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Abstract
Colorectal cancer is characterized by a low survival 
rate even though the basis for colon cancer develop-
ment, which involves the evolution of adenomas to 
carcinoma, is known. Moreover, the mortality rates 
continue to rise in economically transitioning coun-
tries although there is the opportunity to intervene in 
the natural history of the adenoma–cancer sequence 
through risk factors, screening, and treatment. Screen-
ing in particular accounted for most of the decline in 
colorectal cancer mortality achieved in the USA during 

the period 1975-2000. Patients show a better prog-
nosis when the neoplasm is diagnosed early. Among 
the variety of screening strategies, the methods range 
from invasive and costly procedures such as colonos-
copy to more low-cost and non-invasive tests such as 
the fecal occult blood test (guaiac and immunochemi-
cal).�������������������������������������������������        ������������������������������������������������      As a non-invasive biological serum marker would 
be of great benefit because of the performance of 
the test, several biomarkers, including cytologic as-
says, DNA and mRNA, and soluble proteins, have been 
studied. We found that the soluble CD26 (sCD26) con-
centration is diminished in serum of colorectal cancer 
patients compared to healthy donors, suggesting the 
potential utility of a sCD26 immunochemical detection 
test for early diagnosis. sCD26 originates from plasma 
membrane CD26 lacking its transmembrane and cyto-
plasmic domains. Some 90%–95% of sCD26 has been 
associated with serum dipeptidyl peptidase IV (DPP-
IV) activity. DPP-IV, assigned to the CD26 cluster, is a 
pleiotropic enzyme expressed mainly on epithelial cells 
and lymphocytes. ���������������������������������������       ��������������������������������������     Our studies intended to validate this 
test for population screening to detect colorectal can-
cer and advanced adenomas are reviewed here. 
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EARLY DIAGNOSIS AND POPULATION 
SCREENING FOR COLORECTAL CANCER
Colorectal cancer (CRC) clearly meets all the required 
conditions for the adoption of  a screening policy. 

First, because it is an important issue for public health 
since it is one of  the most common cancers (ranking 
third both in men and women) worldwide and because 
it is characterized by a low survival rate due to diagnosis 
in advanced stages, which leads to high mortality rates. 
For example, in the United States the American Cancer 
Society estimated that in 2010 there were 142 570 new 
cases and 51 370 related deaths from colon cancer[1] and 
more than 1 million new cases and about 530 000 deaths 
worldwide[2]. Moreover, globally, while in all developed 
countries CRC rates have stabilized or are declining[3], 
CRC incidence in economically transitioning countries 
continues to rise both in its incidence and in mortality 
because of  increased exposure to risk factors[2, 3].

The second condition is that the basis of  colon cancer 
development is well known and involves the evolution 
of  adenomas to carcinoma[4,5], therefore, individuals with 
a history of  adenomas have a higher risk of  cancer[6] 

and removal of  polyps results in a reduction in colon 
cancer incidence[7]. However, we have the opportunity to 
intervene in the natural history of  the adenoma–cancer 
sequence[8].

Third, there are precise and feasible diagnostic 
methods that allow detection of  the disease in early 
stages (non-metastatic tumors), which could be surgically 
cured by removal (reduction in the mortality rate of  
CRC), as well as the identification and removal of  polyps 
(reduction in the incidence rate of  CRC)[9-11]. Moreover, 
treatment is more effective and patients show a better 
prognosis when the neoplasm is diagnosed early[12]. 

Interestingly, it has recently been reported that 
screening accounted for 53% of  the decline in CRC 
mortality observed between 1975-2000 in the USA (26% 
less mortality); the other two facts being changes in risk 
factors (35%) and treatment regimes (12%)[8]. Moreover, 
the decline in CRC mortality in the USA can be enhanced 
if  current trends, including screening, against cancer are 
accelerated; for example, only approximately 50% of  
its population older than 50 years have been screened[8]. 
Needless to say that in most countries, including many 
developed countries, no screening strategy has been 
proposed.

There are a great variety of  screening strategies available 
for the average risk population, that is, individuals of, or 
over, 50 years with no other known risk factors for the 
development of  CRC. These methods range from invasive 
and costly procedures such as flexible sigmoidoscopy, 
double contrast barium enema, and colonoscopy to more 

low-cost and non-invasive tests such as the fecal occult 
blood test (FOBT). All these methods have advantages and 
disadvantages regarding their sensitivity, specificity, risk, 
availability and cost but they have been shown to decrease 
CRC incidence and mortality[8, 13-15].

Colonoscopy is the gold standard[15] and multiple 
studies have provided indirect evidence regarding the 
higher benefits of  colonoscopy compared with other 
methods[16]. However, the costs and risk of  complications, 
besides discomfort, have made this and other invasive 
tests such as flexible sigmoidoscopy[17], poorly accepted 
for screening in an asymptomatic population[18- 23].

The benefit of  CRC screening using a non-invasive test 
for blood in stool (Hemoccult) was established in 1993[13]. 
Subsequently, this result was corroborated in two other 
randomized controlled trials, leading to recommendations 
in many countries for CRC screening[24, 25]. The FOBT is the 
simplest and least expensive non-invasive approach to CRC 
screening available, however, it has several disadvantages. 
The most common method is the non-rehydrated guaiac 
FOBT[26], based on the detection of  peroxidase activity 
in the stool sample. Consequently, reagents also bind to 
nonhuman hemoglobin-like substances in feces, such as 
animal myoglobin and plant peroxidases. As the presence 
of  these substances in the colon and rectum are related to 
diet, important dietary restrictions are required to minimize 
false negative results[13, 27]. Notwithstanding, its sensitivity 
and specificity are 30%-40% and 96%-98%, respectively[28], 
with lower percentages for the detection of  adenomas[29, 30]. 

In the United States, the current recommendations 
include a number of  screening tests in addition to Hem
occult. Immunochemical tests (iFOBT), which have not 
been evaluated in a randomized controlled trial, have 
performed similarly or even better in some studies, with 
generally higher compliance rates compared to Hemoccult 
or other guaiac-based tests[27, 31-34], involving no dietary 
restriction, and resulting in fewer false positives[35]. The 
use of  an immunochemical test in patients scheduled for 
colonoscopy[36] showed the advantages of  a quantitative 
test to determine the cutoff  for positivity to adjust the 
screening program according to the resources available. 
Moreover, this test can be automated and two instead of  
three samples can be used for quantification[37].

