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Summary
Macrophages promote tissue injury or repair depending upon on their activation status and the
local cytokine milieu. It remains unclear whether the immunosuppressive effects of transforming
growth factor beta (TGF-β) serve a non-redundant role in macrophage function in vivo. We
generated macrophage-specific transgenic mice that express a truncated TGF-β receptor II under
control of the CD68 promoter (CD68TGF-βDNRII)and subjected these animals to the dextran-
sodium sulfate (DSS) model of colitis. CD68TGF-βDNRII mice have an impaired ability to
resolve colitic inflammation as demonstrated by increased lethality, granulocytic inflammation,
and delayed goblet cell regeneration compared to transgene negative littermates. CD68TGF-
βDNRII mice produce significantly less interleukin 10, but have increased levels of IgE and
IL-33+ macrophages than controls. These data are consistent with associations between ulcerative
colitis and increased IL-33 production in humans and suggests that TGF-β may promote the
suppression of intestinal inflammation, at least in part, through direct effects on macrophage
function.
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Introduction
Damage within the gastrointestinal mucosa can be induced by a wide variety of physical,
chemical and/or infectious stimuli [1]. Inflammatory bowel diseases (IBD) such as Crohn’s
colitis and Ulcerative colitis generally result in epithelial cell death, loss of crypt
architecture, submucosal edema, and mucosal ulceration [2]. The relapsing/remitting
episodes of IBD[3] are associated with marked variations in pro-inflammatory cytokine
production [4, 5], therefore mouse models of IBD have been used to investigate the
regulatory mechanisms that reduce inflammation and restore intestinal homeostasis [6].
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Dextran sodium sulfate (DSS)-induced colitis is a transient, myeloid-dependent gut injury
model driven by epithelial cell damage [7]. The severity of DSS colitis may be controlled by
anti-inflammatory cytokines such as IL-10 and TGF-β [8], but it is unclear whether these
cytokines can directly modulate macrophage function(s) in ways that promote the resolution
of inflammation following the termination of DSS-induced injury [9-14]. Furthermore, it is
unknown whether IL-10 and TGF-β have redundant effects on macrophage function [15,
16].

TGF-β has multiple biological effects on hematopoietic and non-hematopoietic cells [17].
Binding of TGF-β to TGF-βRII phosphorylates SMAD transcription factors that are
primarily immunosuppressive in function [17]. Genetic mutations in TGF-βRII are linked to
ulcerative colitis (UC) and colitis-associated cancer in humans[18-20] and mice that express
that lack TGF-β responsiveness in epithelial cells or T lymphocytes develop severe intestinal
inflammation [21, 22]. Whether TGF-β suppresses colitic inflammation through direct
effects on macrophages is unknown.

Herein, we employed the DSS colitis model to demonstrate that lack of TGF-β responsive
macrophages impairs the normal resolution of colitic inflammation. CD68TGF-βDNRII
mice produce high levels of IL-33, an IL-1 family cytokine that is over-expressed in the
colonic mucosa of UC patients [23, 24] [25]. CD68TGF-βDNRII mice also produced
significantly less IL-10 than littermate controls during colitis resolution. Taken together,
these data show an important role for TGF-β in the specific regulation of intestinal
macrophage function in vivo.

Results
Generation of Mϕ-specific TGF-β dominant negative receptor mice

A transgenic construct was generated to contain the human CD68 promoter (CD68-IVS1)
[26, 27] followed by a human TGF-β receptor II lacking the cytoplasmic domain [28] (Fig.
1A). This truncated receptor binds its extra-cellular ligand (TGF-β1, TGF-β2, and TGF-β3)
but does not signal; therefore it antagonizes TGF-β function in the cell by acting as a
competitive inhibitor. This approach has been employed in a variety of tissue-specific
promoter systems [21, 28-32]. Pronuclear injection of C57BL/6 oocytes allowed generation
of a founder (designated CD68TGF-βDNRII) possessing a single integration of
approximately 15-20 copies (Fig. 1B). Thioglycollate-elicited peritoneal exudates cells
(PEC) were evaluated by flow cytometry to determine specificity of transgene expression.
Compared to non-transgenic littermates, CD68TGF-βDNRII mice demonstrate TGF-βRII
protein expression on CD11b+ myeloid cells (0.12% vs. 5.3 %), F4/80+ macrophages
(0.27% vs. 7.9 %), but not on CD11c+ dendritic cells (0.15% vs. 0.32%), respectively (Fig.
1C). Transgene expression was not detected on granulocytes (GR-1+), B lymphocytes
(B220+), or T lymphocytes (CD3+) from spleen (data not shown).

