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Besides fluorine, oxygen is the most electronegative element with the highest reduction potential in biological systems. Metabolic
pathways in mammalian cells utilize oxygen as the ultimate oxidizing agent to harvest free energy. They are very efficient, but
not without risk of generating various oxygen radicals. These cells have good antioxidative defense mechanisms to neutralize
these radicals and prevent oxidative stress. However, increased oxidative stress results in oxidative modifications in lipid, protein,
and nucleic acids, leading to mitochondrial dysfunction and cell death. Oxidative stress and mitochondrial dysfunction have
been implicated in many neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease, and stroke-related brain
damage. Research has indicated mitochondria play a central role in cell suicide. An increase in oxidative stress causes mitochondrial
dysfunction, leading to more production of reactive oxygen species and eventually mitochondrial membrane permeabilization.
Once the mitochondria are destabilized, cells are destined to commit suicide. Therefore, antioxidative agents alone are not sufficient
to protect neuronal loss in many neurodegenerative diseases. Combinatorial treatment with antioxidative agents could stabilize
mitochondria and may be the most suitable strategy to prevent neuronal loss. This review discusses recent work related to oxidative

toxicity in the central nervous system and strategies to treat neurodegenerative diseases.

1. Sensitivity of Neurons to Oxidative Stress

Neuronal cells in the brain are highly sensitive to oxidative
stress due to their large dependence on oxidative phospho-
rylation for energy as compared to other cells. The demand
for oxygen consumption is extremely high with 1-2% of
the oxygen being converted into superoxide anion radicals
(O2°7) and hydrogen peroxide, leading to oxidative stress
[1]. Oxidative stress exists when there is an imbalance of
reactive oxygen species (ROS) production and antioxidant
activity. Since there are high levels of metals such as iron
in the brain, metal toxicity is also a problem leading to
oxidative stress. One way that the brain combats stress
is by employing the aerobic isoenzymatic form of lactate
dehydrogenase when glucose is metabolized [2]. Previous
reports have indicated that these isoenzymatic forms of
lactate dehydrogenase play a significant role in the metabolic

functions of neurons [3]. Since neurons in the brain also
strongly depend on mitochondrial driven aerobic respira-
tion, when the mitochondria become dysfunctional, these
neurons become much more susceptible to oxidative stress.
Mitochondria already have a high level of oxidative stress
and, therefore, any increase in internal or external reactive
oxygen species (ROS) leads to dysfunctional mitochondria,
which in turn produces more ROS leading to a vicious and
detrimental cycle (Figure 1).

Mitochondria have their own enzyme for combating ROS
production by converting superoxide radicals to hydrogen
peroxide by manganese superoxide dismutase (MnSOD),
which are further broken down into water by peroxidases
[4]. With heightened levels of oxidative stress, however, these
combatants are not enough, and as we age, our defenses
against oxidative stress decrease.
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FiGure 1: Environmental toxins cause the production of ROS by inhibiting complex I of the electron transport chain (ETC) and decrease
the production of ATP. This ROS contributes to a loss in the mitochondrial membrane potential and well as disruption of mitochondrial
permeability transition pores and voltage-dependant anion channels contributing to apoptosis. ROS also moves to the cytosol where it

oxidizes proteins, DNA, and lipids.

1.1. Factors Leading to Oxidative Stress. Generation of ROS
at complex I, coined “complex I syndrome,” in the mito-
chondrial electron transport chain (ETC) has been linked to
age-associated modifications in the central nervous system
[4, 5]. When mitochondrial DNA is the target of oxidation, it
can lead to mutations, rearrangements, and transcriptional
errors that impair important mitochondrial components
leading to more oxidative stress and eventual cell death.
This has been shown to be more sensitive in cerebellar
granule neuronal cells due to their deficiency in repairing
mitochondrial DNA damaged by oxidative stress [4].

Lipid peroxidation causes a collapse of plasma and
mitochondrial membranes, releasing cytochrome ¢, and
inducing apoptosis. The brain is most affected by lipid
peroxidation because of its high oxidizable lipid and metal
content in comparison with other tissue [5].

Superoxide radicals and hydrogen peroxide can also
create further oxidative stress by metal-catalyzed reactions
[6]. Under oxidative stress, superoxide radicals can oxidize
iron molecules. The released iron then takes part in the
Fenton reaction and generates hydroxyl [6]. It has been
shown that inactivation of mitochondrial aconitase (an
enzyme involved in the citric acid cycle) by ROS contributes
to the release of free iron and hydrogen peroxide leading to
neuronal cell [7].

