
Diffusion tensor microscopy in human nervous tissue with
quantitative correlation based on direct histological comparison

Brian Hansen1,†, Jeremy J. Flint2,5,†,*, Choong Heon-Lee3,5, Michael Fey7, Franck Vincent7,
Michael A. King4, Peter Vestergaard-Poulsen1, and Stephen J. Blackband2,5,6,8

1Center for Functionally Integrative Neuroscience, Aarhus University, Denmark
2Department of Neuroscience, University of Florida, Gainesville, Florida, USA
3Department of Electrical Engineering, University of Florida, Gainesville, Florida, USA
4Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, USA
5McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
6Center for Structural Biology, University of Florida, Gainesville, Florida, USA
7Bruker Biospin
8National High Magnetic Field Laboratory, Tallahassee, Florida, USA

Abstract
Thanks to its proven utility in both clinical and research applications, diffusion tensor tractography
(DTT) is regularly employed as a means of delineating white matter tracts. While successful
efforts have been made to validate tractographic predictions, comparative methods which would
permit the validation of such predictions at microscopic resolutions in complex biological tissues
have remained elusive. In a previous study, we attempted to validate for the first time such
predictions at microscopic resolutions in spinal cords of the rat and pig using a semi-quantitative
analysis method. In the current study, we report improved quantitative analysis methods that can
be used to determine the accuracy of DTT through comparative histology and apply theses
techniques for the first time to human tissue (spinal cord) samples. Histological images are
downsampled to resolutions equivalent to our magnetic resonance microscopy (MRM) and
converted to binary maps using an automated thresholding tool. These maps (n = 3) are
coregistered to the MRM allowing us to quantify the agreement based on the number of pixels
which contain tracts common to both imaging datasets. In our experiments we find that—on
average—89% of imaging pixels predicted by DTT to contain in-plane white matter tract structure
correspond to physical tracts identified by histology. In addition, angular analysis comparing the
orientation of fiber tracts measured in histology to their corresponding in-plane primary
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eigenvector components is presented. Thus, as well as demonstrating feasibility in human tissue,
we report a robust agreement between imaging datasets taken at microscopic resolution and
confirm the primary eigenvector’s role as a fundamental parameter with clear physical correlates
in the microscopic regime.

Introduction
One of the most pivotal developments in the application of diffusion-weighted MR imaging
involves using diffusion tensor imaging (DTI) (Basser et al., 1994a) in conjunction with
diffusion tensor tractography (DTT) (Mori et al., 1999) to delineate white matter tracts in the
brain. This technique relies on the structural characteristics of axons which, due to their
continuity and—to some degree—their myelination (Song et al., 2002; Tyszka et al., 2006),
render water diffusion parallel to the axon fibers highly favorable compared to diffusion
perpendicular to them. Such anisotropic diffusion can be described by the self-diffusion
tensor which represents the overall orientational preference to diffusion within the MRI
voxel and serves as the most accurate model for the first-order approximation of water
diffusion in brain tissue (Mori, 2007). The primary eigenvector of the diffusion tensor
represents the overall preferred direction of diffusion in the voxel, and is therefore assumed
to be co-linear with the dominant fiber direction in the voxel. As such, the tensor model
forms the basis for estimation of neuroanatomical features from DTI data. Subsequent DTT
analysis is then used to generate synthetic fiber maps by determining the likelihood of
intervoxel connectivity based on various selection criteria: angles between primary
eigenvectors in adjacent voxels, degree of anisotropy, etc. Because the integrity of white
matter structures is essential to neural connectivity and thus function, such techniques are
currently being employed in the clinic as a tool for planning minimally traumatic surgical
interventions (Yu et al., 2005). DTT has also been used to detect structural abnormalities in
the white-matter of patients suffering from various diseases including schizophrenia
(Voineskos et al., 2010; Phillips et al., 2009), multiple sclerosis (Werring et al., 1999; Lin et
al., 2007), amyotrophic lateral sclerosis (Ellis et al., 1999; Ciccarelli et al., 2006), as well as
a host of other cognitive disorders (Catani, 2006) demonstrating great potential for future
applications in differential diagnosis.