To determine whether macrophages from CD68TGF-βDNRII mice had functionally
impaired TGF-β responsiveness, the adherent fraction of thioglycollate-elicited peritoneal
cells (PEC) (>90% macrophages) was tested for IL-10 vs. TGF-β-mediated suppression of
endotoxin (LPS)-induced cytokine production. As expected, LPS induced a 1000-fold
increase of IL-12/23p40 production within 24 h that was significantly suppressed by pre-
treatment with IL-10 in both WT and CD68TGF-βDNRII groups (Fig. 1D). In contrast,
LPS-induced 12/23p40 production was moderately suppressed in TGF-β-pre-treated WT
PEC, which as not observed following treatment of CD68TGF-βDNRII PEC (Fig. 1D).
IL-10 is induced in Mϕ following exposure to LPS [33] or TGF-β [34]. Fig. 1E demonstrates
equivalent LPS-induced IL-10 production, but significantly impaired TGF-β-induced IL-10
production in CD68TGF-βDNRII PEC compared to WT. To determine whether over-
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expression of the mutant human TGF-βRII affected the endogenous murine TGF-β RII,
lamina propria mononuclear cells from naïve WT and CD68TGF-βDNRII mice were
evaluated by flow cytometry. Human TGF-βRII was detected on both CD11c+ F4/80+ and
F4/80+ populations within the colon, but there were no differences between strains in the
mean fluorescence intensity (MFI) of mouse TGF-βRII expression on any of the gated cell
populations (Fig. 2). Transgene expression was specific, because CD3+CD4− and
CD3+CD4+ lymphocytes showed no differences in staining for human or mouse TGF-βRII,
although lymphocytes expressed comparatively higher levels of TGF-βRII than the myeloid
cell populations (Supplemental Fig. 1). Thus, CD68TGF-βDNRII mice have a specific
expression of a truncated human TGFβRII and impairment of TGF-β-dependent functions in
macrophages.

Defective resolution of DSS-induced colitis in CD68TGF-βDNRII mice
Administration of 2.5% DSS ad libitum for 6 days to WT C57BL/6 mice causes a transient
colitis that rapidly resolves following the return of mice to normal un-treated drinking water
[3, 7]. CD68TGF-βDNRII mice administered 2% DSS lost weight at a slightly faster rate
than WT littermates during the initial stages of colitis induction (Fig. 3A), but demonstrated
impaired weight gain following the termination of DSS administration (Fig. 3A). Although
there were no differences in mortality at this dose (Fig. 3B) there was increased severity of
the clinical disease indicators (hunched posture, fecal blood, and diarrhea) in CD68TGF-
βDNRII mice compared to controls (Fig. 3C). In contrast, CD68TGF-βDNRII mice
administered 2.5% DSS rapidly lost >25% of their initial body weight (Fig. 3D) and 100%
died 6 days following removal of DSS (Fig. 3E). Although littermate controls developed
significant disease and 25% mortality within 10-12 days, most of the animals successfully
return to their original weights by day 15 (Fig. 3D-F). No significant differences in mortality
or disease activity were observed between strains administered 1.5% DSS (data not shown).

Representative images of distal colon demonstrate similar progression of DSS-induced
epithelial cell necrosis and submucosal edema in both strains from day 0 to day 9 (Fig. 4).
Although WT controls had resolved most of the granulocytic inflammation and edema by
day 14, CD68TGF-βDNRII mice maintained granulocyte infiltrates and submucosal edema
within the colon (Fig. 4A). This contributed to a significantly increased histopathological
score (Fig. 4B) and decreased colon length (Fig. 4C) when compared to controls at day 9
and day 14. Recovery of goblet cell numbers within the colon was also markedly delayed in
CD68TGF-βDNRII mice compared WT littermates (Fig. 4D).

