

NIH Public Access

Author Manuscript

Biochem Biophys Res Commun. Author manuscript; available in PMC 2012 July 15

Published in final edited form as:

Biochem Biophys Res Commun. 2011 July 15; 410(4): 846-851. doi:10.1016/j.bbrc.2011.06.076.

Protein Acetylation in Procaryotes Increases Stress Resistance

Qun Ma and Thomas K. Wood^{*}

Department of Chemical Engineering, Texas A & M University, College Station, Texas 77843-3122

Abstract

Acetylation of lysine residues is conserved in all three kingdoms; however, its role in prokaryotes is unknown. Here we demonstrate that acetylation enables the reference bacterium *Escherichia coli* to withstand environmental stress. Specifically, the bacterium reaches higher cell densities and becomes more resistant to heat and oxidative stress when its proteins are acetylated as shown by deletion of the gene encoding acetyltransferase YfiQ and the gene encoding deacetylase CobB as well as by overproducing YfiQ and CobB. Furthermore, we show that the increase in oxidative stress resistance with acetylation is due to the induction of catalase activity through enhanced *katG* expression. We also found that two-component system proteins CpxA, PhoP, UvrY, and BasR are associated with cell catalase activity and may be responsible as the connection between bacterial acetylation and the stress response. This is the first demonstration of a specific environmental role of acetylation in prokaryotes.

Keywords

lysine acetylation; stress resistance; protein acetylation; stress response; CobB; YfiQ

INTRODUCTION

The post-translational modification of acetylation occurs in all three domains of life [1] and regulates diverse aspects of metabolism in that 2700 proteins in mammals are acetylated related to central metabolism, mRNA splicing, protein synthesis, cell morphology, and cell cycle [2]. Although identified in 1963 for eukaryotes [2], in bacteria, the role of acetylation has not been well characterized even though this modification is relatively common in that at least 91 proteins are acetylated in the best-studied strain, *Escherichia coli*, including the stress related heat shock proteins like DnaK and superoxide dismutase [3,4].

In *Salmonella enterica*, there is only one major bacterial protein acetyltransferase, Pat, and one nicotinamide adenine dinucleotide-dependent deacetylase, CobB. These two enzymes control the status of lysine acetylation for acetyl-CoA synthetase as well as the acetylation of a number of central metabolic enzymes in *S. enterica* [5]. In *E. coli*, there are 23 putative lysine acetyltransferases that add acetyl groups to the epsilon amine of lysine using acetyl-coenzyme A as a substrate [1]. Ten Gcn-5 acetyltransferases in *E. coli* are confirmed for their function while the other thirteen remain enigmatic, including YfiQ which is the

^{© 2011} Elsevier Inc. All rights reserved.

^{*}To whom correspondence should be addressed: Thomas.Wood@chemail.tamu.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

homolog of the single acetyltransferase in *S. enteric* [1]. Hence we chose to study YfiQ as the acetyltransferase because we expect that it also plays an important role in *E. coli* similar to Pat in *S. enteric* [1] and chose to study CobB as the deacetylase since it is the only confirmed deacetylase activity in *E. coli* [6]. Our goal was to determine the role of YfiQ and CobB in bacterial physiology by changing acetylation in *E. coli*.

Bacteria respond to various stresses by producing global regulators [7]. The universal stress proteins UspA and UspD are required for resistance to superoxide-generating agents [8]. Similarly, OxyR regulates the peroxide-mediated stress response in which at least 30 proteins are elevated over the basal levels upon the addition of peroxide stress [7]. In addition, the sigma factor RpoS regulates *katG* which encodes catalase in an OxyR-dependent way [9]. RpoS is also required for acid, heat, and salt resistance in *E. coli* O157:H7 [10].

Since the ability of bacteria to respond rapidly to stress is a hallmark of their success and since protein modifications allow the most rapid response, we hypothesized that conserved protein acetylation may be related to the ability of the cell to withstand stress. Here we demonstrate that cells with decreased acetylation, through enhanced deacetylase CobB activity, are less resistant to heat and oxidative stress. Both a whole-transcriptome analysis and quantitative, reverse-transcription polymerase chain reaction (qRT-PCR) showed repression of *katG* under oxidative stress conditions when CobB is produced. Furthermore, we found that the two component regulator proteins CpxA, UvrY, PhoP, and BasR are related to catalase activity and may work as the acetylation targets, which can thus control stress response of the cell. Hence, we propose that the activity of some regulators that control stress gene expression, especially *katG* expression, is altered by acetylation.