In Japan, more than 6 million people have been 
screened with immunochemical tests, with a positivity rate 
of  7.1%[35, 38-40]. With 60% of  positive tests complying with 
the diagnostic protocol, the CRC detection rate was 1.6 
per 1000. More than 70% of  the cancers were classified as 
Duke’s A or Duke’s B, suggesting that the program worked 
well in detecting early stage cancer; CRC mortality and 
incidence were reduced by 72% and 59%, respectively[41]. 
Somewhat puzzling is the fact that guaiac is more sensitive 
than immunochemical for advanced adenomas (41.3% vs 
29.5%)[42], this may be because peroxidase sensitivity of  
the guaiac test detects lower levels of  bleeding as some 
authors speculate. However, other explanations must also 
be considered. 

This last study does illustrate the utility of  comparing 
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different tests rather than conducting long-term and 
expensive randomized controlled trials to evaluate each 
new FOBT. There are considerable data on Hemoccult, 
therefore comparing performance, outcome, compliance, 
and cost with new blood or fecal occult tests, as was done 
in this study[42], should be enough for the acceptance of  
new tests. 

As blood could be present in the stool for other 
reasons, such as hemorrhoidal bleeding, iFOBT was also 
tested in combination with protein stool markers like 
hemoglobin-haptoglobin, calprotectin, carcinoembryogenic 
antigen, and the novel fecal markers S100A12 and tissue 
inhibitor of  metalloproteinase-1 (TIMP-1), the latter 
allowing the detection of  CRC at significantly higher 
rates than can be obtained with iFOBT alone[43]. Genetic 
markers are also promising tools, such as the DNA-based 
stool test PreGen-Plus from EXACT Sciences, which shows 
a sensitivity of  51%-91% for CRC, with an average of  
65%, and specificity between 93%-98%[30,44]. 

However, non-invasive biological serum markers 
would be of  great benefit for screening, because blood-
based diagnostics can additionally classify tumors into 
distinct molecular subtypes and monitor disease relapse 
and response to treatment. Increasingly, biomarker 
strategies are becoming critical to identify a specific patient 
subpopulation that is likely to respond to a new therapeutic 
agent. The improved understanding of  the underlying 
molecular features of  common cancers and the availability 
of  a multitude of  recently developed technologies to 
interrogate the genome, transcriptome, proteome and 
metabolome of  tumors and biological fluids have made it 
possible to develop clinically applicable and cost-effective 
tests for many common cancers[45,46].

S E R U M B I O M A R K E R S  I N  C R C 
SCREENING
Other advantages over stool testing are: sampling may 
be more convenient and acceptable for the patient, there 
is no microflora which could degrade the biomarker or 
hamper analysis, and sample processing may be easier. 
In addition, as it will be commented later, information 
on the very early pathways of  carcinogenesis, such as 
immune system cross-talk, can only be found in serum.

A meta-analysis evaluating blood markers for early 
detection of  CRC reported in 2007 summarizing the 
performance characteristics of  various approaches[47] 
found that seventy different markers fulfilled the inclusion 
criteria with an overall sensitivity that ranged from 18% 
to 65%. The markers included cytologic assays, DNA and 
mRNA markers, and soluble proteins.

Three studies investigated cytologic assays, an 
inhibition of  in vitro leukocyte adherence by incubation 
with tumor antigens, and the detection of  circulating 
tumor cells by a membrane array[48-50]. Sensitivity was 
above 70% for early stages and specificity ranged from 
94% to 98%, however, the number of  cases by tumor 

stage was very small. Notwithstanding, cellular mechanical 
properties have recently received increasing attention as a 
potential biophysical marker for cancer cells[51].

Four studies[52-55] with DNA markers for the early 
detection of  CRC were reported in that review[47]. Free 
DNA, as well as mRNA, was isolated from circulating 
cells. Blood samples were analyzed for both genetic and 
epigenetic alterations of  genes involved in the adenoma-
carcinoma sequence, such as K-ras, tumor suppressor 
protein p53, APC (adenomatous polyposis of  the colon), 
hMLH1 (human MutL homologue 1) or HLTF (helicase-
like transcription factor). Sensitivity reported for this 
group of  markers was about 60% and lower, whereas 
specificity ranged from 73% to 100%. The potential of  
detecting adenomas was investigated only for mutations 
in the K-ras gene in one study which showed a sensitivity 
of  35% for adenomas[54]. A recent review evaluated four 
commercialized biomarker tests based on that information 
(K-ras and B-raf  mutation analyses, mismatch repair 
protein testing, and the Oncotype DX Colon Cancer 
Assay) for inclusion in the NCCN Guidelines Panel 
for Colon Cancer. In two cases, the available evidence 
was inconsistent to be included in the specific NCCN 
Guidelines[56].

Novel data on genetic and epigenetic mechanisms 
of  CRC and how these alterations relate to emerging 
biomarkers for early detection, risk stratification, prognosis 
and prediction of  treatment responses, are reviewed in[57-60]. 
Potential markers waiting to undergo clinical validation for 
response to therapies are hypermethylation of  septin-9 and 
DPYD (dihydropyrimidine dehydrogenase) genes. 

Many relevant studies[47] applied reverse transcription-
PCR to detect mRNA expressed in circulating tumor 
cells. Blood samples were analyzed for mRNA molecules 
coding for CEA, cytokeratins (CK) 8, 9, and 20, human 
telomerase reverse transcriptase (hTERT), guanylyl cyclase 
C (GCC), carcinoembryonic gene member 2 (CGM2), 
melanoma-associated antigen family A (uMAGE-A), 
tumor-associated antigen L6, mucins (MUC) 1 and 2, 
protease M (ProtM), and thymidylate synthase. The most 
promising performance characteristics in this group of  
markers were reported for GCC mRNA[61], showing 
above 80% sensitivity for early stages.

Recent research has shed light on the biological 
importance of  microRNAs(miRNAs). Their association 
with formation, angiogenesis, metastasis, and chemo
therapy resistance of  tumors has become one of  the 
core issues in epigenetics of  cancer, including CRC. 
miRNAs serve as micromanagers, negatively regulating 
gene expression. The potential utility of  miRNAs in the 
preclinical stage has been explored, since manipulation of  
miRNAs may offer an alternative therapy for chemo- and 
radio-resistant CRCs[62-64].