CD68 TGF-βDNRII mice produce increased levels of pro-inflammatory cytokines and
reduced levels of IL-10 during colitis resolution

TGF-β is a master regulator of both immunosuppressive and inflammatory cytokine
production from a variety of cell types [35, 36]. To determine whether the delay in colitis
resolution observed in CD68TGF-βDNRII mice was associated with broad defects in
cytokine/chemokine production, we evaluated relative production within the colon of both
strains at day 14 via protein array. Data expressed as the total pixel intensity (Supplemental
Fig 2) or fold-difference in pixel intensity within the colonic tissue of CD68TGF-βDNRII
mice compared to WT mice (Fig. 5A) revealed multiple abnormalities. Whereas granulocyte
colony stimulating factor (G-CSF), I-309 (CCL1), IL-1-α, IP-10 (CXCL10) and MIP-2
(CXCL2) were highly elevated in CD68TGF-βDNRII mice, the production of IL-10 and
MIG (CXCL9) were markedly reduced (Fig. 5A). This defect in IL-10 production from
CD68TGF-βDNRII mice was observed in both the colon (Fig. 5B) and the sera (Fig. 5C) as
compared to WT controls. CD68TGF-βDNRII mice also produced significantly less TGF-β
in the serum and colon tissue during the resolution phase compared to WT (Supplemental
Fig. 3).
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CD68TGF-βDNRII mice only had a moderate increase of IFN-γ and no differences in
IL-17A when compared to WT (Fig. 5A). Therefore, we asked whether the lack of IL-10
and TGF-β correlated with an increase of Type 2 responses. CD68TGF-βDNRII mice
produced significantly greater levels of IgE than WT controls at day 14, although there were
no differences between strains in IgE levels prior to colitis induction (Fig. 6A). Elevated IgE
levels in CD68TGF-βDNRII mice were associated with the increased production of IL-33
within colon tissue (Fig. 6B). Furthermore, greater levels of IL-33 were detected within
CD11b+ and CD11b+CD11c+ cells isolated from the lamina propria of CD68TGF-βDNRII
mice compared to WT controls at day 14. Taken together, this suggests TGF-β
responsiveness in macrophages serves an important role in limiting granulocyte recruitment
and Type 2 inflammation during the resolution of DSS-induced colitis.

Discussion
Whether TGF-β serves a non-redundant role in macrophage immunoregulation within the
mucosa has been unclear. Herein, we use the DSS induced model of colitis to demonstrate
that CD68TGF-βDNRII mice, which specifically lack TGF-β responsiveness in
macrophages, develop exacerbated gut immunopathology. Interestingly, the marked
differences between WT and CD68TGF-βDNRII mice were primarily associated with the
resolution of colitic inflammation. Impairment of TGF-β responsiveness in macrophages
delayed the reduction of granulocytic inflammation, impaired IL-10 release, but increased
the production of IL-33, a Type 2 cytokine that is produced at high levels in the mucosa of
UC patients. Hence, TGF-β promotes the normal resolution of intestinal inflammation at
least in part, through limiting the production of Type 2 cytokines from colonic macrophages.

CD68 (macrosialin) encodes a type 1 transmembrane protein in mononuclear phagocyte
endosomes and its promoter drives Mϕ-specific transgene expression in mice [27, 37]. We
demonstrate that the CD68 promoter drives transgene expression in colonic F4/80+ and
F4/80+ CD11c+ populations, but is only marginally expressed in CD11c+ (specific for
dendritic cells) or Gr-1+ cell populations (specific for neutrophils/granulocytes) (Fig. 2)(data
not shown). This is distinct from all other myeloid-specific promoters such as: human
CD11b, c-fms, and lysozyme that confer dendritic cell and neutrophil-specific expression
[38-40]. Neutrophils promote oxidative tissue injury during DSS-induced colitis[41] and
TGF-β is known to directly modulate neutrophil function in vivo [42], which makes the lack
of transgene expression in granulocytes an important issue in this model system. Our data
are consistent with prior evidence that the human CD68 promoter is primarily active in
mature tissue-resident Mϕ populations [43, 44].

Prior to colitis induction, CD68 TGF-βDNRII mice do not have signs of overt inflammation
or tissue injury. In contrast, mice that lack STAT-3 responsiveness in macrophages and
neutrophils develop spontaneous colitis by 20 weeks of age [45]. Because STAT-3 is an
important transcription factor for IL-10 responses [46], this may suggest distinct roles for
IL-10 and TGF-β in the regulation of gastrointestinal inflammation. Exacerbated intestinal
immunopathology following the cessation of DSS administration in CD68 TGF-βDNRII
mice was associated with an extended period of granulocyte infiltration, G-CSF production,
chemokine release, and myeloperoxidase (MPO) production (data not shown). This is
consistent with prior evidence in this model that excess accumulation of activated Mϕ,
neutrophils, eosinophils causes irreparable mucosal damage and lethality [47, 48].