MATERIALS AND METHODS

Bacterial strains, plasmids, and growth conditions

The bacterial strains and plasmids used in this study are listed in Table 1. *E. coli* K-12 BW25113 and its isogenic mutants [11] were obtained from the Genome Analysis Project in Japan. Plasmids pCA24N_*cobB* and pCA24N_*yfiQ*, carrying *cobB* and *yfiQ* under control of the P_{T5-lac} promoter with tight regulation via the *lacI*^q repressor, and the empty plasmid pCA24N were also obtained from the Genomic Analysis Project in Japan [12]. Expression of *cobB* and *yfiQ* was induced by 0.1 mM isopropyl- β -*D*-thiogalactopyranoside (IPTG) (Sigma, St. Louis, MO). All experiments were conducted in Luria-Bertani medium (LB) medium [13] at 37°C unless indicated otherwise. Kanamycin (50 µg/mL) was used for preculturing the isogenic knock-outs. Chloramphenicol (30 µg/mL) was used for maintaining the pCA24N-based plasmids.

For the growth tests, overnight cultures were diluted to a turbidity of 0.05 at 600 nm and grown for 2 h, then 0.1 mM IPTG was used to induce cobB and yfiQ expression. One mL culture was taken out at each time point, and cell turbidity at 600 nm was measured.

Stress assays

Overnight cultures were diluted to a turbidity of 0.05 at 600 nm and grown for 2 h. Then 0.1 mM IPTG was used to induce *cobB* and *yfiQ* expression for 10 to 12 h. Cells were centrifuged and resuspended in phosphate buffered saline (PBS) to a turbidity of 1.0. For the heat resistance assay, samples were treated at 65°C for 20 min [14]. For the H₂O₂ resistance assay, samples were mixed with 20 mM H₂O₂ for 20 min [15].

Catalase assays

Overnight cultures were diluted to a turbidity of 0.05 at 600 nm and grown for 2 h. IPTG (0.1 mM) was added, and the cultures were grown for another 4 h. Catalase activity was then measured two different ways in this study. For the spectrophotometric assay [16], one mL culture for each sample was washed and resuspended into PBS buffer for a turbidity at 600 nm of 0.5. For each sample, catalase activity was measured by checking the rate of H_2O_2 decrease which is reflected by the rate of change of absorbance at 240 nm value at 37°C. Two tubes were used for each sample, and 5 mM H_2O_2 was added for one while the other one was used as a control. The conversion between H_2O_2 concentration and absorbance was that 10 mM H_2O_2 is equal an optical density (OD) of 0.36 at 240 nm [16]. For the catalase activity of the two-component system mutants, overnight cultures for each strain were diluted to a turbidity of 0.05 at 600 nm and grown until a turbidity at 600 nm as 1.0. One mL culture for each sample was taken and catalase activity was measured as described above.

The second method for catalase activity used a colorimetric assay with dicarboxidine/ lactoperoxidase [17]. The cultures were washed and resuspended in M9 glucose medium for a turbidity of 1.0 at 600 nm. IPTG (0.1 mM) was added to each sample to induce the expression of *cobB* and *yfiQ*. The cultures were then incubated for 4 h. Before the test, a solution of 50 µg/mL of lactoperoxidase was mixed with an equal volume of 1 mM dicarboxidine solution in water (dicarboxidine is converted into a yellow product in a reaction catalyzed by the activity of lactoperoxidase, and the amount of color developed is directly proportional to the amount of H₂O₂ present in the medium). To start the reaction, 10 mM H₂O₂ was added to the culture, and samples (10 µL) were taken after every 2 minutes at the beginning and 5 to 10 minutes later. The samples were added to a 200 µL reaction mixture, and the absorbance (OD 450 nm) was measured immediately. Higher catalase activity causes a faster decrease in the OD 450 nm.

qRT-PCR

qRT-PCR was performed using the StepOneTM Real-Time PCR System (Applied Biosystems, Foster City, CA). After isolating RNA [18] using RNA*later*TM (Ambion, Austin, TX), 50 ng of total RNA was used for the qRT-PCR reaction using the *Power* SYBR[®] Green RNA-to-C_TTM *1-Step* Kit (Applied Biosystems). The primers are listed in Table 2. The housekeeping gene *rrsG* was used to normalize gene expression data [19]. The annealing temperature was 60°C for all the genes in this study. To investigate the transcription level of *rpoS*, *katG*, and *katE* under oxidative stress conditions, overnight cultures were grown to a turbidity of 0.05 at 600 nm, grown for 2 h, 0.1 mM IPTG was added for another 4 h to induce *cobB* and *yfiQ* expression, and the cells were exposed to 20 mM H₂O₂ for 10 min.