The discovery that aberrantly expressed miRNAs 
vary among different tumor types and some of  them are 
secreted in highly stable, cell-free form into blood[65] led to 
the hypothesis that circulating (and fecal) miRNAs might 
potentially serve as non-invasive markers for early diagnosis 
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of  CRC[63]. For example, 69 miRNAs were detected in 
CRC but not in control group sera; of  these, 12 were not 
found in the serum of  lung cancer patients[64]. Circulating 
miRNAs are packed in complexes, either called exosomes 
or microvesicles, and emerging evidence has indicated that 
such external miRNAs are involved in cell-to-cell signal 
transduction and genetic information exchange[64,66]. Two 
miRNAs significantly elevated in plasma and CRC tissues, 
but reduced in postoperative samples when compared with 
preoperative samples are miR-17-3p and miR-92a, both 
belonging to the miR-17-92 cluster. At a cut-off  value of  
3.6 for miR-17-3p (relative expression in comparison with 
RNU6B), the sensitivity was 64% and the specificity was 
70%; at a cut-off  value of  240 for miR-92a, the sensitivity 
was 89% and the specificity was 70%. In addition, miR-92a 
can distinguish CRC from other gastrointestinal cancers 
and inflammatory bowel diseases as well as advanced 
adenoma from normal controls, with a sensitivity of  64.9% 
and a specificity of  81.4%, whereas its expression levels 
were not correlated with tumor-node-metastasis (TNM) 
stages[66,67].

Fifty two protein markers in the meta-analysis of  
2007[47] were analyzed by common standard procedures, 
still more easy-to-use and quicker than the nucleic acid 
methods, like ELISA, RIA, or activity assays, or by 
chromatographic and mass spectrometric (MS) assays 
based on surface-enhanced laser desorption/ionization 
time-of-flight (SELDI-TOF) MS, and matrix assisted 
laser desorption/ionization time-of-flight (MALDI-TOF) 
MS. This group of  markers can be further subdivided 
into carbohydrate antigens, carcinoembryonic antigens, 
other antigens, antibodies, cytokines, and other proteins. 
Sometimes, different markers were analyzed in parallel. For 
example, combinations including carbohydrate antigens 
and carcinoembryonic antigens were very common.

Carcinoembryonic antigen (CEA) was the first blood 
marker proposed in connection with CRC[47, 68]. Although 
overall sensitivity ranged between 43% and 69%, there 
was a clear increase in sensitivity by tumor stage, ranging 
from 8% for Duke’s A up to 89% for Duke’s D. Specificity 
was above 90% in nineteen studies. 

Carbohydrate antigens (defined by monoclonal 
antibodies against colon carcinoma cell lines) include CA 
19-9, CA 195, CA M26, CA M29, CA 50, CA 72-4, CA 
M43 and CA 242. Many studies evaluated CA 19-9, with 
an overall sensitivity from 18% to 65%, and specificity 
above 90% in most studies. Sensitivities greater than 50% 
were only observed for nonlocalized disease. For other 
carbohydrate antigens, the observed sensitivity, its stage 
dependency, and specificity were comparable.

Early approaches for other antigens investigated 
sialylated Lewis X antigen (sLeX) and CO 29.11, another 
sialylated Lewis antigen. sLeX was originally found on 
tumor tissues by immunohistochemistry and CO 29.11 is 
expressed and shed by carcinoma cells of  colon and other 
cancer types[69-77]. Later studies investigated the potential 
of  PSA, PA 8-15 (another tumor-associated antigen that 
was originally observed in a pancreatic cancer cell line), 

small intestinal mucin antigen (SIMA), and urokinase-type 
plasminogen activator (u-PA). For the latter, a sensitivity of  
76% (82% for non-mestatasized disease) and a specificity 
of  96% have been reported[69, 70].

Among various circulating autoantibodies against 
antigens such as DEADbox protein 48 (DDX-48), p53, 
sFasL (the death receptor ligand of  CD95), or NCC-
ST 439 (a tumor-related carbohydrate)[78-83], sensitivities 
for the detection of  CRC hardly reached 30%, although 
specificity was 100% in all studies.

In studies[84-89] evaluating cytokine markers such as 
vascular endothelial growth factor (VEGF), insulin-
like growth factor II (IGF-Ⅱ), IGF-binding proteins 
(IGFBP-2), stem-cell factor (SCF), and interleukin-3 
(IL-3) which can reflect several immune system-related 
pathways of  carcinogenesis[90], if  specificity was high 
(between 90% and 100%), sensitivity was low (37% for 
VEGF in TNM Ⅰstage patients), or vice versa.

Among the other proteins, subgroup examples are the 
α-defensins[91], the nicotinamide N-methyltransferase[92], 
the α-L-fucosidase[93] and the tumor M2-pyruvate kinase 
(M2-PK), an isoform of  the glycolytic enzyme pyruvate 
kinase[94]. Recent works also studied other potential 
markers in relation to polyp characteristics: for serum 
sulfatase activity, differences regarding the number of  
adenomas (single or multiple) were significant[95]; serum 
leptin, adiponectin and resistin also differed between 
controls and patients with adenomas or CRC, although 
there was no relationship with dysplasia, histopathology 
or polyp localization[96].

One of  the signatures of  a cancer cell is the change 
in the nuclear structure and architecture, and alterations 
in the composition of  nuclear structural proteins are 
associated with various types of  cancer such as breast, 
prostate, bladder, lung and ovarian, as well as squamous 
cell carcinoma of  the neck[97, 98]. Nuclear proteins, colon 
cancer–specific antigen (CCSA)-2, CCSA-3, and CCSA-4 
were recently identified as serum biomarkers that are 
specific for colon cancer[99,100].

As a summary of  these and more recent studies, the 
more promising results, for both sensitivity and specificity, 
were observed with u-PA (76% and 96% respectively[61], 
M2-PK[101] (69% and 90%), TPA-M (70% and 96%), CP 
(cancer procoagulant; 86% and 82%)[102], sCD26 (soluble 
cluster of  differentiation 26) (90% and 90%[103], fibrin 
degradation (DR-70) (80% and 93%)[104], prolactin (77% 
and 98%)[105], laminin (89% and 88%)[106], BSP (bone 
sialoprotein; 88% and 100%, although similar results were 
found in breast and prostate cancers)[107] and CCSA-2 
(78% and 97%), but sCD26 has been the most studied, as 
commented in later subheadings[108-111].

