion of increased water transport possibly via increased porosity on the concave side
would suggest that the observed increase in apoptosis-mediated cell death was independent
of nutritional compromise.

On the convex side, reductions in aggregate modulus contrast increased peak to equilibrium
stresses. The reduced modulus is likely associated with the increased water content
observed. The increased peak to equilibrium stress suggests reduced water transport that
may be associated with an increase in GAG present in the convex AF which was suggested
histologically via NP migration towards the convex side and is consistent with scoliotic
literature where the NP migrates towards the convexity and increased proteoglycan content
in the convex AF has been reported [19, 47].

This study reinforces the previously established concept of mechanically induced cell death
[48, 49] and highlights the role of apoptosis rather than necrosis as the likely mechanism.
However, the amount of cell death resulting from the modest axial compressive stress in the
concave AF (~0.45MPa) observed in this study contrasts a previous study that used an in
vivo murine tail model and observed limited cell death in IVDs that experienced a uniform
compressive stress (0.4MPa) for the same duration, suggesting that magnitude of axial stress
alone may have a limited contribution to the amount of cell death in the present study.
Previous work has suggested that the large shear strains that develop when compression is
combined with flexion/extension place the disc at risk of structural injury [13] and when
taken with the large amounts of cell death in the concave annulus observed in this and other
bending studies [16, 42] may suggest that shear strains resulting from asymmetric
compression influence the degree of cellular injury more than compression alone. However
removal of endplates in this study is likely to increase the amount of shear strains compared
to endplate-retaining models.

In conclusion, complex loading consisting of axial compression at an applied 15°
angulation, was investigated in a large animal organ culture model. Asymmetric
compression was injurious even at low magnitudes of force, inducing cell death, structural
disruption, and an increase in catabolic and pro-inflammatory cytokine mRNA production,
suggestive of a degenerative cascade. This model is useful to assess how the
mechanobiology associated with injurious loading may contribute to the progression of
degenerative changes and how potential treatments may help slow these processes. These
injurious conditions are likely associated with increased tissue shear strains resulting from
the asymmetric compression input. Findings also suggest the most promising opportunities
for intervention involve limiting cell death associated with structural disruption and reducing
the pro-inflammatory cytokine expression in response to injury. We infer that asymmetric,
or wedge loading that occurs in multiple spinal pathologies affecting posture can induce
aberrant cell mediated responses in the absence of underlying disease or nutritional
compromise so that injurious mechanical loading may contribute to biological disruptions
associated with IVD pathologies in addition to the known structural derangement. Future
work may elucidate how early interventions can mitigate IVD injuries.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A. Loading schematic. B. Concave/Convex nomenclature. C. Compressive stress
distribution of both groups with a maximum compressive stress of ~0.45 MPa in the
concave annulus.
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Figure 2.
Mechanical testing specimen preparation protocol. One specimen was taken from both side
of each disc, and used for confined compression testing.
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Figure 3.
Western blot analysis of aggrecan fragmentation demonstrating a loss of aggrecan on the
concave side of wedged IVDs. C=Concave and V=Convex.
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Figure 4.
Representative histology images of structural changes in the inner and outer annulus in
control discs (top) and wedged discs (bottom). Dashed lines highlight lamellar structure
demonstrating intact lamellae in control and lamellar buckling in wedged discs. Tissue
compaction and a shift of the nucleus pulposus also occurred in wedged discs as seen in the
schematic. Tissue has been stained with picrosirius red (collagen) and alcian blue
(proteoglycans). Images were taken at 2.5x mag, scale bars represent 1000μm.
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Figure 5.
A. Tissue viability images of outer AF for control (left) and the concave (middle) and
convex (right) sides of the wedged IVD. Live cells are black (MTT), cell nuclei are
fluorescent blue (DAPI). B. Caspase-3 immunofluorescence images showing more apoptosis
on the concave side of the IVD. Caspase-3 positive cells stain orange and appear purple with
the nuclear stain. Scale bar represents 50μm.
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Table 1

Confined Compression Mechanical Parameters. Aggregate Modulus (HA) and Peak to Equilibrium ratio (P/E)
at 15% strain. 95% Confidence interval denoted in ( ).

N HA (MPa) P/E

Control 5 1.098 (0.521–1.676) 3.449 (3.102–3.797)

Concave 5 1.708 (0.464–2.951)A 2.342 (1.537–3.147)B

Convex 4 0.334 (0.182–0.487)A 4.418 (2.155–6.680)B

A
Significantly different pair, p=0.033

B
Significantly different pair, p=0.013
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