Whole-transcriptome analysis

Overnight cultures of *cobB*/pCA24N_*cobB* and *cobB*/pCA24N were cultured to a turbidity of 0.05 at 600 nm, grown for 2 h, 0.1 mM IPTG was added for another 4 h to induce *cobB* expression, and the cells were exposed to 20 mM H_2O_2 for 10 min. Cell pellets were collected and resuspended in RNA*later* (Ambion Inc., Austin, TX), and total RNA was isolated using the RNeasy Mini Kit (Qiagen Inc., Valencia, CA) [18]. The *E. coli* GeneChip Genome 2.0 array (Affymetrix, P/N 900551) was used, and cDNA synthesis, fragmentation, and hybridizations were performed as described previously [20]. If the gene with the larger transcription rate did not have a consistent transcription rate based on the 11–15 probe pairs (*P*-value less than 0.05), these genes were discarded. A gene was considered differentially expressed when the *P*-value for comparing two chips was lower than 0.05 (to assure that the change in gene expression was statistically significant and that false positives arise less than 5%) and if their fold change is higher than standard deviation for the whole genome [21].

Biochem Biophys Res Commun. Author manuscript; available in PMC 2012 July 15.

The data have been deposited at the NCBI Gene Expression Omnibus (GEO ID: GSE29803).

Mass spectrometry (MS)

His-tagged RpoS, KatG, and KatE were purified from pCA24N-based plasmids in the *cobB* mutant (to purify potential acetylated proteins) and in the *yfiQ* mutant (to purify the potential unacetylated proteins). Overnight cultures were diluted in 1 L to a turbidity as 0.05 at 600 nm. Each sample was grown until the cell turbidity at 600 nm reaches 0.6 to 1.0. Cultures were kept at 4°C for 45 min and then induced with 0.1 mM IPTG overnight at room temperature. Cell pellets were collected and lysed with a French Press. Supernatants were treated with 1 mL Ni-NTA agarose resin for 2 h. Purified His-tag proteins were digested with trypsin and cleaned with a zip-tip cleaning method. Samples were eluted with 4 μ L 0.1% formic acid plus 25% and 50% acetonitrile. The MS results were obtained using 4800 MALDI TOF/TOF Analyzer (Applied Biosystems/MDS Sciex, Carlsbad, CA) [22].

RESULTS

YfiQ increases stress resistance and CobB decreases stress resistance

To test our hypothesis that lysine acetylation is related to stress resistance, we subjected *E*. *coli yfiQ* and *cobB* mutants to oxidative and heat stress (Fig. 1); the rationale was that inactivation of acetyltransferase YfiQ should decrease acetylation and inactivation of deacetylase CobB should increase acetylation of all the cell proteins. We found that decreasing acetylation by deleting *yfiQ* decreased oxidative and heat stress by 4 fold and 10 fold, respectively, while increasing acetylation by deleting *cobB* increased oxidative and heat stress resistance by 100 fold and 3 fold, respectively. These results were complemented by increasing acetylation by producing YfiQ via plasmid pCA24N_*yfiQ* (110-fold increase in oxidative stress resistance and 370-fold increase in heat resistance) and by decreasing acetylation by producing CobB via plasmid pCA24N_*cobB* (10-fold reduction in oxidative stress resistance to heat and oxidative stress while deacetylation by CobB decreases it. Hence, protein acetylation helps the cell respond to environmental stress.

CobB decreases catalase activity

Since producing CobB decreased resistance to hydrogen peroxide (Fig. 1A), we investigated whether this phenotype was related to RpoS since RpoS is a positive regulator of catalase activity via *katG* and *katE* [23]. Catalase deactivates H_2O_2 by converting it to H_2O and O_2 [24]. Using two independent assays, we found that removing acetylation by producing CobB abolished catalase activity and increasing acetylation by deleting *cobB* increased catalase activity by 4.4 fold (Fig. 2). Therefore, acetylation increases catalase activity. However, the catalase activity was not changed much by producing YfiQ (Fig. 2). This is probably because of the contribution of the other nine functional acetyltransferases in *E. coli* [1].

Catalase related proteins KatG, KatE, and RpoS are not acetylated

Since catalase activity was affected by acetylation (Fig. 2), we investigated whether catalases KatG and KatE, as well as the regulator that controls catalase gene expression, RpoS, are acetylated. After analyzing around 100 peptide sequences, the MS results indicated that none of these proteins are directly acetylated on lysine residues. Hence, the KatG, KatE, and RpoS are all not acetylated, and the increased catalase activity by acetylation is not because of direct modification of these three proteins.