As a result of the reactions mentioned above, there
are increased levels of oxidized glutathione (GSSG) with
a concomitant decrease in reduced glutathione (GSH),
oxidized protein, and increased lipid peroxidation, all of
which are commonly used as markers of oxidative stress and
the extent of damage caused by it. We have shown a decrease
in GSH levels when rats are challenged with the herbicide

paraquat, known to cause neurotoxicity and depletion of
substantia nigra neurons due to oxidative stress (Figure 2).

Direct oxidative stress by hydrogen peroxide has been
shown to induce inflammation by NF-xB activation and
interleukins and is involved in the stress activated protein
kinase (JNK) pathway [8]. Recent studies on chronic expo-
sure of neuronal cells to hydrogen peroxide elicit dynamic
responses, including changes in cytoskeletal structure, energy
metabolic shifts (aerobic to glycolysis), and transmembrane
receptor activity [9]. In other studies, chronic exposure to
hydrogen peroxide has been shown to have a protective role
by inducing the upregulation of antioxidant enzymes such as
catalase and superoxide dismutase [10, 11].

1.2. Oxidative Stress in Neurodegenerative Diseases Induced
by Environmental Toxins. Oxidative stress has been linked
to aging and two of the most common neurodegenerative
diseases, namely, Alzheimer’s disease (AD) and Parkinson’s
disease (PD). AD is characterized by the loss of neurons,
synapses, and neurotransmitters throughout the brain, but
especially in the hippocampus and cerebral cortex. Mito-
chondrial dysfunction may be the underlying reason for
the loss, marked by an increase in ROS, lipid peroxidation,
and protein oxidation, which are found in AD brains,
thus contributing to oxidative stress [28, 29]. Amyloid beta
(AfB), one of the hallmarks of AD, is also involved in
oxidative stress and mitochondrial dysfunction by reducing
the mitochondrial membrane potential. As an age-related
disease, this reduction is intensified in the brain of aging
animal models compared to younger animals [28].

In PD, the oxidative stress is most damaging and selective
to the mitochondria, specifically in the substantia nigra
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FiGure 2: Oxidative stress induces Nrf2 dissociation from Keapl. Nrf2 is activated by phosphorylation and translocated into the nucleus
where it may act as a transcription factor for antioxidant response genes.

region of the midbrain. Susceptibility to this disease can
be due to genetics, environmental toxins (including most
pesticides and herbicides), or a combination of the two,
which can cause mitochondrial damage leading to oxidative
stress [30].

Many cell culture models have been used to establish
the role of oxidative stress in PD in hopes of translating
the observed results to an in vivo model. For example,
glutamate excitotoxicity on mixed neuronal-glial cell cultures
along with hypoxia-induced neuronal cell death decreased
ATP production and increased ROS [31]. Direct hydrogen
peroxide insult has been shown to induce all the same
negative factors mentioned above in conjunction with PD
[32] and is also associated with the proapoptotic protein Bax
[33].

One well-established in vivo model for studying PD
is the use of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP), a byproduct found in synthetic heroine. MPTP
crosses the blood-brain barrier and is metabolized into
1-methyl-4-phenylpyridinium (MPP*) where it has been
shown to block complex I of the ETC and increase ROS, lipid
peroxidation, and protein oxidation [13, 34]. As mentioned
previously, genetics and environmental toxins can provide
negative synergistic effects contributing to PD. Recently,
it has been found that DJ-1 deficient mice challenged
with MPTP have an increase in both oxidative stress and
dopaminergic neuronal cell death [35]. DJ-1 is a gene
associated with an early onset form of PD.

Exposure to paraquat, which is structurally similar to
MPP?, has been correlated with the risk of PD in multiple
studies [36—38]. Paraquat treatment on human neuronal cell
culture causes mitochondrial permeabilization and oxidative
stress [39]. It is believed to induce symptoms of PD by
reacting in its reduced form with oxygen to produce a
superoxide radical [40, 41]. Although banned in Europe in
2007, this herbicide is still the most used worldwide [42, 43].
In addition, rotenone, a pesticide and complex I inhibitor,
induces the symptoms of PD similar to paraquat and MPP*.