SOLUBLE CD26
Dipeptidyl peptidase Ⅳ (DPP-Ⅳ), assigned to the 
CD26 cluster, is a multifunctional or pleiotropic protein 
expressed particularly on epithelial cells and lymphocytes. 
CD26/DPP-IV has been consistently associated with 
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cancer since it was known as ADCP, or the ADA-2 / 
Large isoform[112,113]. Many reviews have discussed the 
non-enzymatic role of  CD26/DPP-IV as an extracellular 
anchorage for ADA in cancer and the potential usefulness 
of  this protein in therapeutics and diagnostics[114-119]. The 
ADA-CD26 complexes may participate in cell-to-cell 
contacts[120-122] or, more probably in this context, through 
the catalysis of  adenosine to inosine[121,123,124]. Proliferating 
cells accumulate high extracellular concentrations of  
adenosine, a purine nucleoside found within the interstitial 
fluid of  solid tumors, which may be toxic or influence 
the proliferative potential of  a cell, depending on the 
relative expression and type of  adenosine receptor 
(AR). Therefore, the different levels of  the cell-surface 
CD26-ADA complex and relative expression of  ARs 
on a tumor cell may lead to the generation of  tumor 
subclones, as well as its participation in the well-known 
adenosine inhibition of  cell-mediated immune responses 
to tumor cells[115,116,119,124-127]. Other pro-oncogenic activities 
may be related to the recently described CD26-ADA-
plasminogen ternary complex. Binding of  plasminogen to 
cell-surface receptors promotes its conversion to plasmin, 
which is required for proteolysis of  the ECM in several 
physiological and pathological processes, including cell 
migration, tumor cell invasion and metastasis[127]. 

CD26, also present at the invadopodia, together with 
other ectoproteases and metalloproteases (MMPs)[128-130], 
can participate in malignant transformation and cancer 
progression through its ability to bind collagen and 
fibronectin[81,116,117,128,129,131,132]. MMPs and FAPα(a CD26 
homologous protein expressed in tumor cells) digestion 
of  ECM components will allow passage of  the malignant 
cells through basement membranes and stromal barriers. 
This pro-oncogenic behaviour is thus consistent with the 
non-enzymatic interactions with cell-surface ADA and 
plasminogen mentioned above, and the formation of  
FAP-CD26 heterodimers[129, 133].

However, there is a fundamental difference between 
CD26 and the other proteases involved in cancer deve
lopment and progression as executors of  ECM degradation: 
CD26 is constitutively expressed in the tissues mentioned 
at the beginning of  this heading, and its enzymatic activity 
regulates the biological activity of  regulatory peptides, such 
as incretins secreted by the enteroendocrine system (DPP-
IV has therefore become a novel therapeutic target for 
inhibitors that extend the endogenously-produced insulin 
half-life in diabetics [114,115,134-141], and similarly the half-life of  
growth factors and chemokines[142]).

In addition, glypican-3 has recently been reported as 
the first natural inhibitor of  CD26/DPP-IV enzymatic 
activity, in in vitro experiments[143]. Glypicans are basically 
absent in adult tissues, but up-regulated in many tumor 
tissues[144]. If  glypican-3-dependent local DPP-IV 
inhibition can be confirmed in a physiological context, 
this indicates a natural protective role for the enzyme 
that should be blocked in the tumorigenic process. 

This anti-oncogenic role, first contrasted in 1999 
by Houghton’s group[145-148], together with many data 

-differences in the cellular staining pattern with respect 
to the normal tissue, significant intratumor heterogeneity 
and changes in CD26 expression linked to the transition 
of  tumor stages- already reviewed[115], indicate a quite 
complex situation in the physiological microenvironment 
of  cancer niches. The possibility that the tumorigenic 
process may manipulate the functions of  CD26/DPP-Ⅳ, 
for example evading the immune system by modifying 
local chemokine gradients (and therefore, immune cell 
homing), and by modulating cytokines and angiogenic or 
immunosuppressive factors[90,149-153] deserve to be studied 
in more detail[142].

In this context, the role of  serum DPP-IV activity, first 
discovered in 1968 by Nagatsu’s group in Japan[154], is not 
known. Within normal plasma/serum, some 90%–95% 
of  DPP-IV activity has been associated with a relatively 
high concentration of  serum (or soluble, in contrast to 
transmembrane) CD26 (sCD26) in human serum (570 
μg L-1)[115,118,155-157]. Since sCD26 is heavily glycosylated, 
its molecular weight is similar to that of  transmembrane 
CD26[156,158] although it lacks transmembrane and 
cytoplasmic domains (the sequence starting at the 39th 
position)[156]. 

There is no direct correlation between serum CD26 
protein concentrations and serum enzymatic activity 
assays, for three reasons: (1) There are some circulating 
proteins other than CD26 with DPP-IV activity (DPP-Ⅱ, 
FAPα,...); (2) sialylation (a type of  glycosylation) of  sCD26
[114,118,135-137,158] is strongly enhanced in elderly individuals[159], 
and certain type of  hypersialylation can inhibit DPP-IV 
activity[160], consistent with the fact that serum/plasma 
DPP-IV enzymatic activity tends to decrease with age[118]; 
(3) it has recently been suggested that the serum protein 
attractin, which enhances the enzymatic activity of  tolloid 
proteases[161,162], may regulate the DPP-IV activity of  
CD26/sCD26 in the same way [115]. Serum attractin is 
actually frequently co-purified with sCD26[163-166]. 

Iwaki-Egawa et al[156,167,168] suggested that sCD26 must 
be shed from any plasma membrane on CD26 expressing 
cells that are in contact with blood, by proteolytic 
cleavage. The fact that only one CD26 mRNA form is 
usually reported[169-171], and that it is transported from its 
site of  synthesis in the rough endoplasmic reticulum to 
the microvillar membrane of  enterocytes, and in some 
cell lines in a membrane-bound state[135,136,172-174], also 
suggest that it is not secreted. It must be pointed out 
that the shedding of  most integral membrane proteins is 
often regulated by a PKC-dependent mechanism[175-177].

However, CD26 has been found to be soluble in the 
lumen of  secretory granules, undergoing exocytosis to the 
interstitial space of  endocrine pancreatic A cells, where 
sCD26 may act on secretory products of  neighbouring 
islet cells[178,179]. Autolysis of  the protein by the acidic 
pH conditions inside the granules has been observed in 
vitro[179,180]. In addition, another possibility related to the 
intracellular sorting is the secretion of  soluble proteins 
through MMP-dependent shedding from exosomes. 
Exosomes are small membrane vesicles derived from 
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intracellular multivesicular bodies that can undergo 
constitutive and regulated secretion from cells upon fusion 
with the PM[181-183]. Exosomes with CD26/DPP-IV have 
been found in human saliva, released at the basolateral 
surface of  enterocytes, and in ram epididymal fluid[184-186].