Catalase genes are induced by acetylation

To check if there are any differences in transcription of the catalase genes caused by acetylation, we measured gene expression via qRT-PCR for *rpoS*, *katG*, and *katE* (Table 3). *katG* was repressed 3.8 ± 0.3 fold in the *cobB*/pCA24N_*cobB* strain compared to the *cobB*/pCA24N strain without H₂O₂ addition. With the addition of 10 mM H₂O₂ for 10 min, *katG* was repressed even more (25 ± 2 fold) for *cobB*/pCA24N_*cobB* vs. *cobB*/pCA24N. Hence, catalase genes are induced due to acetylation of some unknown cellular proteins. Probably stress activates some regulator via a post-translational modification which leads to induction of *katG*.

Acetylation induces the transcription of genes involved for various stresses

To analyze the global effect of acetylation on gene transcription, a whole-transcriptome analysis was performed with the *cobB*/pCA24N_*cobB* strain vs. the *cobB*/pCA24N strain with the rationale that production of CobB should remove the acetyl groups on all the cell proteins. We found that in addition to *katG* and *katE*, various stress-related genes are repressed by deacetylation, including the heat shock genes *dnaK* [25], osmotic stress genes *osmB* [26] and *osmY* [27], acid resistance genes *gadABCE* and *hdeABD* [28], cold shock genes *cspAB* [29], carbon starvation gene *csiD* and *slp* [30], and general stress gene *yhbO* [31] (Table 4). Hence, protein acetylation is involved in various bacterial stress response systems.

Two-component systems may work as the targets for acetylation

Since various stress genes changed expression upon acetylation (Table 4), we tested 14 mutants from all major two-component systems in *E. coli* for their catalase activity to see if any of these two-component system proteins can directly change catalase activity and can work as the targets for acetylation. The two-component systems tested included CpxA/CpxR (heat shock regulon [32]), BarA/UvrY (related to oxidative stress [33]), BasS/BasR (related to iron response [34]), PhoQ/PhoP (related to acid resistance response [35]), RcsC/RcsB (regulate cell division genes [36]), ArcB/ArcA (related to resistance to reactive oxygen stress [37]), and EvgS/EvgA (related to acid resistance and multidrug resistance [38]). Of these, we found that the *cpxA*, *uvrY*, *phoP*, and *basR* mutants showed less catalase activity than the other mutants (Fig. 3). Hence we hypothesize that proteins CpxA, UvrY, PhoP, and BasR may work as the targets for acetylation by YfiQ and control bacterial stress response depending on their acetylation state.

YfiQ increases growth yield and CobB decreases it

We also found that cells with acetylation from producing YfiQ had a dramatically increased growth yield in rich medium while cells that lacked acetylation had reduced yield (Fig. 4). Therefore, acetylation helps cells cope with the stress associated with stationary phase growth.

DISCUSSION

Previously, the stress proteins heat shock protein DnaK [4], heat shock chaperone HtpG, superoxide dismutase SodA [4], SodB [3], alkylhydroperoxide reductase AhpC [3], and thioredoxin TrxA [3] were found to be acetylated in *E. coli*. However, there has been no prior report connecting the post-translational modification of acetylation and resistance to any environmental stress, and there has been no connection made between acetylation and a specific stress pathway. We discovered here that acetylation plays a significant role in the resistance to both oxidative stress and heat resistance; therefore, we connected protein acetylation and these two environmental stresses. We also found through a whole-

transcriptome approach that acetylation controls an even broader range of stresses by altering expression of genes related to stress resistance (including osmotic, acid, cold, and carbon starvation); this is the first whole-transcriptome study for acetylation. Hence, here we connected protein acetylation to the resistance of specific stresses (i.e., showed acetylation is involved in both the response to oxidative and heat stress as well as linked acetylation to osmotic, acid, cold, and carbon starvation) and showed that for oxidative stress, the resistance stems from changes in transcription of the *katG* gene which encodes catalase.

Bacteria sense some stresses via two-component systems and then regulate the expression of various genes. The survey of seven sets of two-component system proteins showed that CpxA, UvrY, PhoP, and BasR are involved in the cell stress response to oxidative stress (Fig. 2); therefore, these proteins are likely to be involved in the acetylation response required for catalase activity. Since stress resistance genes are activated less in the CobB overproduction strain (due to deacetylation), we predict that one or more of these two-component proteins (a sensor or regulator) or the essential genes that the regulator directly controls, needs acetylation to respond to oxidative stress. Previously the two-component system protein RcsB was found to be acetylated in *E. coli* [39]. However, in our results we did not see a large effect of RcsB on catalase activity (Fig. 3). Since the RcsB/RcsC two-component system is required for acid resistance [40], it is also possible that RcsB may work with other two-component system proteins after acetylation and thus change the cell physiology.

RESEARCH HIGHLIGHTS

- Determine the role of protein acetylation in bacteria is for the stress response.
- Provide the first transcriptome analysis for the affect of protein acetylation.
- Connect protein acetylation to a specific stress pathway (*katG* and catalase).