Despite the demonstrable utility of DTT, questions still remain regarding the accuracy of
these methods as they relate to delineation of fiber structures. Resolution limitations of
contemporary MRI scanners preclude tracking of individual axons, thus the synthetic
tractography maps provide structural accuracy limited by factors such as attainable imaging
resolution, the number of diffusion encoding directions, and the sophistication of the DTT
algorithm employed. Such factors become even more important as the complexity of
intersecting fiber structures within the imaging voxel increases because the diffusion tensor
model is insufficient to describe the signal behaviour when multiple fiber orientations are
present in a voxel (see e.g. Alexander et al., 2001; Alexander et al., 2002; and Frank et al.,
2002 for reports on early experiments or Seunarine and Alexander 2009 for review of this
topic). Previous attempts have been made to validate the accuracy of DTT maps using
physical phantoms (Lin et al., 2003; Perrin et al., 2005), software phantoms (Lori et al.,
2002; Tournier et al., 2002) or biological samples of uniform construction (Van Doorn et al.,
1996; Van Donkelaar et al., 1999; Lin et al., 2001). Some studies have compared fractional
anisotropy values from DTI data to measures of fiber orientation derived from histology in
humans (Simonyan et al., 2008) and animal models (Kim et al., 2007; Kim et al., 2006;
Leergaard et al., 2010). Others have employed both histological and MR-visible tracers as a
means to validate tractography (Dyrby et al. 2007). For a comprehensive overview of studies
focusing on DTT validation, we refer the reader to the review by Hubbard and Parker
(2009). Recently, we presented a new method for validating the accuracy of DTT
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predictions in complex biological systems at microscopic image resolutions (Flint et al.,
2010). In our previous study, we reported the results of diffusion tensor microscopy
experiments with subsequent tractographic analysis and correlative histology taken in spinal
cord samples of the rat and pig. While such studies were useful as proof-of-principle
experiments demonstrating our ability to perform structurally relevant tractographic analysis
at resolutions necessary to observe cellular structure using MR, such data will not be as
useful in modeling or validation studies applicable to human tissue structures encountered
during clinical imaging. Thus, in order to obtain such data, we must begin by demonstrating
that equivalent structural information can be attained from human tissue. To this end, we
have performed diffusion tensor microscopy experiments followed by tractographic analysis
in the ventral horn of fixed, human spinal cord. By comparing imaging datasets, it is
possible to see if the synthetic maps from our DTT analysis compare favorably with the tract
positions observed in the histology. Our data also allow us to quantify the agreement
between structural components observable by light microscopy in the samples used in our
DTI experiments and the structural information—i.e., the in-plane component of the primary
eigenvector—derived from the DTI data.

Given the resolutions obtained in our MRM experiments, we assume that a single tensor is
sufficient to faithfully describe the diffusion in each voxel. At the gray/white matter (GM/
WM) boundary of the spinal cords’ ventral horns, we expect a portion (70%–80%) of the in-
plane fiber components to be myelinated and nearly all of the through-plane fibers to be
myelinated (Coggeshall et al., 1975; Ko et al., 2009). We therefore chose a myelin-specific
stain for the quantitative portion of our study. This direct histological comparison with
emphasis on fibrous content enables us to determine the fraction of MR image pixels
predicted by the primary eigenvector to have in-plane fibrous content that are supported by
the histological evidence. Taken together, the two imaging modalities employed in our study
allow us to investigate the accuracy of DTI methods and shed light on the fundamental
assumption that the orientation of maximal diffusion given by the primary eigenvector in
each voxel is co-linear with the dominant fiber direction in the voxel. Since all diffusion
tractography techniques rely on the assumption that diffusion is less hindered along fibers
than across them (Behrens and Jbabdi, 2009) we believe this study to be relevant to most if
not all current tractographic techniques because it provides quantitative information about
the amount of overlap between fibers in histology and the structural information in the
tensor field as well as providing direct visual demonstration of the accuracy of the fiber
maps produced by tractography based on the same tensor fields.