Exposure to paraquat has also been established as an in
vivo model of PD. Both paraquat-injected rats and mice show

parkinsonian symptoms, oxidative stress, and dopaminergic
neural loss in the substantia nigra region of the midbrain [13,
44, 45]. These symptoms could also be attenuated by water-
soluble coenzyme Qjo, an ETC component and antioxidant
[13].

It was recently shown that the mechanism in which
paraquat and rotenone induce dopaminergic cell death
might be through the JNK pathway. This is believed to be
due to increased phosphorylation of JNK as demonstrated in
primary cultured dopaminergic neurons under paraquat and
rotenone insult [46, 47] and caspase-3-dependent apoptosis
[48]. Another mechanistic pathway of dopaminergic cell
death by both paraquat and MPP* is believed to be through
the activation of NADPH oxidase-1 (a superoxide-generating
enzyme complex), [49, 50].

It was also observed that rotenone induced dopamin-
ergic neurodegeneration in an animal model by means
of microglial activation, causing NADPH oxidase-derived
superoxides to be formed [51]. However, recent studies show
that human cell line microglia, although activated, only
produce extracellular ROS and, therefore, do not contribute
to neurodegeneration when exposed to chronic, low doses of
rotenone [52]. Paraquat has been shown to induce oxidative
stress in the cytosol, whereas MPP* and rotenone induce
oxidative stress in the mitochondria [48]. Although all these
chemicals induce symptoms of PD, their mechanism of
neuronal cell death varies, therefore, providing multiple
approaches to not only study the mechanisms associated with
PD but also to develop innovative therapeutic interventions
for combating this disease.

1.3. Role of Stress-Responsive Transcription Factor Nrf2 (NF-
E2-Related Factor 2) in Protection against Oxidative Toxicity.
Role of Nrf2, an important stress-responsive transcription
factor of the “cap-and-collar” f-leucine zipper family, is
now considered instrumental to several neurodegenerative
disorders [53-55]. Expression of a number of Phase II
enzymes (e.g., NQO1, GSTs) and antioxidant proteins (e.g.,
GCL, HO-1, thioredoxin) are regulated by this gene. It is
believed that this process is driven by the association of



Nrf2 to the antioxidant responsive element (ARE) consensus
sequence (5'-TGACnnnGCA-3") on the promoter region of
these genes [56-59]. Considerable efforts are being made
to locate some of its downstream effector genes, including
thioredoxin reductase and MafG [60, 61]. However, a clear-
cut understanding of the mechanisms of Nrf2 upstream
activation remains unclear to date.

It has been shown that Nrf2 is constitutively expressed
and localized in the cytosolic compartment and maintains
a repressed state by complexing with the actin-associating
protein, Keap1. This heterodimerization limits most of Nrf2
to the cytoskeleton and away from the nucleus. Because of
a cysteine-rich surface, Keap1l has vulnerability to oxidation
during, escalation of intracellular oxidative and nitrosative
stress ultimately resulting in global conformational changes
to Keapl, thereby, leading to the liberation of Nrf2. After
such a reaction, the monomeric Nrf2 becomes available to
translocate to the nucleus (Figure 2). In this manner, Keapl
acts as a redox sensor that upregulates ARE antioxidant
responses through Nrf2 [16, 56, 62]. Nrf2 activation also
has been shown to be mediated through phosphorylation of
Nrf2 by mitogen-activated protein kinases (MAPKs), protein
kinase C (atypical isoform), and phosphoinositol-3-kinase
(PI3K) [54, 63].

In response to oxidative stress, Nrf2 normally translo-
cates from the cytoplasm into the nucleus and transactivates
expression of genes with antioxidant activity. Despite this
cellular mechanism, severe oxidative damage is not uncom-
mon in Alzheimer (AD) and Parkinson disease (PD). Intense
mechanistic investigations in this arena have revealed that
Nrf2 expression is abundant in both the nucleus and the
cytoplasm of neurons in normal hippocampi with predom-
inant expression in the nucleus. However, in Alzheimer’s,
Nrf2 was predominantly cytoplasmic rather than nuclear in
hippocampal neurons and was not a major component of
beta amyloid plaques or neurofibrillary tangles. In contrast,
the magnitude of expression of nuclear Nrf2 was much
stronger in PD nigral neurons, but it was cytoplasm centric
in substantia nigra of normal Alzheimer’s. Such observations
suggest that Nrf2-mediated transcription is not robust in
neurons in AD despite the presence of oxidative stress. But
in PD, despite a stronger nuclear localization of Nrf2, the
impact of Nrf2 may be inadequate to protect neurodegener-
ation [53]. Because of this differential Nrf2 expression, it can
be considered as a potential therapeutic target for conditions
that are sensitive to free radical damage. Unfortunately, these
observations do not account for additional contributory
roles played by microglia and astrocytes in the overall
neuronal system. Future studies may unravel their alleviating
or aggravating role during oxidative stress. Nevertheless,
mitochondrial dysfunction and buildup of reactive oxygen
species are so common in most neurodegenerative disorders
that targeting Nrf2 may be a novel way of combating
conditions with variable causes and etiologies [64, 65].