In addition, the origin of  sCD26 is also unknown. 
The hepatobiliary system was the first to be suggested[187]. 
Liver epithelium is often cited as the most l ikely 
potential source[113, 116, 137, 188-192] and at least in some con
ditions, sCD26 originates from the brush border of  he
patocytes[190]. However, CD26 is predominantly located in 
the bile canaliculi[190, 193, 194], and a recent study found that 
in chronic hepatitis C and other liver viral infections, DPP-
IV activity levels were not correlated with several markers 
of  bile duct injury or hepatocyte injury[195]. These authors 
suggested that the increased activity in these diseases may 
originate directly from its shedding from the peripheral 
blood T cells involved in the control of  viral infections 
or, indirectly, by stimulating other cells such as hepatic 
stellate cells. The involvement of  T cells had already been 
suggested in studies of  liver regeneration[137,196]. In fact, 
Kasahara et al[197] suggested a possible origin of  sCD26 
from the immune system, although they also identified 
serum isoforms from liver, spleen or kidney. Kidney, an 
obvious potential source because it contains large amounts 
of  CD26, was rejected early on[156] because anephric 
individuals have normal amounts of  sCD26, and because 
sCD26 contains approximately twice as much sialic acid as 
kidney CD26. However, several data suggest that serum 
CD26 is at least partly shed from T cells[142, 158, 161, 194, 198-204], 
although these data do not preclude the possibility of  
sCD26 also being shed from the endothelium of  venules 
or the capillary bed of  several organs such as lung, 
myocardium and striated muscles, spleen and pancreas[134, 

194, 199, 205-210]. Moreover, this fraction of  serum CD26 which 
originated from immune system cells can be regulated[158, 

211-213] and causes an imbalance among specific sCD26 
isoforms in the serum of  patients. 

 As it is not known to which CD26 functions regulation 
of  this proteolytic or secretory process is related, the 
physiological role of  soluble CD26 in biological fluids 
with respect to the transmembrane CD26 can only 
be hypothesized. Current data support three potential 
biological functions, which may be partly responsible for 
the different roles of  CD26 in various clinical settings. 
(1) Involvement in the activation–deactivation of  some 
chemokines, and therefore in inflammatory processes. 
Extracellular proteases, many shed (or ripped, from a 
process called “ripping”[175]), which alter the chemokine 
gradients, participate in this crucial early step of  the 
immune response. For CD26, the modulation of  SDF-1 
and the CXCR4 axis of  cell homing has been particularly 
well studied[214, 215]; (2) Circulating sCD26 may also 
participate in the clipping or inactivation of  the biologically 
still active blood substrates such as vascular regulatory 
peptides (substance P or bradykinin)[216-224], growth factors 
or hormones (e.g. only 20% of  incretins GLP-1 and GIP, 
which originated in the gastrointestinal duct, are still active 
in the blood pool)[139,140] and (3) In the case of  oncogenic 

processes, in addition to possible involvement in both im
munosuppressor[122,136] and angiogenic mechanisms[122,136], 
the process of  shedding may init iate or dampen 
CD26 involvement in cell-adhesion processes through 
fibronectin, ADA or collagen binding[121,123-126,144,154,225-227].

sCD26 PATHOPHYSIOLOGY AND CRC 
DIAGNOSIS
Many studies have demonstrated altered serum levels of  
enzymatic DPP-IV activity (see review[142]) and soluble 
CD26 protein in several diseases. Some studies show 
contradictory results, probably related to the stage of  
the disease considered (or in which a particular patient 
has been recruited)[103,110,111,158, 228-230]. However, other 
discrepancies between enzymatic activity and protein 
concentration measurements can be explained by putative 
changes in the glycosylation pattern (leading to a lack of  
immunorecognition of  sCD26), the putative presence 
of  the DPP-IV activator attractin, inhibitor glypican-3 
or the secretion of  other dipeptidyl peptidases such 
as DPP-II or soluble FAPα (DASH). For example, in 
myocardial infarction patients treated with streptokinase, 
the enzyme concentration is reduced to more than 50% 
after 90 d of  therapy, while measurements of  DPP-IV 
enzymatic activity did not change during that period[211]. 
On the contrary, the same authors found that there was 
no change in sCD26 concentrations between healthy 
donors and patients with rheumatoid arthritis and lupus 
erythematosus, although a lower enzymatic activity was 
detected[158]. 

Reference values of  DPP-IV specific activity show 
no differences in serum and plasma[118,142,187], but most 
reports do not use the same assay conditions or the same 
definition of  specific activity -the same applies to the 
units of  catalytic activity-, making it difficult to compare 
results even from the same authors. However, the amount 
of  sCD26 antigen found in normal serum with the 
most commonly used commercial ELISA kit (Bender 
MedSystems), corresponds well with the expected values 
based on the specific activity of  purified serum DPP-
Ⅳ[118,142]. Together, these findings support the use of  
immunodetection techniques for the quantification of  
these molecules because they are more specific.

DPP-IV enzymatic activity is high in patients with 
hepatic cancer, hepatitis, osteoporosis, cholestasis and 
other liver diseases. On the other hand, the mean DPP-
Ⅳ activity remains unchanged in metastatic bone disease, 
esophagus, gall bladder, chronic myelocytic leukemia 
or leiomyosarcoma cancers, in allergic asthma, celiac 
disease,and adult T-cell leukemia, although serum DPP-
IV in the latter is strongly correlated with the percentage 
of  CD26+ T cells. However, decreased levels of  DPP-
Ⅳ were observed in patients with acute lymphocytic 
leukemia, thyroid and oral cancer, advanced gastric 
carcinoma, HCV infections, inflammatory bowel diseases, 
type II diabetes, in healthy smokers, in pregnancy, and in 
alcoholics and patients suffering from major depression. 
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A reduction in DPP-Ⅳ activity has been related to 
symptoms of  depression and anxiety under certain 
circumstances. Contradictory results were reported for 
psychologically-related eating disorders such as anorexia or 
bulimia, CRC, rheumatoid arthritis, lupus erythematosus 
and Sjögren syndrome.