Validation efforts in the current study are similar in some respects to methods in studies
mentioned above; however, important differences distinguish this work. First, we believe
that our study will include DTT validation methods performed at the highest reported
resolution to date. This is significant in relation to our chosen analysis method which relies
solely on a single diffusion tensor to determine the characteristics of water diffusion within
the MR imaging voxel. While this method may seem antiquated compared to some of the
most modern techniques for describing intravoxel water diffusion in complex tissues, the
fact remains that increasing complexity of tissue structure is the characteristic which
necessitates either model-based methods e.g. multi-tensor analysis (see Seunarine and
Alexander 2009 for review) or non-parametric methods such as Diffusion Spectrum Imaging
(DSI) (Wedeen et al. 1999; Tuch, 2002), QBall (Tuch 2004, Tuch et al. 2003), Spherical
Deconvolution (SD) (Anderson and Ding 2002; Tournier et al. 2004) or Persistent Angular
Structure (PAS) MRI (Jansons and Alexander, 2003). As imaging voxels become larger,
they contain more tissue and are more likely to contain complex, meso-scale structures such
as crossing, kissing or intersecting fiber bundles. Interpreting data of this nature correctly
requires higher order analysis which demands high image SNR as well as increased numbers
of data points: i.e. multiple measurements of diffusion along different axes. Data in the
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current study will be collected at resolutions high enough to ensure relative uniformity of
intravoxel tissue structure such that diffusion within the voxel can reasonably be assumed to
be accurately described using a single diffusion tensor. Perhaps more important than the
ultimately attainable resolution, comparisons made between optical and MR imaging
datasets for the purposes of validation will be performed on images of equivalent resolution.
We believe this to be a nontrivial distinction as it permits direct spatial comparisons of
imaged tissue on a voxel by voxel basis and is limited only by the accuracy of our image
registration. Also particular to our method is the use of a high-contrast histological dye for
the purpose of distinguishing in-plane and through-plane white matter tracts. This particular
step in our protocol allows for the automated segregation of pixels in binary maps based on
underlying tissue structure and eliminates the need to perform such selections manually.
This particular feature helps reduce subjectivity from the analysis used in our validation
method and stands as a marked improvement over methods employed in our previous work
(Flint et al., 2010). Lastly, other methods of DTT validation achieved through comparison of
DTI datasets to different imaging modalities have traditionally required the use of MR
contrast agents such as manganese (e.g. Dyrby et al., 2007), or potentially confounding post-
MR tissue processing (Leergaard et al., 2010). Such methods allow for the retrograde tracing
of tracts and the gross comparison of anatomical features in tissue. Unfortunately, these
protocols call for the addition of agents which affect relaxivity or contain processing steps
which result in physical differences between tissue samples used in comparative imaging
datasets. In the case of post-MR tissue sectioning, it is impossible to ensure that a slide
preparation consists of the same tissue segment imaged in a particular slice of the MR
dataset. Our method relies only on native MR contrast present in the tissue samples and
includes pre-MR histological sectioning and post-MR histological processing (staining,
mounting and photography) to ensure that the tissue specimen’s physical characteristics are
not altered between experiments and are thus exactly the same in both imaging datasets. We
believe our stated protocols represent a more direct method of comparing imaging
modalities for the purpose of validating DTT methods.

