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Introduction
It seems obvious that brain regions must cooperate to accomplish the various tasks in which
they are communally required. The systems underlying learning and memory are a
particularly useful example of this requirement for cooperation. Diverse forebrain regions
are each involved in one or other form of memory; specific forms seem to require
interactions between specific regions. To study the interactions that mediate this inter-area
cooperation, neurophysiologists and neuroimagers alike have made the same hypothesis:
that brain regions that functionally interact will synchronize their neural activity (see Box 1).
In particular, interactions between the hippocampus and prefrontal cortex, two brain regions
that subserve spatial working memory in rodents, have been the focus of much investigation.
This review will focus on these efforts to identify and characterize the nature and function of
hippocampal-prefrontal synchrony during behavior.

A role for functional connectivity between the hippocampus and prefrontal cortex in spatial
working memory was suggested by results from lesion studies in rodents. Bilateral lesions or
silencing of either the hippocampus or the medial prefrontal cortex (mPFC) impair spatial
working memory, yet unilateral manipulations of either region have minimal or no effect.
[1–5]. Meanwhile, the anatomical connectivity between these regions is also unilateral;
hippocampal efferents innervate primarily the ipsilateral mPFC [6,7]. Taking advantage of
this connectivity, various groups have demonstrated the requirement for interactions
between the hippocampus and mPFC. Unilateral hippocampal lesions combined with
ipsilateral mPFC lesions do not disrupt spatial working memory performance [5,8],
presumably because the intact contralateral hippocampal-prefrontal system is able to direct
successful behavior. Combining unilateral hippocampal lesions with lesions of the
contralateral mPFC, however, disrupts task performance [5,8], demonstrating that isolated
contralateral hippocampal and mPFC regions are insufficient for normal behavior (See
Figure 1). Such findings are consistent with the notion that the hippocampal-mPFC
projection is crucial for normal spatial working memory function.

Harnessing oscillations to measure temporal synchrony
The results of disconnection studies led to a search for the nature of the hippocampal-
prefrontal interactions. One common way to explore such interactions between brain regions
is to record from multiple single neurons in each region and then hunt for evidence of
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synchronization of their activity, typically using cross-correlation analysis to measure the
effect of one neuron’s activity on another. While such experiments have been conducted in
the hippocampal/prefrontal system, they are limited because of the relative scarcity of
detectable interactions [9]. Siapas et al. [9] and others [10,11] overcame this obstacle by
taking advantage of the hippocampal theta oscillation, an ~8 hz oscillation that is the
dominant mode of activity in the local field potential (LFP) recorded from the hippocampus
of the exploring rodent [12]. Neurons in the hippocampus tend to fire at particular phases of
the theta oscillation [13], suggesting that their efferents should induce downstream neurons
to also fire in synchrony with hippocampal theta. Indeed, many single neurons in the mPFC
are modulated by the hippocampal theta oscillation, firing at particular phases of the theta
cycle [9,10] (See Figure 2). Moreover, by measuring the strength of this “phase-locking” at
a range of time lags between the hippocampal LFP and the mPFC spikes, Siapas et al. [10]
were able to determine that most mPFC spikes followed hippocampal theta rather than
leading it, suggesting a hippocampus-to-mPFC directionality consistent with the known
anatomy [6,7].

Indeed, theta-frequency synchrony seems to be a generalized mechanism by which the
hippocampus interacts with various downstream targets, including the striatum, entorhinal
cortex and amygdala [11,14–17]. Importantly, temporal synchrony has also been
demonstrated not only with single unit phase locking, but also with LFPs recorded directly
from target regions, using coherence and other measures to quantify synchrony between
target and hippocampal LFPs [11,14–18]. While LFP recordings require a great deal of care
to ensure that the recorded signals reflect truly “local” neuronal activity, they simplify the
technical methods necessary to quantify synchrony between multiple brain regions [18,19].
When combined with unit studies, LFP-LFP synchrony measures can serve as independent
lines of evidence confirming the strength and directionality of temporal coupling between
the hippocampus and its downstream targets [16,20,21].

Behavioral modulation
Using these and related methods, various groups have demonstrated the presence of
synchrony between the hippocampus and its downstream targets. Importantly, these
interactions are not static, but rather vary with ongoing behavioral demands. A canonical
example of a behavioral effect comes again from the Wilson group, who demonstrated that
hippocampal-prefrontal synchrony increases during a spatial working memory task similar
to those studied with disconnection lesions. Recording single units and LFPs from the
mPFC, as well as LFPs from the dorsal hippocampus, Jones and Wilson [21] showed that
phase-locking of mPFC units to the hippocampal theta oscillation increases during the
working memory-requiring segments of the task in rats. The single unit findings were
corroborated by similar increases in theta-frequency coherence between hippocampal and
mPFC LFPs. Recently, we have extended these findings in mice, showing that hippocampal-
mPFC coherence increases throughout training in parallel with behavioral performance [22]
(See Figure 2), in line with similar increases in intrinsic theta synchrony seen within the
mPFC itself during trace conditioning acquisition [23]. These correlative physiological data
are consistent with the notion that interactions between the hippocampus and mPFC support
spatial working memory performance, especially when considered in the context of the
earlier data from disconnection lesions.