Acknowledgments

This work was supported by the NIH (R01 GM089999). We are grateful for the Keio and ASKA strains provided by the Genome Analysis Project in Japan. T.W. is the T. Michael O'Connor Endowed Professor at Texas A & M University.

REFERENCES

- Escalante-Semerena JC. Nepsilon-Lysine Acetylation Control Conserved in All Three Life Domains. Microbe. 2010; 5:340–344.
- H. Linda I, L. Bruno P, W. Alan J. Bacterial protein acetylation: the dawning of a new age. Molecular Microbiology. 2010; 77:15–21. [PubMed: 20487279]
- Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu CF, Grishin NV, Zhao Y. Lysine acetylation is a highly abundant and evolutionarily conserved modification in *Escherichia coli*. Mol Cell Proteomics. 2009; 8:215–225. [PubMed: 18723842]
- Yu BJ, Kim JA, Moon JH, Ryu SE, Pan JG. The diversity of lysine-acetylated proteins in Escherichia coli. J Microbiol Biotechnol. 2008; 18:1529–1536. [PubMed: 18852508]
- Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y, Ning ZB, Zeng R, Xiong Y, Guan KL, Zhao S, Zhao GP. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science. 2010; 327:1004–1007. [PubMed: 20167787]
- 6. Li R, Gu J, Chen YY, Xiao CL, Wang LW, Zhang ZP, Bi LJ, Wei HP, Wang XD, Deng JY, Zhang XE. CobB regulates *Escherichia coli* chemotaxis by deacetylating the response regulator CheY. Mol Microbiol. 2010; 76:1162–1174. [PubMed: 20345663]

- Farr SB, Kogoma T. Oxidative stress responses in *Escherichia coli* and *Salmonella typhimurium*. Microbiol Rev. 1991; 55:561–585. [PubMed: 1779927]
- Nachin L, Nannmark U, NystrÖm T. Differential roles of the universal stress proteins of *Escherichia coli* in oxidative stress resistance, adhesion, and motility. J Bacteriol. 2005; 187:6265– 6272. [PubMed: 16159758]
- 9. Ivanova A, Miller C, Glinsky G, Eisenstark A. Role of *rpoS* (*katF*) in *oxyR*-independent regulation of hydroperoxidase I in *Escherichia coli*. Mol Microbiol. 1994; 12:571–578. [PubMed: 7934880]
- Cheville AM, Arnold KW, Buchrieser C, Cheng CM, Kaspar CW. *rpoS* regulation of acid, heat, and salt tolerance in *Escherichia coli* O157:H7. Appl Environ Microbiol. 1996; 62:1822–1824. [PubMed: 8633882]
- Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006; 2 2006 0008.
- Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H. Complete set of ORF clones of *Escherichia coli* ASKA library (a complete set of *E. coli* K-12 ORF archive): unique resources for biological research. DNA Res. 2005; 12:291–299. [PubMed: 16769691]
- 13. Sambrook, J.; Fritsch, EF.; Maniatis, T. Molecular cloning: a laboratory manual. 2nd ed.. N.Y.: Cold Spring Harbor Laboratory Press; 1989.
- Zhang XS, García-Contreras R, Wood TK. YcfR (BhsA) influences *Escherichia coli* biofilm formation through stress response and surface hydrophobicity. J Bacteriol. 2007; 189:3051–3062. [PubMed: 17293424]
- Wang X, Kim Y, Hong SH, Ma Q, Brown BL, Pu M, Tarone AM, Benedik MJ, Peti W, Page R, Wood TK. Antitoxin MqsA helps mediate the bacterial general stress response. Nat. Chem. Biol. 2011; 7:359–366. [PubMed: 21516113]
- Gusarov I, Nudler E. NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc Natl Acad Sci U S A. 2005; 102:13855–13860. [PubMed: 16172391]
- Macvanin M, Hughes D. Assays of sensitivity of antibiotic-resistant bacteria to hydrogen peroxide and measurement of catalase activity. Methods Mol Biol. 2010; 642:95–103. [PubMed: 20401588]
- Ren D, Bedzyk LA, Thomas SM, Ye RW, Wood TK. Gene expression in *Escherichia coli* biofilms. Appl Microbiol Biotechnol. 2004; 64:515–524. [PubMed: 14727089]
- Lee J, Maeda T, Hong SH, Wood TK. Reconfiguring the quorum-sensing regulator SdiA of *Escherichia coli* to control biofilm formation via indole and *N*-acylhomoserine lactones. Appl Environ Microbiol. 2009; 75:1703–1716. [PubMed: 19168658]
- González Barrios AF, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK. Autoinducer 2 controls biofilm formation in *Escherichia coli* through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol. 2006; 188:305–316. [PubMed: 16352847]
- Ren D, Bedzyk LA, Ye RW, Thomas SM, Wood TK. Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of *Escherichia coli*. Biotechnol Bioeng. 2004; 88:630–642. [PubMed: 15470704]
- Sherrod SD, Diaz AJ, Russell WK, Cremer PS, Russell DH. Silver nanoparticles as selective ionization probes for analysis of olefins by mass spectrometry. Anal Chem. 2008; 80:6796–6799. [PubMed: 18671412]
- Lacour S, Landini P. SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of SigmaS-dependent genes and identification of their promoter sequences. J. Bacteriol. 2004; 186:7186–7195. [PubMed: 15489429]
- Robbe-Saule V, Coynault C, Ibanez-Ruiz M, Hermant D, Norel F. Identification of a non-haem catalase in *Salmonella* and its regulation by RpoS (σ^S). Mol Microbiol. 2001; 39:1533–1545. [PubMed: 11260470]
- Seyer K, Lessard M, Piette G, Lacroix M, Saucier L. *Escherichia coli* heat shock protein DnaK: production and consequences in terms of monitoring cooking. Appl Environ Microbiol. 2003; 69:3231–3237. [PubMed: 12788720]