Methods
Tissue Prep & Imaging

Immersion fixed (4% formaldehyde) samples from both the cervical and lumbar
enlargements of two human spinal cords were excised by gross dissection, affixed to a
cutting chuck, and placed in an ice-cold bath of phosphate-buffered saline (PBS) (137mM
NaCl, 2.7mM KCl, 10mM Na2HPO4, and 1.8mM KH2PO4: pH 7.3 to 7.4 at 300mOsm).
Serial cross sections (50µm) of spinal cord were cut from the samples using a Lancer
vibratome (Ted Pella, series 1000) and placed in a PBS bath overnight to reduce
formaldehyde levels in the tissue. Next, an area of tissue (approximately 3mm by 4mm)
including the white-gray matter boundary in the cord’s ventral horn was cut from one of the
slices and placed inside the tissue well (5mm diameter) of a micro surface-coil (500µm
diameter) (Bruker Biospin, B6370). Each slice was positioned so that the tissue boundary
between white and gray matter passed along the coil’s diameter and was held in place using
a mesh insert and retention ring as described in detail previously (Flint et al., 2009). Hand
cutting and tissue placement were performed with the assistance of a dissecting microscope
(Zeiss, OPMI 1-FC). Finally, additional PBS was placed inside the tissue well before sealing
it closed using a square section (1cm by 1cm) cut from a sheet of PCR film (ABgene,
AB-0558). The coil was placed in a vertical bore, 600MHz imaging spectrometer (Oxford)
interfaced to a Bruker console and 21-direction diffusion tensor imaging datasets (n = 3)
were collected (TR = 2000ms, TE = 17.5ms, b = 2000s/mm2, Δ = 8.36ms, δ = 2.0 ms,
resolution = 15.6µm in-plane, Avg = 15/scan, Total Scan Time = 23h28m). For the purpose
of generating correlative structural data following MR imaging, slices were removed from
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the coil and subjected to histological analysis using either the neuronal marker Nissl (0.5%
cresyl violet acetate, 0.3% glacial acetic acid, 99.2% ddH2O) or the myelin stain Black-Gold
II (Histo-Chem Inc., 1BGII). Briefly, slices stained with Nissl were submerged for 2 min
and subsequently rinsed in a destaining bath (0.3% glacial acetic acid, 99.7% ddH2O) prior
to mounting with Histomount medium (National Diagnostics, HS-103). Slices stained with
Black-Gold II were incubated at 60°C in a 1X working solution (0.3% dye, 0.9% NaCl,
98.8% ddH2O) for 12min followed by immersion in a sodium thiosulfate stop-bath solution
(1% Na2S2O3, 99%, ddH2O) at ambient temperature for 3min prior to slide mounting as
described above. Histological specimens were then photographed using a digital camera
(QImaging, Retiga 4000R Fast 1394 Color) interfaced with a Zeiss microscope (Zeiss,
Axioplan 2). Light microscopy image capture was performed using commercial software
from QImaging (QCapture Pro 6.0).

MRI Analysis
Following a uniform scaling step to achieve noise regularization, the diagonalized diffusion
tensor and primary eigenvector describing the preferred axis of diffusion was determined
with Matlab (R2009b, The MathWorks Inc.) using non-linear least squares regression. The
presented examples of diffusion tensor tractography based on our DTI data were performed
using the FACT algorithm (Mori et al., 1999) as implemented in the Matlab-based DTI tools
software package (DTI Tools, Freiburg University Hospital, Germany). All co-registrations
of MR data and histology were based on directly identifiable landmarks—primarily large-
diameter fiber bundles (tracts) and the GM/WM boundary—present in both MR and
histological imaging datasets. Image registration involved combinations of rotation,
translation and uniform scaling only. For one of the samples stained with Nissl and all three
samples stained with Black-Gold II, we also investigated the relation between the
component of the primary eigenvector orthogonal to the image plane (related to the
preference for diffusion through the image plane) and the GM/WM boundary. For the three
tissue samples in which Black-Gold II stain was employed, we used the tensor field to
construct a map of MR pixels in which the primary eigenvector’s projection length in the
image plane was greater than that orthogonal to the image plane. For the quantitative
analysis, the co-registered histology images of these samples were processed using the GNU
Image Manipulation Program (GIMP ver. 2.6.8) to distinguish between in-plane and
through-plane fibrous structure in a binary fashion. Processing (color inversion, leveling,
pixelization and thresholding) was applied evenly across the entire image field. Individual
steps involved in this segmentation process are subsequently described. After inversion, the
co-registered histology images were converted to gray scale and adjusted for optimal
contrast between stained and non-stained areas. The images were then down-sampled to
match MR image resolution thus averaging the pixel’s stain content in the procedural
equivalent to how the preferred diffusion direction in each image pixel is a volume average
of structural detail across the entire image voxel. GIMP’s auto-thresholding tool (threshold
between 0 and 255 based on image histogram) was then used on the down-sampled image
thus producing a binary map of structural components in the histology at a resolution
matching that of the MR data. The map was exported to Matlab allowing for the comparison
of equivalently scaled imaging data (processed histology and MR based tensor maps). These
images were analyzed on a pixel-by-pixel basis allowing the direct comparison of image
pixels predicted by DTI to contain fiber material to the actual histology. Performing such
analysis yielded the fraction of MR-based fiber predictions supported by the histology: i.e.,
the degree of correspondence (DC)
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where M is the set of pixels predicted by DW MRI to contain tracts, H is the set of pixels
predicted by the down-sampled histology to contain tracts, M∩H is the intersection of sets
M and H, and n(M) and n(M∩H) denote number of elements in set M and M∩H
respectively. This measure is mathematically identical to the volume overlap fraction used
as a similarity measure in (Anbeek et al., 2004). The individual steps of this analysis are
illustrated in figure 1. In order to compare directions of the in-plane components of the
primary eigenvector to fiber directions measured in the histology, three regions of interest
(ROIs) of varying sizes were placed in each of the three samples stained with Black-Gold II.
The positions of the ROIs were chosen such that the areas could be identified with certainty
in both tensor fields and histology. From the vector field of in-plane components of the
primary eigenvector, the average direction ± std (in degrees) across pixels was determined in
each ROI. The fiber direction in each ROI was measured in the coregistered histology using
the GIMP's angle measurement tool.