2. Therapeutic Advances in Alzheimer’s
Disease and Parkinson’s Disease

There are a variety of antioxidants that can attenuate the
effects of oxidative stress through multiple mechanisms, and
the importance of antioxidants maintaining redox balance is
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FiGure 3: GSH assay. Measuring oxidative stress levels in brain tis-
sue from rats challenged with paraquat and treated with WS-CoQ.
GSH levels decrease in the presence of toxin-inducted oxidative
stress and are brought back up to control levels in the presence of
the antioxidant (WS-CoQ;,).

well known. However, no single antioxidant or combination
of antioxidants has been discovered to completely halt the
progression or cure the diseases that are associated with the
destructive properties of oxidative stress. In AD, oxidative
stress is a factor throughout the entire brain, making it
difficult to find treatment that is specific to the symptoms
of the disease. On the other hand, PD is a localized disease,
where dopaminergic neurons in the substantia nigra can
be monitored, and treatment can be more streamlined and
targeted.

Recent studies for the treatment of PD and AD have
been directed at agents that target and stabilize the mito-
chondria [28]. The most promising treatment for AD is the
administration of methylene blue, a potential mitochondrial
stabilizer at complex I and IV (Table 1). However, to date
there is limited amount of published data [66].

Antioxidant and anti-inflammatory drugs are the focus
of research in combating oxidative stress aimed at stabilizing
the mitochondria by quenching ROS generated from the
ETC. Common antioxidants such as flavonoids, vitamin
C, beta hydroxy acid (BHA), butylated hydroxytoluene
(BHT), and nordihydroguaiaretic acid may be unable to
access the ubiquinone-binding sites at complex I and II
due to their hydrophobicity. These antioxidants are better at
combating ROS at the flavin mononucleotide site of complex
I [67]. This insight demonstrates that new therapeutic agents
need to be specific to the pathophysiological conditions
of the site where ROS are generated. Coenzyme Q)¢ has
been shown to have some neuroprotective effects and
is under clinical trial for Parkinson’s disease (Table 1).
However, due to its highly hydrophobic nature, the oil-
soluble formulation of CoQjy could not be studied in
cell culture models and its efficacy in in vivo studies
is found only at very high doses. A new water-soluble
formulation of CoQiq, developed by combining it with
tocopherol and poly ethylene glycol, has shown very promis-
ing results. The water-soluble CoQ;¢ (WS-CoQ;,) protected
human neuronal cells against oxidative stress-induced cell
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TasLE 1: Therapeutic modalities undergoing preclinical/clinical trials for neurodegenerative diseases.

Compound/Chemical Disease Effect
CoQ PD Reduces the loss of DA neurons in the SNpc (Cleren et al. 2008, [12], Somayajulu-Nitu
10 etal., 2009, [13])
Autophagy-mediated, short-term reduction of phosphorylated tau and S-amyloid
Trehalose PD plaques in parkin (PK—/—/TauVIW) mouse model (Rodriguez-Navarro et al., 2010,

(14])

SR-3306 (JNK inhibitor) PD

Reduces the loss of dopaminergic cell bodies in the SNpc and their terminals in the

striatum (Crocker et al., 2011, [15])

Curcumin PD

Reduces synuclein toxicity, intracellular ROS, and apoptosis in neuroblastoma cells

(Dinkova-Kostova et al., 2010, [16])

Blockes Af aggregation (Guo et al., 2010, [17])
Inhibites Af insult (Ono et al., 2004, [18])
AD Protects Sprague-Dawley rats from Af-induced damage (Frautschy et al., 2001, [19])

Inhibits neuroglial cell proliferation (Ambegaokar et al., 2003, [20])

Inhibits AB-induced cytochemokine gene expression and CCR5-mediated chemotaxis of
THP-1 monocytes by modulating EGR-1 (Giri et al., 2004, [21])