- Jung JU, Gutierrez C, Martin F, Ardourel M, Villarejo M. Transcription of *osmB*, a gene encoding an *Escherichia coli* lipoprotein, is regulated by dual signals. Osmotic stress and stationary phase. J Biol Chem. 1990; 265:10574–10581. [PubMed: 1693921]
- 27. Hengge-Aronis R, Lange R, Henneberg N, Fischer D. Osmotic regulation of *rpoS*-dependent genes in *Escherichia coli*. J Bacteriol. 1993; 175:259–265. [PubMed: 8416901]
- Lee J, Page R, Garcia-Contreras R, Palermino JM, Zhang XS, Doshi O, Wood TK, Peti W. Structure and function of the *Escherichia coli* protein YmgB: a protein critical for biofilm formation and acid-resistance. J Mol Biol. 2007; 373:11–26. [PubMed: 17765265]
- 29. Ulusu NN, Tezcan EF. Cold shock proteins. Turk J. Med. Sci. 2001; 31:283–290.
- Alexander DM, St John AC. Characterization of the carbon starvation-inducible and stationary phase-inducible gene *slp* encoding an outer membrane lipoprotein in *Escherichia coli*. Mol Microbiol. 1994; 11:1059–1071. [PubMed: 8022277]
- Abdallah J, Kern R, Malki A, Eckey V, Richarme G. Cloning, expression, and purification of the general stress protein YhbO from *Escherichia coli*. Protein Expr Purif. 2006; 47:455–460. [PubMed: 16380269]
- Cuny C, Lesbats M, Dukan S. Induction of a global stress response during the first step of Escherichia coli plate growth. Appl Environ Microbiol. 2007; 73:885–889. [PubMed: 17142356]
- Herren CD, Mitra A, Palaniyandi SK, Coleman A, Elankumaran S, Mukhopadhyay S. The BarA-UvrY two-component system regulates virulence in avian pathogenic *Escherichia coli* 078:K80:H9. Infect Immun. 2006; 74:4900–4909. [PubMed: 16861679]
- Hagiwara D, Yamashino T, Mizuno T. A genome-wide view of the *Escherichia coli* BasS-BasR two-component system implicated in iron-responses. Biosci Biotechnol Biochem. 2004; 68:1758– 1767. [PubMed: 15322361]
- Bearson BL, Wilson L, Foster JW. A low pH-inducible, PhoPQ-dependent acid tolerance response protects *Salmonella typhimurium* against inorganic acid stress. J Bacteriol. 1998; 180:2409–2417. [PubMed: 9573193]
- 36. Carballes F, Bertrand C, Bouche JP, Cam K. Regulation of *Escherichia coli* cell division genes *ftsA* and *ftsZ* by the two-component system *rcsC-rcsB*. Mol Microbiol. 1999; 34:442–450. [PubMed: 10564486]
- Loui C, Chang AC, Lu S. Role of the ArcAB two-component system in the resistance of *Escherichia coli* to reactive oxygen stress. BMC Microbiol. 2009; 9:183. [PubMed: 19715602]
- 38. Eguchi Y, Itou J, Yamane M, Demizu R, Yamato F, Okada A, Mori H, Kato A, Utsumi R. B1500, a small membrane protein, connects the two-component systems EvgS/EvgA and PhoQ/PhoP in *Escherichia coli*. Proc Natl Acad Sci U S A. 2007; 104:18712–18717. [PubMed: 17998538]
- Thao S, Chen CS, Zhu H, Escalante-Semerena JC. N^ε-lysine acetylation of a bacterial transcription factor inhibits Its DNA-binding activity. PLoS ONE. 2010; 5:e15123. [PubMed: 21217812]
- 40. Johnson MD, Burton NA, Gutierrez B, Painter K, Lund PA. RcsB is required for inducible acid resistance in *E. coli* and acts at *gadE* dependent and independent promoters. J Bacteriol online. 2011
- 41. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. Proc Natl Acad Sci U S A. 2000; 97:6640–6645. [PubMed: 10829079]