Results
Figure 2 shows a set of coregistered images—light microscopy and MRM—depicting the
tracts predicted by the DTT algorithm superimposed on the Nissl-stained histology image.
Spatial characteristics of the in-plane white matter tracts—i.e., those remaining contiguous
over many voxels across the histology slice—are clearly visible. While the synthetic tracts
do not offer an error-free illustration of the motor efferents’ locations in the spinal cord
sample, the correlation between actual and predicted tracts is robust and evident upon
viewing the histology and overlay. Analysis from a second sample is presented in figure 3
where it is shown that the spatial variation in the primary eigenvector component orthogonal
to the image plane (figure 3A) corresponds well to the GM/WM boundary in the sample
visualized in the histology (figure 3B). The results of the tractographic analysis for this data
set are seen in figure 3C. Figure 4 illustrates the results from three additional DTI
experiments correlated with histology images stained using the Black-Gold II compound.
Histological results are displayed in the top row and the predicted tracts from our DTT
analysis are shown overlaid on the same light microscopy images in the middle row. The
location of fibers predicted by the tractography is seen to be quite precise when compared to
the locations of actual fiber bundles present in the histology. The degree of correspondence
is quantified using the processes outlined in figure 1. It should be noted that similar binary
maps generated using FA values were found to be insufficient for describing the
microstructural architecture within the slice (data not shown). We find that the agreement
between the maps of pixels with predominantly in-plane fiber orientation and the histology
is high (from left to right in fig 4: 0.82, 0.95, 0.89) for all three Black-Gold II stained tissue
samples, with a mean degree of correspondence (DC) equal to 0.89 ± 0.06. The bottom row
of panels consists of maps representing the orthogonal component of the primary
eigenvector which can be seen to reflect tissue structure quite closely. Figure 5 shows the
selected ROIs used in the angular analysis described above. The results from the angular
analysis are provided in Table 1 where mean direction (measured in degrees) of the in-plane
components of the primary eigenvector in each ROI is provided along with the fiber
direction (also measured in degrees) measured in the corresponding areas of the correlative
histology. Our results indicate that there is agreement between the angles derived from DTI
and those selected from histology in all nine cases.

Discussion
Spinal cord tissue is ideally suited for the current study due to it being well ordered with
fiber trajectories running through-plane in the case of the spinal cords’ exterior white matter
and running in-plane in the case of tracts projecting from the gray matter into the
orthogonally oriented white matter. This order is reproduced faithfully in figure 3A–B where
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only the through-plane component of the primary eigenvector is needed to outline this tissue
structure.