Inhibits a-synuclein aggregation (Pandey et al., 2008, [22])

Inhibits cGMP pathway

Methylene blue AD

Attenuates amyloid plaque formation and neurofibrillary tangles (Wischik et al., 2008,

(23], Oz et al., 2009, [24])

Viral vector A} cDNA
(oral vaccination)

Alleviates progressive cognitive impairment with decreased Af deposition, insoluble Af,
AD soluble Af oligomer, microglial attraction, and synaptic degeneration induced in brain
regions (Mouri et al., 2007, [25])

AL-108 AD

Stabilizes microtubules and blocks Af3 aggregation (Masters and Beyreuther, 2006, [26])

Curcumin derivative Stroke

etal., 2011, [27])

Enhances memory, contributes to neurotrophic activity, and prevents cell death (Lapchak

death in several in wvitro culture models [31, 32, 39].
Furthermore, it has been shown that WS-CoQ;, not only
decreased the oxidative stress, but stabilized mitochondria
and prevented Bax-induced mitochondrial permeabilization
[33]. Most importantly, in a recent study with a paraquat-
induced Parkinson’s disease rat model, WS-CoQ;, was
shown to be very effective in preventing neuronal loss and
amelioration of PD-related symptoms [13]. As shown in
Figure 2, levels of oxidative stress induced by paraquat was
decreased in WS-CoQ;,-treated rats.

Recently a disaccharide, Trehalose, has been shown
to protect SNpc neurons by the induction of autophagy,
short-term reduction of phosphorylated tau and $-amyloid
plaques in parkin (PK—/—/TauVLW) mouse model [14].

Exercise has been shown to combat oxidative stress in PD
by inducing the production of antioxidants and neurotrophic
factors [68] and has also been shown to clear A peptides in
AD [68, 69].

There are numerous antioxidants on the market that are
extremely useful at combating oxidative stress. By assessing
and evaluating these antioxidants, it is hoped that they may
be used therapeutically for PD, AD, or stroke-related injury.

3. Implications of Oxidative Stress in Stroke
and Ischemic Related Brain Injury

In ischemic related brain injuries, one of the main perpetra-
tors of cellular damage is oxidative stress. Many studies have

indicated that the increase in oxidative stress contributes
to lipid damage, protein alterations, and DNA damage.
Ironically, the return of blood flow to the infarcted area of
the brain causes harm along with its benefits due to the
increase in oxygen availability and the increase in oxidative
stress that reperfusion causes. In these situations, lactic acid
accumulates in the affected neurons promoting prooxidant
effects by increasing the H" concentration within the cells
and generating more ROS [70]. The primary source of ROS
is the superoxide anion radical (O,°), which is generated by
leakage from complex III of the electron transport chain of
malfunctioning mitochondria [71].

While oxygen may be the main culprit associated with
damage due to oxidative stress, it does not act without its
accomplices. Hydrogen peroxide is converted to the hydroxyl
radical (*OH), and the nitric oxide (NO) species that
are produced can have extensive implications in neuronal
signaling. During the ensuing inflammatory response, O,"~
can undergo a lethal reaction with NO to produce the highly
detrimental peroxynitrite anion (ONOO™), which in turn
leads to DNA fragmentation and lipid peroxidation [72].

Since the brain makes up only 2% of the total body
weight of a human, yet consumes approximately 20% of
the available oxygen, it is an excellent environment for
the occurrence of oxidative stress [73]. The brain also
contains high levels of lipids while possessing low amounts
of antioxidants, thus further increasing its susceptibility to
damage as the result of ROS and oxidative stress [74].



Stroke is a leading cause of death and long-term disability
in industrialized nations [75, 76] and is a condition that
regularly leaves its victims in a state of impaired cognition
and motor deficits, with nearly 40% of patients not expected
to make a full recovery [70]. The damage and detrimental
effects of stroke are heavily influenced by oxidative stress and
the production of free radicals.

Two types of stroke can occur, hemorrhagic stroke, and
the more common, ischemic stroke. In hemorrhagic stroke,
rupture of an artery results in uncontrolled bleeding to the
affected area of the brain. In ischemic stroke, there is a
blockage of blood flow to the brain due to the formation
of a blood clot. This deprivation of oxygenated blood
results in the formation of the ischemic core where cells die
rather quickly and irreversibly due to necrosis. The onset
of lipolysis, protein degradation, and the breakdown of ion
homeostasis are some of the events responsible for the rapid
death of these cells [77].