Ma and Wood

Figure 1. Resistance to oxidative and heat stress

E. coli BW25113 wild-type/pCA24N, *cobB*/pCA24N, *cobB*/pCA24N_*cobB*, *yfiQ*/pCA24N, and *yfiQ*/pCA24N_*yfiQ* were tested for H₂O₂ resistance (**A**) and heat resistance (**B**) in LB medium at 37°C.

Figure 2. Catalase activity

E. coli BW25113 wild-type/pCA24N, *cobB*/pCA24N, *cobB*/pCA24N_*cobB*, *yfiQ*/pCA24N, and *yfiQ*/pCA24N_*yfiQ* were compared for their catalase activity using the a spectrophotometric method (**A**) and a colorimetric method with dicarboxidine/ lactoperoxidase (**B**). Wild-type/pCA24N data are indicated by filled circles, *cobB*/pCA24N by empty circles, *cobB*/pCA24N_*cobB* by filled triangles, *yfiQ*/pCA24N by empty triangles, and *yfiQ*/pCA24N_*yfiQ* by solid squares.

Figure 3. Catalase activity for mutants of two-component systems

Single mutants from seven sets of two-component systems were compared for their catalase activity using the spectrophotometric method. The *katE* mutant was used as a negative control.

Figure 4. Growth curves

The strains were grown in LB medium with 30 μ g/mL chloramphenicol to retain the plasmids at 37°C, and 0.1 mM IPTG was added to induce *cobB* and *yfiQ* expression after 2 h. Symbols as defined in Fig. 2B.

E. coli strains and plasmids used in this study. Km^r and Cm^r denote kanamycin and chloramphenicol resistance, respectively.

Strain/Plasmid	Genotype	Source
Strain		
BW25113	$lacI^{q} rrnB_{T14} \Delta lacZ_{WJ16} hsdR514 \Delta araBAD_{AH33} \Delta rhaBAD_{LD78}$	[41]
BW25113 cobB	BW25113 $\triangle cobB \ \Omega \ \mathrm{Km^r}$	[11]
BW25113 yfiQ	BW25113 $\Delta y fi Q \Delta Km^r$	[11]
BW25113 katE	BW25113 $\Delta katE \Omega \text{ Km}^r$	[11]
BW25113 cpxA	BW25113 $\Delta cpxA \ \Omega \ \mathrm{Km^r}$	[11]
BW25113 cpxR	BW25113 $\Delta cpxR \Omega \mathrm{Km}^{\mathrm{r}}$	[11]
BW25113 barA	BW25113 $\Delta barA \ \Omega \ \mathrm{Km^r}$	[11]
BW25113 uvrY	BW25113 $\Delta uvrY \Omega \text{ Km}^r$	[11]
BW25113 basS	BW25113 $\Delta basS \Omega \text{ Km}^r$	[11]
BW25113 basR	BW25113 $\Delta basR \Omega \mathrm{Km}^{\mathrm{r}}$	[11]
BW25113 $phoQ$	BW25113 $\Delta phoQ \ \Omega \ \mathrm{Km^r}$	[11]
BW25113 phoP	BW25113 $\Delta phoP \ \Omega \ \mathrm{Km^r}$	[11]
BW25113 rcsC	BW25113 $\Delta rcsC \Omega \text{ Km}^r$	[11]
BW25113 rcsB	BW25113 $\Delta rcsB \Omega \text{ Km}^r$	[11]
BW25113 arcB	BW25113 $\Delta arcB \Omega \mathrm{Km}^{\mathrm{r}}$	[11]
BW25113 arcA	BW25113 $\Delta arcA \ \Omega \ \mathrm{Km}^{\mathrm{r}}$	[11]
BW25113 evgS	BW25113 $\Delta evgS \Omega \mathrm{Km}^{\mathrm{r}}$	[11]
BW25113 evgA	BW25113 $\Delta evgA \ \Omega \ \mathrm{Km}^{\mathrm{r}}$	[11]
Plasmid		
pCA24N	Cm ^r ; <i>lacI</i> ^q , pCA24N	[12]
pCA24N_cobB	Cm ^r ; <i>lacI</i> ^q , pCA24N p _{T5-lac} :: <i>cobB</i>	[12]
pCA24N_yftQ	Cm ^r ; <i>lacI</i> ^q , pCA24N p _{T5-lac} ::: <i>yfiQ</i>	[12]
pCA24N_rpoS	Cmr; lacIq, pCA24N pT5-lac::rpoS	[12]
pCA24N_katG	Cmr; laclq, pCA24N pT5-lac::katG	[12]
pCA24N_katE	Cm ^r ; <i>lacI</i> ^q , pCA24N p _{T5-lac} :: <i>katE</i>	[12]