Many studies have used sCD26 as a soluble marker 
of  Th1 cellular immune activation, together with 
sCD30 and sometimes sCD23 as markers of  Th2 
(humoral response)[231-234]. The concentration of  sCD26 
increases in HIV-1 patients, leishmaniasis, myocardial 
infarction and atopic dermatitis. It does not change in 
asthmatics, osteoarthritis and gastric cancers. In many, 
but not all studies, it decreases in rheumatoid arthritis 
and particularly in lupus erythematosus and Sjögren 
syndrome, while results from hepatitis C virus (HCV) 
are not consistent. In summary, low levels of  DPP-
Ⅳ/sCD26 occur concurrently with impaired immune 
status -some hematological and solid malignancies can be 
included-, whereas increased levels occur in inflammatory 
and infectious diseases (enhanced immune status), other 
hematological tumors, and liver diseases[142].

We were the first to report reduced levels of  sCD26, 
using immunodetection, in the serum of  CRC patients, 
compared with healthy donors[103]. Reduced levels of  
enzymatic activity were reported for a small group 
of  patients in 1987[235], although other authors found 
increased DPP-Ⅳ activity in a cohort of  CRC patients 
comparable to ours[229]. We have already made some 
putative explanations to clarify this lack of  correlation. 
From a biological point of  view, further research studies 
are needed, but this issue does not affect the focus of  
this article. Our most important finding was that lower 
concentrations were found particularly in the early stages 
of  the disease. Sensitivities higher than 80% (Table 1) 
were found for Dukes’ stages A, B and C, whereas it was 
impaired in Dukes’ stage D, in which CEA levels diagnosed 
better. Interestingly, it was in stage D where the DPP-Ⅳ 
activity actually increased in the study mentioned[229]. In 

this first study, we also found that sCD26 as a variable is 
not related with Dukes’ stage classification, age, gender, 
tumor location or degree of  differentiation, which also 
suggested the potential usefulness of  this molecule for 
early diagnosis of  CRC. We also showed preliminary data 
on the potential prognostic value with a follow-up of  2 
years until recurrence; additional data has not yet been 
published. Moreover, we did not find changes in related 
diseases such as gastric-tract carcinomas, and in two of  
four blood cell cancers the concentration was raised (n = 
4); impaired levels of  sCD26 were observed only in some 
cases with gastric tract benign pathology and with Crohn’s 
disease[103, 228]. 

These last results on specificity agreed with published 
works, and Crohn’s disease data may be irrelevant for 
screening since these patients should have been detected 
years before the CRC screening procedure. To establish 
the feasibility of  the sCD26 test for the diagnosis of  
CRC, we decided to perform a first pilot case-finding 
study that tested 170 persons of  both genders at average 
risk for CRC (older than 50 years and asymptomatic for 
bowel disease),  excluding individuals with a family history 
of  CRC, or colorectal polyps, or personal history of  
CRC. From 29 individuals positive for the marker (with 
serum levels below or at the cut-off  of  410 ng/mL), as 
previously studied[113], 21 underwent the colonoscopic 
procedure with colorectal findings in ten individuals 
(47.6%) against 3 out of  ten individuals negative for the 
marker (30%)[113], showing an additional value of  sCD26 
for the detection of  premalignant lesions (Table 1).

The aim of  a later case-finding study in a large cohort 
(2754 presumably healthy individuals) was to evaluate its 
association with epidemiologic parameters as well as certain 
common digestive-related symptoms or pathologies[109]. 
Personal questionnaires were completed for data such as 
personal and familial history of  colorectal polyps or cancer, 
bowel diseases (non-inflammatory benign pathologies: anal 
fissure, hemorrhoids, diverticula, irritable bowel syndrome 
and spastic colon; and inflammatory bowel diseases: colitis 
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Table 1  Performance characteristics of the sCD26 test

Cohort
    
   n

    CRC risk sCD26 
 cut-off 
(ng/mL)

CRC 
in 

sCD26+
 patients

Advanced 
adenomas 

in sCD26+ 
patients

Polyps in 
sCD26+ 
patients

Other findings in sCD26+ 
patients

Sensitivity Specificity
     
      (%)

      
    (%)

1st Case-control 
study[89]

175 Diagnosed with 
CRC

410 99/110 - - 6/110 Crohn´s
1/110 GC

90% (CRC) 90% (CRC)

1st Case-finding
 study[97]

170 Average-risk 410 - -ª 8/21 2/21 diverticula - -

2nd Case-finding
 study[95]

2673 A v e r a g e-   a n d 
increased-risk

410 2/140 4/1402 46/1402 12/140 diverticula 100% (CRC)1 89.9% (CRC)1

2nd Case-control 
study [94]

299 Increased-risk 460 27/110 20/110 13/110 18/110 IBD; 18/110 non-IBD; 
14/110 anemia, diarrhea, 

rectal bleeding

81.8% (CRC)
58% (CN)

72.3% (CRC)
75.5 (CN)

n: Number of individuals; CR: Colorectal; CRC: Colorectal cancer; CN: Colorectal neoplasms including CRC and advanced adenomas; GC: Gastric cancer; 
IBD (inflammatory bowel diseases, includes colitis and Crohn’s); non-IBD (includes hemorrhoids and diverticula). ªNo data on polyps´ pathology could 
be obtained; 1 : Data obtained after one-year follow-up for the detection of interval cancers. 2: Pathological anatomy information obtained only for 16 of 46 
polyps. The four advanced adenomas are also included in the polyps’ column.
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or Crohn’s disease), symptoms (rectal bleeding or fecal 
blood and changes in bowel habits), and smoking status. 
Individuals with a personal history of  CRC, personal 
history of  a cancer other than CRC, personal history of  
colorectal polyps, and familial history of  cancer and/or 
colorectal polyps were excluded.

The mean sCD26 concentration in this cohort cor
responded to 555.9 ± 181.7 ng/mL, similar to that 
previously reported for 52 healthy donors (559.7 ± 125.5 
ng/mL). However, the range in this large cohort was 
considerably broad compared to that of  the healthy donors 
(118–3062 ng/mL and 273–863 ng/mL, respectively)[109]. 
Information concerning the smoking status was also 
obtained. 63.8% of  the individuals were non-smokers, 
27.8% were current smokers, while 8.4% were former 
smokers. Former smokers showed statistically significant 
higher values of  sCD26, and current smokers lower than 
non-smokers, the latter fact correlating with data on 
enzymatic activity[236-240], however, this small difference (20 
and 10 ng/mL, respectively) was not statistically significant 
when grouped by the number of  cigarettes per day. 