Synchrony in the theta range between the hippocampus and downstream targets can be
modulated by a variety of behaviors. For example, learned fear induces synchronous theta
oscillations in the hippocampus and amygdala [17], while innate fear enhances theta-
frequency phase locking and coherence between the mPFC and the ventral hippocampus
[24]. Procedural learning is accompanied by increases in theta synchrony with the striatum
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[14]. Even the cerebellum gets into the act, synchronizing with the hippocampus during
trace eye blink conditioning in rabbits [25]. A common thread running through these various
results is that when the hippocampus works together with a brain region during behavior,
theta frequency synchrony is enhanced.

In general each of these studies have analyzed synchrony only during a single task, so it is
difficult to know whether behavioral modulation of theta-synchrony is anatomically specific
(to a given circuit) or is generally enhanced (between the hippocampus and each of its
various downstream targets). Nonetheless, there are some clues to suggest that behavioral
modulation might be circuit specific. The strongest evidence for circuit specificity is for
hippocampal subregions, which demonstrate remarkable heterogeneity of behavioral
modulation of theta strength and synchrony across both the transverse [26] and dorsoventral
[24,27] axes. Indeed, we have shown that anxiety-related enhancements in theta-frequency
synchrony with the mPFC are specific to the ventral, but not dorsal hippocampus [24],
consistent with lesion and silencing data demonstrating functional dissociation across the
dorsoventral axis [28]. Whether circuit specificity extends to particular downstream targets
of a given hippocampal subregion remains uncertain.

Relevance to function and dysfunction
That synchrony between the hippocampus and mPFC increases with behavioral demands is
thus well established. Determining the relevance of such synchrony to behavior is a more
challenging task. It is attractive to speculate that the synchronous activation of hippocampal
and prefrontal neurons facilitates the transfer of information key to task performance. For
example, during spatial working memory tasks, information about spatial location and
reward contingency might be transferred from the hippocampus for use by decision-making
machinery in the mPFC. Consistent with this hypothesis, mPFC unit phase-locking to
hippocampal theta is reduced during error trials in working memory tasks [21,29]. More
direct evidence for this hypothesis would be to show that those units with working memory-
related firing patterns are preferentially phase-locked to the hippocampal theta oscillation
(compared to neurons without such task-related firing). While clear evidence for such a
relationship has not yet been described, Hyman et al [10] demonstrated a rough correlation
between hippocampal phase-locking and task-related firing in mPFC units recorded during
rewarded exploration. Similarly, Benchenane et al [30] have demonstrated that
hippocampal-mPFC theta coherence peaks at the choice point in a (non-working memory
dependent) Y-maze task, consistent with a role for synchrony in guiding choice behavior.

Relevance to behavior has also been demonstrated by correlating individual differences in
behavior and synchrony across animals. For example, the strength of theta-frequency
coherence between the hippocampus and mPFC predicted the length of time it took for
learning-impaired mutant mice to acquire a spatial working memory task [22]. Such
correlations have also been observed during several other behaviors, including innate [24]
and learned [16] anxiety; similar behavior-physiology correlations have also been described
in the hippocampal-striatal circuit [14]. These findings suggest that individual differences in
task performance may be related to differences in the ability of the hippocampus and mPFC
to functionally interact.

Such findings raise the intriguing possibility that abnormalities in functional interactions
between the hippocampus and mPFC might underlie specific disease states. Indeed, the
mutant mice mentioned above carry a microdeletion that models a high-penetrance copy
number variant seen in patients with schizophrenia [31–33]. Both the hippocampus and
prefrontal cortex have been implicated in schizophrenia, and imaging and
electroencephalography studies have documented abnormalities in functional connectivity
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between the frontal and temporal lobes in patients with the disease [34–37]. Given the well-
defined role of these structures in working memory, and the profound working memory
deficits seen in schizophrenia patients, it is tempting to speculate that deficits in
hippocampal-prefrontal synchrony contribute to the pathophysiology of schizophrenia.

Are oscillations important for functional interactions?
Key questions remain unanswered by the currently available body of evidence. Among these
is the causal relationship between oscillations, synchrony, and the functional interactions
they mark. Are oscillations in general, or theta oscillations in particular, important for
synchrony? Is synchronous activity itself required for functional interactions between brain
regions, or simply a result of such interactions? Theoretically, information transfer between
neurons should be more efficacious if the neurons are active together, or more precisely, if
the downstream neuron lags the upstream neuron by the approximate conduction delay. At
least for the ventral hippocampus-mPFC recordings, where both lag and monosynaptic
conduction delay have been measured, these measures are in broad agreement [20,24].
However, this is precisely the result one would also expect if the mPFC neurons were
simply driven substantially by direct hippocampal input. One wonders whether
desynchronizing cortical activity (and thus reducing the strength of the intrinsic oscillations
in the mPFC) without affecting hippocampal inputs would be sufficient to disrupt
hippocampal-mPFC information transfer and working memory behavior.