In the area between the unaffected brain and the ischemic
core lies a region where the struggle between the life and
death of neurons ensues. This region of the brain is known
as the penumbra. It is here that the brain is composed of
damaged and malfunctioning, yet salvageable tissue. Cells
in this region are susceptible to a programmed form of cell
death known as apoptosis. These cells can remain viable and
for several days following the onset of stroke [78].

Here in the penumbra region is where a host of events
related to oxidative stress take place. Ironically enough,
reperfusion acts as a double-edged sword. While reperfusion
is essential to save the cells affected by ischemia, it also
brings along with it its own threat. When reperfusion occurs,
there is a large and rapid influx of oxygenated blood to the
infarct region. While this delivers the necessary blood, it also
brings with it the elements necessary for producing ROS that
contribute to the oxidative stress placed upon the already
damaged brain tissue.

When platelets are exposed to conditions of reperfusion,
they generate additional ROS in the form of O,*~ and *OH.
Furthermore, the ROS that are produced during reperfusion
are responsible for the activation and transcription of many
proteins. For example, ROS stimulate the production of JNK
and mitogen-activated protein kinase phosphorylation (p38
MAPK) in the affected neurons of the penumbra. JNK-1 is
favored in the nucleus of neurons during reperfusion, and
activator protein-1 (AP-1) binding is also enhanced [78].
The activation of AP-1 is necessary for the induction of
apoptosis to occur [79]. This action, along with the activa-
tion of caspase-3, are several examples of how reperfusion is
responsible for initiating cell death within the neurons of the
penumbra by controlling the expression of certain genes.

Along with their role in effecting the transcription of
various proteins, ROS generated by reperfusion can itself
cause direct cellular stress. Reperfusion causes such a large
influx of oxygen that all of it cannot be used by the
mitochondria, and normal radical scavenging mechanisms
such as superoxide dismutase (SOD), glutathione peroxidase,
and catalase are overwhelmed and cannot adequately quench
the multitude of free radicals that are produced and leak
from the system [80]. The cells of the penumbra are already
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vulnerable to damage, and the generation of ROS exacerbates
the damage that may have already occurred to these cells
by lipid peroxidation. In particular, phospholipid membrane
degradation is a major concern. The brain is especially
susceptible to such damage due to the large amount of
lipids that compose its structure. Lipid peroxidation targets
the polyunsaturated fatty acids (PUFAs) in the brain, thus,
decreasing the membrane integrity. The decrease in mem-
brane stability is especially important because the membrane
contains receptor proteins and ion channel entities. Along
with its own deleterious effects, lipid peroxidation is also
responsible for the inhibition of lipid repair enzymes such as
lysophosphatidylcholine acyltransferase and fatty acyl CoA-
synthase [81].

While cells in the infarct region die instantly via necrosis,
cells of the penumbra are likely to die by means of apoptosis.
Apoptosis is a programmed form of cell death where the cell
expends energy towards its own demise. It is controlled by
a complex interconnection of proteins and is often triggered
by oxidative stress and the release of cytochrome ¢ from the
mitochondria [82]. The increased level of ROS is involved
in generating the signal that causes permeabilization of
the mitochondrial membrane, and, thus, the release of
cytochrome c into the cytosol. Once this occurs, the initiation
of the cascade of caspases occurs. Activation of caspases 3, 8,
and 9 will eventually lead to the death of the cell and other
surrounding cells [83].

3.1. Stroke-Induced Inflammation. Inflammation is a bio-
logical response to harmful stimuli and often occurs as a
result of stroke. One of the key contributors to the inflam-
matory response are glial cells, more specifically microglia,
that secrete proinflammatory cytokines and chemokines
that contribute to the damage done to the penumbra.
The most common contributors to the damage due to
inflammation are tumour necrosis factor alpha (TNF-alpha)
and interlenukin-B (IL-Beta), among others [84]. These
cytokines are responsible for the increased expression of
cellular adhesion molecules (CAMs) that in combination
with platelets, adhere to vessel walls causing a “no-flow”
constriction [85] and the release of more proinflammatory
molecules. Ultimately, the inflammatory response results in
decreased blood brain barrier function, increased cerebral
edema, and cell death [84].