Insufficient IL-10 production may partially explain the increased inflammation in
CD68TGF-βDNRII mice, as IL-10-mediated suppression of colitis can be TGF-β dependent
[49] and TGF-β induces Mϕ to produce IL-10 [34]. Furthermore, Mϕ from CD68TGF-
βDNRII mice produced significantly less IL-10 following TGF-β stimulation in vitro (Fig.
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1E) and in vivo (Fig. 5B-C). This link between TGF-β responsiveness in Mϕ and IL-10
production is consistent with evidence that TGF-β suppresses intestinal inflammation via
regulatory Mϕ that produce IL-10 [50].

The intestinal injury caused by DSS in rodents shares some characteristics with UC in
human patients, as both are characterized by diffuse mucosal inflammation, superficial
ulceration, and goblet cell depletion. UC manifests as a TH2 cytokine (IL-4, 5, 13) driven
erosion of the intestinal epithelium [23, 24, 51-53]. In contrast, Crohn’s colitis is driven by
TH1 and TH17 cytokines (IFN-γ, IL-17A/F)[3, 54]. Although the etiology of UC remains
unclear, recent studies have focused on the role of IL-33, an IL-1 family cytokine that
instructs Type 2 inflammation [25].

In human UC patients, IL-33 expression is highly up-regulated within the intestinal mucosa
and IL-33 deficient mice are protected from DSS-induced intestinal immunopathology [23,
24, 55]. Our data show that CD68TGFβDNRII mice produce high levels of IgE and IL-33
within the colon following DSS-induced gut injury. One source of IL-33 in
CD68TGFβDNRII mice were intestinal Mϕ, which demonstrates that TGF-β serves an
important role in limiting intestinal inflammation through suppression of IL-33. This may be
an important mechanism that could partially explain how mutations in TGF-βRII in humans
are associated with increased risk for UC and UC-associated cancer [19, 20]. Thus, it is
tempting to speculate that blockade of IL-33 during UC may help to reduce the severity of
colitis in these patients.

Overall, we demonstrate that mice engineered to have a specific impairment of TGF-β
responsiveness in Mϕ develop increased severity of DSS-induced colitis during the
resolution phase. This suggests that TGF-β mediated regulation of Mϕ function serves an
important role in the suppression of intestinal inflammation following acute injury. In this
regard, it will be important to determine whether CD68TGF-βDNRII mice develop altered
susceptibility or resistance to infectious diseases or show defects in tissue repair
mechanisms in other model systems.

Materials and Methods
Mice

The TGFβDNRII construct was obtained from Dr. Chung Lee at Northwestern University in
a plasmid that encodes the extra-cellular and transmembrane domains, but lacks the
cytoplasmic region for human TGF-β receptor II (−5 to 553), which blocks TGF-β
responsiveness in vivo [56]. This region was sub-cloned into a modified pcDNA3.1™
(Invitrogen) using Not 1 and Xho 1. The 1kb promoter sequence from human CD68
(macrosialin) including the 89 bp intronic enhancer (provided by Peter Murray at St Jude
Hospital) [26] was inserted 5′ to TGFβDNRII as a BamH1-EcoRV fragment and confirmed
by restriction digest and DNA sequencing. CD68TGF-βDNRII mice were generated by
pronuclear injection of fertilized C57BL/6 oocytes at the University of Cincinnati
Transgenic core facility. Offspring were analyzed for genotype by PCR using primers
specific for CD68IVS1 and human TGF-β type II. All mice used in the study were age
matched male mice on a C57BL/6 background. All experiments were performed with age/
sex-matched non-transgenic littermates used as controls. All procedures were approved by
the institutional IACUC and performed in accordance with all governmental and
institutional guidelines.

Southern Blot
Genomic DNA from tail biopsies was digested with EcoR1 overnight and 10μg of digested
DNA was resolved in 1% agarose by electrophoresis. Serial dilutions of plasmid containing
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the CD68TGF-βDNRII were included as a positive control. Gels were denatured,
neutralized, and cross-linked using standard protocols. 32P labeled probe was used for
hybridization (49°C) and visualization via autoradiography.