Assuming for a moment that synchronous activity is required to support hippocampal-mPFC
interactions, it is still unclear as to whether oscillations, or theta-frequency oscillations in
particular, are required. Here there is some evidence that raises the possibility that theta-
frequency oscillations may be particularly privileged to facilitation hippocampal-mPFC
interactions. For example, while phase-locking and coherence between the mPFC and
hippocampus can be demonstrated across a broad range of frequencies at baseline, only
theta-frequency synchrony is enhanced with working memory [21,22]. Theta-frequency
synchrony in specifically altered in error trials [21,29] and correlated with behavioral
performance [22]. Synchrony at other frequency ranges, including delta and gamma, do not
correlate with behavioral state or task performance. Similar specificity of behavioral
modulation for the theta-frequency range has been reported in other behavioral paradigms
[16,24] suggesting that there might be something special about theta-frequency oscillations
that facilitates sychronization and/or transfer of behaviorally relevant information across
distant brain regions. Yet synchrony between far-flung brain regions has been well
established in other frequency ranges, raising the possibility that what is special about theta
synchrony is that it involves the hippocampus. Perhaps theta-frequency synchrony marks
hippocampal interactions simply because theta is the dominant mode of activity in the
awake, behaving hippocampus.

Future Directions
The precise role of synchrony and oscillations in support of functional interactions may be
quite difficult to dissect, but there are arguably lower hanging fruit amenable to
investigation in the near future. For example, most of the work discussed above deals with
interactions between the dorsal hippocampus and the medial prefrontal cortex, yet there is
no direct monosynaptic connection between these brain regions. Dissecting out the precise
circuitry whereby information flows from the dorsal hippocampus to the mPFC will aid both
in understanding how the synchrony develops, and in developing new tools (such as opto- or
pharmacogenetic manipulations) to study the role of synchrony in behavior. Perhaps even
more interesting is trying to understand what how behavioral modulation of synchrony
occurs. Is it simply a matter of increased activity in the hippocampus playing a larger role in
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driving mPFC neurons, or is there an active switch in the circuit that enhances the efficacy
of hippocampal inputs? What role do the neuromodulators and cellular constituents of
oscillatory behavior play in facilitating synchrony and the behaviors that depend on it?

Answering these questions will build upon the strong foundation laid by the studies
described above, in which measurement and quantification of hippocampal-mPFC
interactions has been accomplished in real time. Correlation of these interactions with
ongoing behavior has implicated them in spatial working memory and a variety of other
behaviors. Such findings serve as mechanistic reminders that brain regions work not in
isolation but in cooperation, and that understanding the nature and details of this cooperation
will be key to understanding how brain systems generate behavior.

BOX 1

Useful Terms
Many different and overlapping terms are used to describe interactions and synchrony
within and between brain regions. Here is a basic description of some of the terms used
in this review.

Term Definition

Functional connectivity Interactions between activity in multiple brain regions, typically assayed by
measuring synchrony

Synchrony Activity changes in two or more brain areas that occur together over time

Oscillation Activity that goes up and down repeatedly over time within a defined frequency
range, in a more-or-less circular fashion

Coherence A frequency-specific measure of synchrony between two signals, reflects the
consistency of their temporal relationship

Phase-locking A measure of synchrony, reflects the degree to which neuronal action potentials
occur at a particular phase of an oscillation
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Figure 1. Disconnection experiments implicate the connections between the hippocampus and
prefrontal cortex in spatial working memory in rodents
Spatial working memory behavior is disrupted by bilateral lesions of either the hippocampus
(HPC) or medial prefrontal cortex (mPFC). Unilateral lesions of either structure, or
ipsilateral lesions of both structures, do not impair behavior because they leave intact the
contralateral structures and the connection between them. Contralateral lesions of each
structure, while preserving one side of each structure, disrupt direct functional connectivity
on both sides, impairing behavior.
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Figure 2. Phase locking of mPFC neurons to dHPC theta oscillation is altered by working
memory behavior
A, Spikes from a mPFC neuron (orange lines) occur preferentially near the peak of the theta
oscillation (blue curve) present in the hippocampal LFP (black curve). B, Histogram of
spikes from the mPFC neuron shown in A, plotted as a function of the phase of the
hippocampal theta oscillation. The peak of theta is arbitrarily defined as 180°, the trough as
0°/360°. C, Right, Diagram of the T-maze spatial working memory task used in mice, with a
control sample phase, and a working-memory requiring choice phase. Left, the strength of
phase-locking of mPFC neurons to the hippocampal theta oscillation is increased in the
choice phase. D, Theta-frequency coherence (upper panel) between the hippocampal and
mPFC LFPs increases along with behavioral performance (lower panel) as mice learn the T-
maze task. Data are from ref. 22.
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