3.2. The Role of Proapoptotic Proteins in Stroke. As previously
mentioned, apoptosis is controlled by a wide range of
proteins. Oxidative stress can cause the activation of p53-
tumor suppressor gene which in turn is responsible for the
increased transcription of Bcl-2 associated X protein (Bax)
and the p53 upregulated modulator of apoptosis (PUMA)
[86]. PUMA has been shown to be able to interact with
the Bcl-2 family of proteins to assist in initiating apoptosis.
It has been shown that PUMA is able to associate with
the mitochondrial membrane along with Bax to promote
the release of cytochrome ¢ [87]. Studies involving the PD-
associated DJ-1 gene indicate that this gene protects the cells
against excitotoxicity and the effects of ischemia. DJ-1 was
found to decrease the presence of oxidative stress markers,
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and, thus, protect the cell due to the alleviation of the effects
of oxidative stress [88].

A large majority of the proteins responsible for the
balance between death and survival belong to the Bcl-2
family of proteins that protect cells from apoptosis induced
by a wide variety of stimuli. One of these proteins is the
proapoptotic protein Bax which exists in the cytosol as a
harmless 24 kDa monomer. However, in cases of increased
oxidative stress, the protein product of the p53 tumor
suppressor gene causes increased transcription of Bax to
occur [89]. In response to this increased amount of Bax
due to oxidative stress, Bax undergoes dimerization either
with itself or other members of the Bcl-2 family (e.g.,
tBID) through interactions of alpha helix 2 with the BH3
domain [90]. This dimerized form of Bax then begins its
migration towards the mitochondria. Once in range of the
mitochondria, the dimerized form of Bax may associate with
the protein transition pore (PTP) of the voltage-dependent
anion channel (VDAC) of the mitochondrial membrane.
This action allows for the uncontrolled flow of cytotoxic
factors, such as cytochrome ¢, to be released from the
mitochondria into the cytosol, and inevitably, the demise of
the mitochondria [91].

Studies have demonstrated that Bax channel activity is
necessary for apoptosis to occur since cell death was halted
with the use of Bax channel blockers [92]. Since Bax is
an essential protein in the regulation of apoptosis, it is
an excellent target candidate for therapeutic approaches.
Not only does its extensive involvement in the process of
cell death make Bax a good therapeutic target, its position
in the apoptosis cascade does as well. While focusing
on antioxidants may be a valid point of investigation,
bolstering of the antioxidant defense machinery still results
in permeabilized mitochondria. Blocking the initiation of
apoptosis further up the chain by inhibiting Bax function
may save the mitochondria and halt apoptosis.

3.3. Experimental Models of Stroke. In the cellular model
of stroke, an excellent way to mimic ischemic assault is
by inducing hypoxia. Hypoxia is the deprivation of an
adequate amount of oxygen to tissues, usually accompanied
by detrimental effects. To accomplish this in a cellular model,
cells can be placed in an oxygen-free chamber for a period
of time before being removed [93]. It was found that when
conditions of hypoxia exist, hypoxia-inducible factor alpha
(HIF-1a) expression increases [94] and, therefore, is impli-
cated in hypoxia-induced apoptosis. HIF-1a participates by
stabilizing the structure of the tumor suppressor gene p53,
which leads to the expression of apoptosis-related genes
(94, 95].

HIF-1a has also been shown to have antiapoptotic effects
because those cells with increased levels of HIF-1a show
resistance to hypoxia-induced apoptosis [96]. The deciding
factor of whether HIF-1a is protective or harmful to a cell
seems to depend on the level of hypoxia. If conditions of
mild hypoxia exist, HIF-1« is phosphorylated and associated
with HIF-1f, and the transcription of p53 is low with
anti-apoptotic genes being activated [97, 98]. However, in
high hypoxic conditions, the reverse is the case. HIF-1« is

dephosphorylated and p53 levels are unregulated, eventually
leading to the activation of pro-apoptotic proteins such as
Bax [97, 99, 100]. This is similar to conditions of ischemic
stroke where up to 24 hours after ischemia, most pro-
apoptotic genes are upregulated, whereas 48 hours to 8 days
after ischemia anti-apoptotic genes are the majority of those
induced [94].