DSS colitis model
Dextran sodium sulfate (41 kDa) (ICN Biomedical Inc) was used to supplement the drinking
water of study animals for 6 days as 1.5%, 2%, or 2.5% (wt/vol) solution. Fresh solution was
replaced at day 3. After day 6 mice were returned to normal water and monitored for an
additional 8 days. Body weight, appearance, occult blood in feces Hem occult test (Beckman
Coulter), stool consistency, and diarrhea were recorded daily from coded animals. At time of
sacrifice, mice were evaluated for colon length. Disease activity index (DAI) was derived
through evaluation of appearance/activity, diarrhea, and rectal bleeding. DAI =
(appearance /activity) + (Diarrhea score) + (Rectal bleeding score). DAI has a maximum
score of 5 determined as follows: Appearance/activity score (0-normal grooming and active
vs. 1-lack of grooming and lacking normal activity), Diarrhea score (0-solid formed stool, 1-
loose formed stool, and 2- watery fecal matter), rectal bleeding score (0-no blood, 1-positive
hem occult test, 2-gross bleeding from rectum).

Colon histology and histopathology score
Approximately 1 length of distal colon was removed, fixed in 10% buffered formalin
overnight and kept in 70% ETOH until processing. Tissue was embedded in paraffin and for
each colon sample 5 μm sections were cut and stained with H&E or Periodic acid-Schiff
(PAS) and examined by light microscopy. Colonic inflammation was evaluated in a blind
manner by two observers that estimated the following: 1) percentage of involved area; 2)
amount of follicles; 3) edema; 4) erosion/ulceration; 5) crypt loss; 6) infiltration of
polymorphonuclear cells; and 7) infiltration of mononuclear cells. The percentage of area
involved, erosion/ulceration, and the crypt loss were scored on a scale ranging from 0 to 4 as
follows: 0, normal; 1, <10%; 2, 10 −25%; 3, 25–50%; and 4, >50%. Follicle aggregates
were counted and scored as follows: 0, zero to one follicle; 1, two to three follicles; 2, four
to five follicles; and 3, six follicles or more. The severity of the other parameters was scored
on a scale from 0 to 3 as follows: 0, absent; 1, weak; 2, moderate; and 3, severe. All scores
on the individual parameters together could result in a total score ranging from 0 to 24 [47].

Flow cytometry
Peritoneal Mϕ were harvested on d 4 following administration of 4% thioglycollate (Fisher
scientific). Lamina propria mononuclear cells were isolated as follows: 1) the entire colon
was surgically removed, opened longitudinally, denuded of the epithelial layer by incubation
with 0.1% EDTA for 15 min with vigorous shaking at 37°C. 2) Tissues were washed several
times with 1xPBS, minced, and digested with Liberase (Roche) in RPMI for 30min on an
orbital shaker, 3) Tissue was passed repeatedly through a 16g syringe, pelleted via
centrifugation, re-suspended in RPMI, and placed on 30%-70% Percoll gradient. 4) Cells
were centrifuged at 2000rpm for 30min and mononuclear cells isolated from the interface.
Cells were harvested, washed with 1xPBS and subjected to FACS staining protocols. FACS
buffer (HBSS, 1%FBS and 0.2% sodium azide) supplemented with anti-FcγRII/RIII mAb
(2.4G2) and goat gamma globulin (.5mg/ml) (Jackson Immunoresearch) was used to prevent
non-specific binding. In some experiments, the isolated mononuclear cells were incubated
with a polyclonal PE-labeled mouse anti-human TGF-βRII or anti-mouse TGF-βRII (R&D
systems), anti-CD11c (clone N418), anti-CD11b (clone M1/70), or anti-F4/80 (clone BM8)
(eBioscience). Anti-mouse IL-33 (clone 396118) from R &D systems was used for
intracellular staining following the addition of Golgi-stop (BD pharmingen) for 2h to inhibit
protein transport. In some experiments 7AAD was used to exclude dead cells from analyses.
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Acquisition was performed with a BD FACSCalibur and analysis was performed with Flojo
7.5.5 or Cellquest software.

Cytokine measurement
Colon tissue lysates were diluted in 1xPBS and subjected to the Proteome Profiler Array™
obtained from R& D systems according to manufacturer instructions. Densitometric
evaluation of blots was performed with a Bio-Rad Molecular Imager® Gel Doc™ system.
ELISA was used to quantify murine IL-10, TGF-β, and IL-33 (eBioscience).