The obvious orientational agreement between the DTT analysis and the actual tissue fibers
seen in figures 2–4 and the angular analysis summarized in Table 1 all support the
assumption that the direction of the primary eigenvector corresponds to actual fiber
orientation. This is no doubt due to the high image resolution achievable with the micro
surface-coils employed where we are far less likely to encounter voxels containing kissing,
crossing or curving fiber bundles compared to data collected at lower resolutions. Having
demonstrated this orientational agreement, our further quantitative analysis focused
exclusively on the in-plane component of the primary eigenvector of the diffusion tensor as
indicative of fibrous structure. Our analysis shows that—on average—89% of the pixels
predicted to contain in-plane fiber structure correlate with fibrous structure in the histology.
Taken together with the faithful reproduction of the GM/WM boundary (figure 3A–B and
figure 4 top and bottom rows) by the remaining (orthogonal) component of the primary
eigenvector, we have demonstrated that all three components of the primary eigenvector
(two in-plane components used in the tractography, and the out-of-plane component
compared to GM/WM boundary) reflect tissue structure in a very direct manner. Potential
causes for failure in the remaining 11% of voxels may be attributed to multiple sources,
including uneven uptake of stain, stain contrast lost in image processing (downsampling and
thresholding), registration errors, low SNR, and possibly small signal distortions due to
susceptibility artifacts at these high field strengths. A thorough investigation of these issues
is needed prior to commenting on the specific contributions of each and will be addressed
whenever possible as the presented techniques are refined.

While myelin is not solely responsible for the anisotropy of diffusion in white matter, it is
nonetheless an effective target for identifying white matter tracts in the central nervous
system; however, because only a portion of axons in the spinal cords’ ventral roots are
myelinated, not all axonal material will be labeled when employing a myelin-specific stain.
While this technical limitation may seem to confound our ability to successfully delineate
axonal structure in our histology, it is important to consider the methodology being
employed in the DTT analysis. For example, despite the high–resolution nature of our DTI
data, we are not as of yet able to regularly visualize individual axons. Due to volume-
averaging effects and the tendency of axons to be organized into bundles which form tracts,
the data generated in each MR voxel containing said tracts is—in the majority of cases—still
comprised of multiple axonal elements. As such, the histology’s ability to report the spatial
characteristics of each individual axon is less important than its ability to distinguish
between groups of axons traveling across the tissue plane and axons passing orthogonally to
these: i.e. through the tissue plane. Owing to the increased myelin content in white-matter
portions of the spinal cord—consisting primarily of through-plane axonal tracts—this was
indeed the case as evidenced by the contrast generated in our histology. With these
considerations in mind, we assert that a myelin-specific stain is relevant for assessing DTT
accuracy using the MR microscopy methods presented here. An alternative measure of
correlation was introduced in (Flint et al., 2010), but with the larger fiber bundles present in
samples used in the current study, we believe the chosen method based on a myelin-specific
stain is the most suitable. Also, generation of the binary maps allowing for our quantitative
analysis would not have been possible using the Nissl staining methods employed in our
previous study.

Dyrby et al. (2007) also use the overlap fraction introduced in (Anbeek et al. 2004) as a
measure of the spatial agreement between projections they detect by manganese labeling and
probabilistic tractography. It is interesting to note that the best agreements reported in that
study (range = 0.59–0.98; overall average ± std = 0.77 ± 0.13) resemble ours although with
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more variation. This may be due to the fact that their results were obtained in three different
regions of cortex and using methods that differ fundamentally from our approach.

The study by Leergaard et al. (2010) contained an analysis of the angular agreement
between fiber orientation distributions obtained from both MRI (QSI – q-space imaging) and
histology. They reported an average orientation error of 5–7 degrees even in regions with
complex architectures of crossing fibers. As studies such as this demonstrate, experiments
employing higher imaging resolution report improved angular agreement between DTI and
histology even when using less advanced analytical methods. This phenomenon is also
demonstrated in the present study and is attributable to the high intravoxel tissue
homogeneity exhibited by MRM.

An alternative approach could have been to compare the performance of different
tractography algorithms or analytical strategies: i.e. deterministic compared to probabilistic
methods; however, such studies geared at comparing differences between algorithms run the
risk of reporting differences that could be implementation-specific rather than method
specific in nature. Such issues have recently been reported in a study comparing
tractography results compiled from the same DW MRI data set but analyzed with four
different tractography toolboxes (Bürgel et al., 2009). Here, the authors showed that
comparable tracking results were not obtained despite having used similar or identical
tracking algorithms in their analysis.