Primers used for qRT-PCR in this study.

Primer name	Sequence
rpoS-f	5'-AGAGTAACTTGCGTCTGGTGGTAAA-3'
rpoS-r	5'-ATAGTACGGGTTTGGTTCATAATCG-3'
katG-f	5'-CTGGTGTGGTGGTGGTGTTGAG-3'
katG-r	5'-AGTGACTCGGTGGTGGAAAC-3'
katE-f	5'- GATCTTCTCGATCCAACCAAAC-3'
<i>katE-</i> r	5'-CACCAAGACGACTGATTTGTGT-3'
rrsG-f	5'-TATTGCACAATGGGCGCAAG-3'
rrsG-r	5'-ACTTAACAAACCGCTGCGT-3'

qRT-PCR results for catalase-related genes *rpoS*, *katG*, and *katE*. Δ Ct is the threshold difference between each gene and the housekeeping gene *rrsG*. Fold change indicates the gene transcription difference between the *cobB*/pCA24N_*cobB* strain vs. the *cobB*/pCA24N strain in LB medium at 37°C with 20 mM H₂O₂ for 10 min. Fold changes are relative to the *cobB*/pCA24N sample.

Ma and Wood

Strain name	rpoS		katG		katE	
	ΔCt	Fold change	ΔCt	Fold change	ΔCt	Fold change
No stress						
cobB/pCA24N	12.36 ± 0.07	1.00	8.96 ± 0.07	1.00	11.8 ± 0.1	1.00
cobB/pCA24N_cobB	11.8 ± 0.1	1.47	10.90 ± 0.07	-3.84	12.48 ± 0.04	-1.60
I min H_2O_2 treatment						
cobB/pCA24N	11.0 ± 0.3	1.00	7.7 ± 0.3	1.00	10.1 ± 0.3	1.00
cobB/pCA24N_cobB	13.5 ± 0.1	-5.66	11.87 ± 0.07	-18.00	13.03 ± 0.08	-7.62
$10 min H_2O_2$ treatmen	t					
cobB/pCA24N	11.7 ± 0.1	1.00	7.4 ± 0.3	1.00	10.9 ± 0.3	1.00
cobB/pCA24N_cobB	13.2 ± 0.2	-2.83	12.05 ± 0.09	-25.11	13.1 ± 0.1	-4.59

Summary of the whole-transcriptome results showing the stress genes that are repressed by production of CobB. Fold change indicates the gene transcription difference between the *cobB*/pCA24N_*cobB* strain vs. the *cobB*/pCA24N strain when cultured in LB medium at 37°C with 20 mM H₂O₂ for 10 min and with 0.1 mM IPTG to induce production of CobB.

Gene	Fold change	Gene function
dnaK	-4.0	chaperone Hsp70; DNA biosynthesis; autoregulated heat shock proteins
osmB	-3.3	osmotically inducible lipoprotein
osmY	-3.0	hyperosmotically inducible periplasmic protein
gadC	-12.1	predicted glutamate-GABA antiporter; glutamate-dependent enzyme, may function in protection against cytoplasmic acidification
gadB	-18.4	glutamate decarboxylase isozyme
gadE	-6.5	transcriptional regulator of the gadABC operon
gadA	-14.9	glutamate decarboxylase A; RpoS regulon. EvgAS regulon. H-NS repressed. Induced by acid shock and salt stress.
cspB	-3.2	cold shock protein
cspA	-3.0	cold shock protein
katE	-3.7	catalase; hydroperoxidase HPII(III)
katG	-4.9	catalase; hydroperoxidase HPI(I)
csiD	-3.2	carbon starvation induced gene
yhbO	-3.5	stress-resistance protein, protease homolog
slp	-11.3	outer membrane protein induced after carbon starvation
hdeB	-16.0	periplasmic chaperone of acid-denatured proteins; H-NS repressed
hdeA	-14.9	periplasmic chaperone of acid-denatured proteins; H-NS repressed
hdeD	-7.5	putative membrane transporter, H-NS repressed