There are a variety of different in vivo models of stroke
ranging from middle cerebral artery occlusion (MCAO)
[101] and four vessel carotid artery occlusion [102]. One
model that our laboratory has employed to investigate the
effects of stroke in a rat model is the bilateral carotid artery
occlusion and two vessel occlusion hypovolemic hypotension
(2VO/HT) model [103]. In this model, global forebrain
ischemia is induced by occluding the 2 carotid arteries and
removing a certain volume of blood from the animal to
maintain a mean arterial pressure of 50 mm Hg. This results
in an interruption of blood flow to the brain, successfully cre-
ating an infarct region similar to stroke and the surrounding
penumbra. This model can be used to accurately investigate
the effects of various therapeutic reagents and their abilities
to protect neurons under conditions similar to stroke.

3.4. Therapeutic Approaches for Stroke. At this time, the only
known treatment for victims of stroke is the use of throm-
bolytics, most commonly, tissue plasminogen activator. The
downfall to this avenue of treatment is that it must be
administered within 3 hours of the onset of stroke. This is
relatively hard to accomplish, as most stroke victims do not
arrive at hospital to receive treatment within this timeframe.
Also, thrombolytics can lead to an increased likelihood of
hemorrhages occurring within the brain [85]. Hypothermia
has also been investigated as a possible treatment for stroke.
It has been found that lowering the body temperature of a
stroke victim may improve the neurological outcome [104].
However this technique remains highly experimental as the
temperature, duration, and onset of cooling still remains to
be accurately determined.

An emerging field of study for treatment of ischemia
includes the use of bone marrow stromal cells (BMSC).
These cells can differentiate into neural and glial cells, both in
vivo and in vitro, after being transplanted into animal model
brains following neurological insult such as intracerebral
hemorrhage (ICH) [105]. These neural stem cells migrate
to the area of the brain that is injured in order to replace
the neuron deficit that was lost due to hemorrhagic stroke.
Recent studies have found that these BMSCs are able to
generate functional recovery in Wistar rats following ICH
[106].

Another interesting avenue of exploration into potential
therapeutics for stroke is the use of curcumin derivatives.
Curcumin has been shown to prevent Alzheimer’s markers
in animal models of the disease [107] and has also been
shown to be effective in reducing the deficits of middle
cerebral artery occlusion in a rat [108, 109]. Recent studies
have shown that when used as a treatment in a model
of stroke, a pyrazole derivative of curcumin was able to
enhance memory, contribute to neurotrophic activity, and,
most importantly, prevent cell death [110].



Research has focused on blocking pro-apoptotic proteins
that are responsible for causing cell death. Recently, advances
in treatments for stoke have been made by the use of low
molecular weight compounds that inhibit proteins (such
as Bax) that are critical in the apoptosis cascade. This
is a critical stage for the inhibition of apoptosis due to
the fact that Bax channel formation is required for the
destabilization of the mitochondria, and subsequent release
of cytotoxic factors [92]. These inhibitory compounds were
modeled after single-domain antibodies that were able to
bind specifically to Bax [93]. They are small enough to
have the potential to cross the blood brain barrier and are
not susceptible to proteolysis. Recent research completed
in our laboratory indicates that these compounds show a
high specificity towards the pro-apoptotic protein Bax and
are able to block its function and save the neurons of the
penumbra from apoptosis [111]. These compounds are able
to competitively bind to Bax even when in the presence
of single-domain antibodies that are specific to Bax. By
binding in some manner to Bax, these compounds prevent
the association of Bax with the mitochondria and prevent
mitochondrial destabilization, thus, limiting the influx of
cytotoxic factors into the cytosol. It is hoped that these
compounds will not need-to be administered in such a short-
time frame following stroke as is the case for thrombolytics,
nor pose the risk of hemorrhage that thrombolytics do. With
more investigation, it is likely that the use of low molecular
weight compounds will become valid treatment options for
stroke patients.

4. Conclusion

It is now well established that oxidative stress and mitochon-
drial dysfunction are the early and key biochemical mecha-
nisms leading to Alzheimer’s disease, Parkinson’s disease, and
stroke-related pathologies. Mitochondria are greatly involved
in neuronal cell death due to the vicious cycle of oxidative
toxicity, which causes mitochondrial dysfunction that leads
to more ROS and the potential collapse of the mitochondrial
membrane. Environmental toxins, amyloid-beta toxicity,
and ischemia/hyper-perfusion-related toxicity all lead to
oxidative toxicity directly or indirectly by mitochondrial
destabilization. Significant progress has been made to inhibit
neuronal cell death by using anti-oxidants or blockers of pro-
apoptotic proteins, but a combinatorial treatment to reduce
oxidative stress and stabilize mitochondria to halt neuronal
loss needs to be explored.
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