According to the cut-off  point 410 ng/mL, 273 
individuals (10.2%) were sCD26+[109]. To extend the 
validation of  sCD26 as an early biomarker for CRC, a 
colonoscopic procedure was recommended to these 
individuals. Among the 140 individuals that underwent 
colonoscopy, one case of  CRC was diagnosed, resulting in 
a very high prevalence (0.7%) for this cohort. In addition, 
there were 46 cases of  colorectal polyps (32.9%), 12 cases 
of  colorectal diverticula (8.6%) and 81 individuals without 
apparent colorectal pathology (Table 1). The PPV for the 
sCD26 test considering all the findings was 42.1%[111]. 
The sCD26+ individual diagnosed with CRC after 
colonoscopy received surgery after three months, finding 
a tumor in Dukes’ stage B. Interestingly this patient had 
a negative FOBT two weeks before the measurement of  
sCD26. Another case was a sCD26+ individual who had 
a second positive test three months afterwards, and later 
was diagnosed by colonoscopy with a 1-cm villous polyp 
in the transverse colon, which was not extirpated. After 
seven months, the patient was diagnosed and operated 
on for a moderately differentiated adenocarcinoma at 
Dukes’ stage A (data not published). The 46 individuals 
diagnosed with colorectal polyps represent a percentage 
similar to those diagnosed in the first case-finding study, 
also elevated considering the average risk[30]. Information 
regarding the pathological anatomy of  polyps was 
obtained only for 16 cases. Of  these, 75% presented 
neoplasic histology (adenomas). Trying to explain the high 
number of  colorectal polyps diagnosed, no differences 
were found between the mean age of  the individuals with 
and without polyps (data not published). 

Although the most accurate means of  measuring 
sensitivity and specificity is to perform colonoscopies in 
all the screened patients regardless of  the test result, when 
this is not possible, several authors use a follow-up period 
to detect interval cancers[24,214,241]. Therefore, it is assumed 
that a false negative becomes clinically apparent through 

subsequent screening or the appearance of  symptoms. 
According to this approach, with a one year follow-up of  
our individuals, a sensitivity of  100% and a specificity of  
89.9% for CRC were obtained (Table 1)[111]. 

These results, with special interest on the absence of  
correlation among all the parameters analyzed, particularly 
the personal and familial history of  CRC and polyps 
together with rectal bleeding and changes in bowel 
habits, proved that the sCD26 test can be easily offered 
and evaluated in a large population cohort. Additional 
data also support the usefulness of  serum sCD26 levels 
for patient monitoring because four of  the patients 
diagnosed with polyps requested a second sCD26 test 
after polypectomy, which showed normalized values ( > 
410 ng/mL) in the new measurement in all patients[111].

However, accurate clinical values suggesting that 
a serum CD26 test is an improvement on the current 
non-invasive screening tests recommended was lacking. 
Therefore a case-control study with 299 symptomatic and 
asymptomatic patients, who were to undergo colonoscopy, 
was performed[108]. Colonoscopy indication was mostly 
due to symptoms such as rectal bleeding, abdominal 
pain, diarrhea, constipation, anemia, colorectal polyp or 
cancer surveillance, and CRC screening. Patients were 
classified into groups as follows: no colorectal pathology 
(symptomatic with rectal bleeding, abdominal pain, 
diarrhea, anemia, constipation, or asymptomatic with 
personal history of  polyps or CRC, and family history 
of  polyps); non-IBD (hemorrhoids and diverticula); IBD 
(colitis or Crohn’s disease); colorectal polyps (hyperplastic 
polyps, non-advanced adenomas and advanced adenomas); 
and CRC.

The average sCD26 level for the group of  patients 
with no colorectal pathology or benign colorectal 
pathology was 641.2 ± 241.2 ng/mL, higher than the 
cut-off  point obtained with healthy donors as the 
control cohort. Therefore, we chose to calculate a new 
cut-off, 460 ng/mL. According to this, the sCD26 test 
has a sensitivity and specificity of  81.8% and 72.3%, 
respectively, for CRC (Table 1), (a specificity of  79.3% 
when the group of  symptomatic patients with no 
colorectal pathology was considered). The mean sCD26 
concentration decreased, although non-significantly, 
as the pathology diagnosed was more severe, that is, 
from no colorectal pathology to CRC, with a noticeable 
decrease in the group with IBD and anemia. Interestingly, 
individuals with anemia showed a substantially elevated 
sCD26 positivity rate (71.4%), as well as the IBD group 
(69.2%), both responsible for the specificity value. IBD 
is associated with at least a 5-fold increased risk for CRC, 
representing one of  the highest risk groups based on the 
inflammation-dysplasia-carcinoma sequence[242]. However, 
these individuals are usually diagnosed at the age of  the 
potential CRC screening procedure, as commented, and 
its impact on the specificity data can be avoided. When 
considering only asymptomatic individuals, specificity 
increases to 90%, which agrees with our previously 
published results[103,104,113]. 
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On the other hand, as no carcinomas in situ were 
detected in the patients included in the study, the decrease 
in sensitivity in this context is probably related to altered 
frequencies in CRC stages (sCD26 is a poorer marker in 
Duke’s A than in B or C stages)[103].

In this study, we also analyzed the relationship of  
this biomarker with advanced adenomas. Defining 
advanced adenomas as those larger than 10 mm, with 
tubulovillous or villous histology, or with high-grade 
dysplasia, and classifying patients with more than one 
polyp according to the most advanced lesion, sensitivity 
for the detection of  CRC and advanced adenomas 
was 58.0%, with a specificity of  75.5% (Table 1). We 
found no statistical differences, according to the sCD26 
positivity rate, with regard to the number of  polyps, their 
size, location, morphology or histology, but differences 
closely significant were observed with the grade of  
dysplasia, a morphological marker of  neoplastic lesions. 
The positivity rate increased gradually with the degree 
of  dysplasia: 22.2% for non-dysplastic polyps, 32.5% 
for low-grade dysplastic adenomas and almost double 
(60.0%) for high-grade dysplastic adenomas. Concerning 
advanced adenomas, a term commonly used to group 
adenomas that have an increased likelihood of  malignant 
transformation, the sCD26 positivity rate was statistically 
significant.