Statistical analysis
Statistical significance was assessed by either one-tailed Students t test (two groups) or
analysis of variance (ANOVA) for multiple groups with a post-hoc Tukey test to determine
significance performed using Prism Graph Pad™.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Generation and characterization of CD68TGF-βDNRII transgenic mice (A) Model
representation of transgenic construct. Primer binding sites for PCR genotyping are shown.
(B) Southern blot hybridization of genomic DNA from a representative CD68TGF-βDNRII
mouse (Tg mouse) or littermate control (Neg littermate) that was digested with EcoR1 and
hybridized to a 250bp probe homologous to the junction between CD68-IVSI and 5’TGF-
βRII. Approximation of transgene copy number was based on log-fold dilutions of control
plasmid DNA. (C) Flow cytometry of thioglycollate-elicited peritoneal exudate cells (PEC)
from WT and CD68TGF-βDNRII mice analyzed for human TGF-βRII expression on
CD11b+, F4/80+ and CD11c+ populations. Representative dot plots are shown from pooled
samples of 2 mice per group. Experiment repeated four times. (D) Comparison between
IL-10 and TGF-β-mediated suppression of LPS-induced IL-12/23p40 production as
determined by ELISA. (n= 5) Experiment repeated twice. (E) Comparison of IL-10
production from WT and CD68TGF-βDNRII PEC following treatment with LPS or TGF-β.
(n=3) Mean ± SE shown. Experiment repeated four times. *=p<0.05, **=p<0.01,
***=p<0.001 as determined by Student t test.
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Figure 2.
Expression of TGF-βRII in colonic Mϕ (A) FSCHi, SSC med colon lamina propria cells from
naïve WT or CD68TGF-βDNRII mice were evaluated for expression of CD11c+,
CD11c+F4/80+, and F4/80+ populations. (n=3) (B) Histograms show mean fluorescence
intensity of staining for mAb specific for humanTGF-βRII on the gated populations
indicated in “A” (n=3) (C) Histograms show mean fluorescence instensity for mAb specific
for mouse TGF-βRII on the gated populations indicated in “A” (n=3) Experiments repeated
3 times.
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Figure 3.
Evaluation of DSS-induced colitis in WT and CD68TGF-βDNRII mice WT and CD68TGF-
βDNRII mice were administered either 2% DSS (A, B, C) or 2.5% DSS (D, E, F) on day 0,
returned to normal drinking water on d 6 and monitored until d 14. Weight changes (A, D)
survival rates (B, E) and disease activity indices (DAI) were determined. (n=6-8). Closed
circles (WT) and filled circles (transgenic) that represent mean ± SE are shown.
Experiments repeated four times. *=p<0.05, **=p<0.01, ***=p<0.01 as determined by
Student t test.
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Figure 4.
Histopathological analysis of naïve and colitic WT and CD68TGF-βDNRII mice. (A)
Representative photomicrographs of H & E-stained colon tissue from naïve mice and mice
treated with 2% DSS for six days. Images are representative of three independent
experiments. (n=6) 100x magnification. Scale bar =150μm Distal colon segments at the time
points indicated were evaluated for (B) colon length measurements (C) histopathological
damage score (D) Quantitation of goblet cells from PAS stained sections. Closed circles
(WT) and filled circles (transgenic) that represent mean ± SE are shown. *=p<0.05,
**=p<0.01 as determined by Student t test.
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Figure 5.
Measurement of cytokine production in WT and CD68TGF-βDNRII mice during colitis
resolution. (A) Colon tissue lysates from WT and CD68TGF-βDNRII mice were obtained at
day 14 following 2% DSS were evaluated by the mouse Proteome Prolifer Array™ (n=3)
Data show the mean± SE fold-difference in CD68TGF-βDNRII expression compared to
WT. (B) Levels of IL-10 produced in the colon tissue and (C) serum from WT and
CD68TGF-βDNRII mice prior to and following 2% DSS administration as determined by
ELISA. (n= 6-8) Closed circles (WT) and filled circles (transgenic) that represent mean ±
SE are shown. Experiments repeated twice. *=p<0.05, **=p<0.01 as determined by Student
t test.
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Figure 6.
Measurement of IgE levels and IL-33 within the colon following DSS induced colitis in
production in WT and CD68TGF-βDNRII mice. (A) Serum IgE levels were measured in
naïve and DSS-treated mice at day 14. (n=6) Experiments repeated twice. *=p<0.05,
**=p<0.01 as determined by Student t test. (B) Measurement of IL-33 levels in colon tissue
from WT and CD68TGF-βDNRII mice over the course of colitis induction. (n=6) Closed
circles (WT) and filled circles (transgenic) that represent mean ± SE are shown. (C)
Intracellular staining for IL-33 on CD11b+ and CD11b+CD11c+ gated populations from the
colon lamina propria of naïve and DSS-treated mice at day 14. Histograms show mean
fluorescence intensity of staining for IL-33 (n=3) Experiments repeated twice.
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