Because DTI and tractography are used regularly in both the laboratory and the clinic, their
precision and relation to tissue structure are important for improving existing methods as
well as developing new investigative and diagnostic tools. What’s more, strategies for
detailed investigation of tissue microstructure with DWMR—be they aimed at direct
visualization of structure as in the present study or at model-based derivation of
microstructural parameters as in e.g. (Jespersen et al., 2007 and Jespersen et al. 2010)—are
important milestones in developing tools for disease-specific, non-invasive MR-based
diagnostics.

In summary, we have presented the first DTI in human spinal cord tissue with direct
histological correlation. Our results show that the agreement between orientations of
maximal diffusion and fiber orientation in the tissue is strong and thus lends support to the
assumptions behind commonly employed DTT methods by which connectivity maps of the
brain are obtained.

Research Highlights

• First instance of diffusion tensor microscopy with direct histological correlation
in human tissue

• Quantitative methods for assessing the accuracy of DTT predictions

• Examination of the primary eigenvector’s role in compiling maps of tissue
microstructure
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Figure 1.
Top row, left (A–C) shows (A) representative DWIs from the 21-direction MR data. The
difference in contrast between the two images is the result of the differing diffusion gradient
directions employed. From these data, the tensor map (B) is obtained and the image pixels
with predominantly in-plane structure (dark red) are mapped (C). Bottom row, left (D–F)
shows (D) left: the coregistered Black Gold II stained histology (otherwise unprocessed),
right: the histology after color inversion (E) the binary map of structural components visible
in the histology after processing and down sampling to a resolution matching the MRM. The
micro surface-coil’s approximate FOV is indicated (red oval) (F) The portion of the
histological binary map which corresponds to the coil’s FOV. The two coregistered maps
thus obtained (C and F) form the basis for calculation of the fraction of tensor map pixels
supported by the histology. The gray area around the histology map in (F) is to illustrate the
masking employed so that only histology within the coil FOV is included in the final steps
of the analysis. In this particular experiment which corresponds to the tissue sample from
figure 4 (far left column, rotated 90 degrees), the degree of correspondence is 0.82 which
was the lowest of the three values calculated in the current study.
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Figure 2.
A) Nissl-stained histology image of human spinal cord section (50µm tissue thickness) B)
The same sample overlaid with predicted fiber trajectories obtained by FACT tractography.
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Figure 3.
A) A map of human S.C. tissue showing WM/GM boundary as reflected in the size of the
primary eigenvector component that is orthogonal to the tissue plane (map was interpolated
to higher resolution than the MR data). Blue regions correspond to areas with a smaller
component in the direction orthogonal to the image plane while warmer colors represent
larger components. The variation is seen to compare favorably to the gray/white matter
separation seen in the histology (B). The white circle in B represents the area of the slice in
the excitation profile of the surface coil while the red arrows indicate locations of the largest
diameter tracts. C) The tractography overlay (green) superimposed on the image of Nissl-
stained histology. Red dots indicate histological landmarks that were used in the
coregistration.
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Figure 4.
Three example datasets of Black-Gold II stained histology (top row) and their corresponding
superimposed tractography overlays (middle row). Note the different structural contrast
obtained with the Black Gold II stain which exhibits specific binding to myelin structures
compared to the Nissl stain used for neuronal labeling employed in figures 2 and 3. The
bottom row shows the variation in the component of the primary eigenvector orthogonal to
the image plane (through-plane). Blue colors represent the smaller components while
warmer colors represent the larger. This component of the primary eigenvector is seen to
reflect tissue structure closely. In this manner, all three components of the primary
eigenvector (two in-plane used in the DTT, and the through-plane component in the bottom
row) are shown graphically to contain precise structural information matching the histology.
The DC values for these sets are from left to right: 0.82, 0.95, 0.89.

Hansen et al. Page 15

Neuroimage. Author manuscript; available in PMC 2012 August 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
The ROIs selected for use in our angular analysis. Areas of varying sizes were chosen to
ensure that each could be precisely identified in both DTI data and histology and to avoid
possible bias which could result from having only large or only small ROIs.
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