As commented, iFOBT is now preferentially offered 
for average-risk screening. A highly sensitive FOBT 
(guaiac-based) test (Hemoccult SENSA®) reached 71-79% 
sensitivity with single testing, and 85% with multiple testing, 
with corresponding specificities of  86% and 95%[241-243], 
although these parameters are probably overestimated 
as these studies lacked colonoscopic examination of  
the negative cases. For both pathologies together (CRC 
and advanced adenomas) in an asymptomatic high-risk 
cohort, however, higher sensitivity, 65.3% (and 87.5% 
for specificity), resulted with Hemoccult SENSA®[244] 
compared to iFOGT (33.1% sensitivity and specificity of  
97.5%, parameters obtained with flexible sigmoidoscopy). 
For other experimental serum biomarkers, the CCSA-2 has 
shown 97.3% sensitivity and 78.4% specificity, although 
hyperplastic polyps and non-advanced adenomas were 
considered as findings, while IBD patients were absent 
in their cohort[100]. Therefore, sCD26 seems to perform 
adequately as a blood biomarker for CRC and advanced 
adenomas, and is independent of  the frequent but 
intermittent bleeding, unlike guaiac FOBT or iFOBT. 

In hepatocarcinoma, a loss of  membrane CD26 is 
correlated with higher DPP-IV levels. This fact is not 
seen in CRC, as almost all CRC patients show reduced 
serum levels of  sCD26[103,111], but loss of  membrane 
CD26 expression only occurs in 11% of  colorectal 
tumor[181]. In conclusion, for CRC, sCD26 is not correlated 
with cell proliferation, or with the alteration of  CD26 
expression in CRC tumor cells. Nor is there any direct 
correlation between sCD26 levels and tumor location, 
degree of  histological differentiation, type of  metastasis 
or Dukes’ stages of  CRC[245], which may affect the 

hepatic production of  sCD26. Therefore, sCD26 is 
also independent, if  not of  the tumorigenic locus, at 
least of  the tumorigenic tissue. In addition, as it seems 
immune-related[142], the sCD26 decrease in the plasma of  
patients should appear sooner in the adenoma-carcinoma 
development compared to the presence of  fecal blood. 

CONCLUSION
As commented previously, it has recently been reported 
that screening accounted for 53% of  the decline in CRC 
mortality observed during 1975-2000 in the USA (26% 
less mortality). Moreover, decline in CRC mortality in the 
USA could be enhanced if  current trends against cancer 
were accelerated[2]. Therefore, any kind of  screening 
strategy should be proposed in advanced and developing 
countries. For FOBT Hemoccult, which is a non-invasive 
and relatively cheap test, there are considerable data from 
many prospective studies in different countries of  the 
world; however, not many countries include this screening 
method in their public health systems.

In the context of  this review, dealing with an ex
perimental CRC screening test that is easier to monitor in 
the health system, or with a better clinical value, the idea 
of  comparing different tests rather than conducting long-
term and expensive randomized controlled trials to evaluate 
each new test is very important, as suggested by Mandel[37] 
in the commentary on the Allison study that compared 
performance, outcome, compliance, and cost of  guaiac 
FOBT and iFOBT[42] fecal occult blood tests.  In this way, 
it will be much easier to study and promote new fecal 
or blood tests. With this aim, we are currently initiating 
a multicentric, prospective, double-blinded study in an 
average-risk population, where the performance of  the 
quantitive iFOBT and the sCD26 assay will be assessed 
and compared with the gold standard colonoscopy.

Another important idea, as we have previously 
proposed[110], is the combination of  biomarkers for the 
management of  cancer, since it is difficult to achieve a 
simple test to detect early-stage tumors that is useful for 
screening purposes. For example, we have tested sCD26 
levels, α-L-fucosidase activity and CEA in the same 
patients[109], and while, at a specificity of  100%, α-L-
fucosidase activity did not enhance the sensitivity value 
obtained with sCD26 alone in TNM stage II patients, the 
sensitivity obtained from the combination of  both markers 
was 65% versus 33% for sCD26 alone in TNM stage I 
patients. In the same way, a very recent work assessed 
the combination of  CEA with three other biomarkers, 
sCD26, DR-70 and MMP-9, previously selected from 
26 candidates, for the detection of  CRC[246]. This study 
confirmed that sCD26 and DR-70 (fibrin and fibrinogen 
degradation products[104]) are the more promising of  
the available serum markers, although DR-70 showed a 
significant correlation with age. Values of  the area under 
the ROC curve, and sensitivity and specificity for sCD26 
were similar to our latest study mentioned above[108] using 
a similar cohort of  case-control patients who attended 
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colonoscopy. The same study[246] also showed that a 
combination of  sCD26, DR-70 and CEA detected CRC, 
particularly at the early stage of  disease, significantly better 
than CEA alone or other biomarker combinations at 
certain specificities[246]. Nevertheless, our data on sCD26 
for the detection of  the earliest stages were much better 
(and data of  CEA worst)[103,109]. This discrepancy perhaps 
may be due to the differences in the cohort composition 
in each study, to the statistical method employed for the 
combination of  biomarkers, or to a development of  the 
ELISA for the measurement of  CEA levels (the kits used 
for CEA, but not for sCD26, were different in each study).

Therefore, the approach tries to increase the clinical 
value of  each biomarker or yield a test more able to 
distinguish between patients and healthy individuals, 
and ideally also among different kinds of  tumors, in the 
way we have tested for head and neck cancer versus non-
small cell lung cancer[247] at a low scale, and others for the 
screening of  Alzheimer disease[248], or to identify lymph 
node metastases in non-small cell lung cancer patients[249]. 
In this case, a panel of  six serum biomarkers classified the 
patients better than conventional clinical methods.    

To measure several biomarkers at a time, ELISAs for 
key serum markers are being arrayed or multiplexed based 
on immunoblot technology or flow cytometric beads[110,247, 

249]. 
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These techniques, in relation with other genomic or 
proteomic techniques, are more transferable to practical 
application in clinical decision-making. In this sense, it is 
interesting to note that the multiplexed diagnostics market 
has grown rapidly and generated sales of  approximately 
$2.4 billon in 2009, and is expected to tip in favor of  
continued rapid growth, reaching almost $5.8 billion in 
2015. Moreover, the multivariate data obtained from 
such a test can easily be managed with new statistical 
methods already developed for the fields of  genomics and 
proteomics in general.

However, as multiple cancer screening tests are been 
advocated for the general population, clinicians and 
patients are not always well-informed of  screening burdens. 
For example, in the ongoing Prostate, Lung, Colorectal, 
and Ovarian (PLCO) Cancer Screening Trial, a randomized 
controlled trial to determine the effects of  prostate, lung, 
colorectal, and ovarian cancer screening on disease-specific 
mortality, an individual has an approximately 50% or 
greater risk of  a false-positive finding by the 14th test[250]. 
Physicians should educate patients about the likelihood of  
false positives and resulting diagnostic interventions when 
counseling on cancer screening. 
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