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Abstract

The matrix (MA) domain of the HIV-1 precursor Gag (PrGag) protein plays multiple roles in the
viral replication cycle. One essential role is to target PrGag proteins to their lipid raft-associated
phosphatidylinositol-(4,5)-bisphosphate (PI[4,5]P2) assembly sites at the plasma membranes
(PMs) of infected cells. In addition to this role, several reports have implicated nucleic acid
binding properties to retroviral MAs. Evidence indicates that RNA binding enhances the binding
specificity of MA to PI(4,5)P,-containing membranes, and supports a hypothesis in which RNA
binding to MA acts as a chaperone that protects MA from associating with inappropriate cellular
membranes prior to PrGag delivery to PM assembly sites. To gain a better understanding of HIV-1
MA-RNA interactions, we have analyzed the interaction of HIV MA with RNA ligands that
previously were selected for their high affinities to MA. Binding interactions were characterized
via bead binding, fluorescence anisotropy, gel shift, and analytical ultracentrifugation methods.
Moreover, MA residues that are involved in RNA binding were identified from NMR chemical
shift data. Our results indicate that the MA RNA and PI(4,5)P, binding sites overlap, and suggest
models for Gag-membrane and Gag-RNA interactions, and for the HIV assembly pathway.
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INTRODUCTION

The human immunodeficiency virus type 1 (HIV-1) matrix domain (MA) is the N-terminal
cleavage product of the HIV-1 precursor Gag (PrGag) protein. Initially, PrGag is
synthesized on cytosolic ribosomes and becomes cotranslationally modified by the N-
terminal attachment of a myristoyl group by N-myristoyl-transferase 1-3. Myristoylated Gag
precursors associate with the inner layer of the plasma membrane (PM), where they
oligomerize, assemble, and bud off from cells as immature virions. During the process,
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cleavage of PrGag by the viral protease (PR) generates the mature MA protein as well as
capsid (CA), nucleocapsid (NC), p6 and two spacer peptides 4°. The MA domain plays
multiple roles in the viral replication cycle. One essential role is to target PrGag proteins to
their lipid raft-associated phosphatidylinositol-(4,5)-bisphosphate (P1[4,5]P,) assembly sites
at the PMs of infected cells -15. A second role is the incorporation of the viral surface/
transmembrane (SU/TM) envelope (Env) protein complex into virions 16-21, In addition to
these activities, several reports have implicated nucleic acid binding properties to retroviral
MAs 2227 and it is possible that such binding might facilitate PrGag delivery to the PM,
virus assembly, or nuclear import of viral preintegration complexes (PICs) 28-34,

A number of structural studies have been conducted on HIV-1 MA 25:35-39_|n addition to
its N terminal myristate, which fosters membrane binding 2 49-41, MA is composed of six
helices and three f sheet strands 3539, Sedimentation equilibrium data have shown that
while myristoylated MA exists in a monomeric-trimeric state at equilibrium,
unmyristoylated MA occurs as a monomer even at high concentrations 37. NMR studies
suggest that upon Gag multimerization the myristoyl group is exposed, and fosters Gag
binding to membranes 37-39, The membrane binding face of HIV-1 MA is basic, promoting
interactions with negatively charged phospholipid headgroups at the inner leaflets of

PMs 35-39, The significance of such interactions has been highlighted through molecular
genetic experiments which demonstrated that depletion of PM PI(4,5)P5 by overexpression
of polyphosphoinositide 5-phosphatase 1V, reduced virus assembly efficiency, resulting in
the delivery of viral proteins to intracellular compartments 4243, NMR investigations have
indicated that HIVV-1 MA preferentially binds to soluble P1(4,5)P, mimics through contacts
with the lipid headgroup and its 2’ acyl chain, and that binding promotes both exposure of
the MA myristate group and protein oligomerization 38-3°. Consistent with the above
observations, we have shown that MA proteins tend to organize as hexamers of trimers on
lipid membranes containing P1(4,5)P, 44, and that the binding specificity of MA is enhanced
by cholesterol 25,

In addition to the MA membrane-binding capabilities described above, several lines of
experimentation have shown that HIV MA has a nucleic acid binding capacity that may
include the highly basic region of MA 22-26.33,34,45-47 '|nterestingly, high affinity RNA
ligands to HIVV-1 MA have been selected by screening of random 76mer and 31mer RNA
libraries 23: 24, Moreover, we have shown that nucleic acid binding enhances the binding
specificity of MA to PI(4,5)P,-containing membranes. This was evident by the fact that
P1(4,5)P,-containing liposomes successfully competed with nucleic acids for MA binding,
whereas other liposomes did not 2°. Recent experiments also showed that RNAse treatment
of Gag in vitro translation lysates reduced the selectivity of Gag binding to PI(4,5)P,
liposomes 26. Taken together, these results suggest that the ability of MA to bind to RNA
increases the selectivity of MA for appropriate PM assembly sites. These results support a
hypothesis in which RNA binding to MA acts as a chaperone that protects MA from
associating with inappropriate cellular membranes prior to PrGag delivery to the PM.

To gain a better understanding of HIV-1 MA-RNA interactions, we have applied a
multidisciplinary approach to analyze HIV MA interactions with RNA ligands that
previously were selected for their high affinities to MA 23, We characterized binding
interactions via bead binding, fluorescence anisotropy, gel shift, and analytical
ultracentrifugation methods. Moreover, MA residues that are involved in RNA binding were
identified from NMR chemical shift data. Our results indicate that the MA RNA and
P1(4,5)P, binding sites overlap, and suggest models for Gag membrane and RNA
interactions, and for the HIV assembly pathway.

J Mol Biol. Author manuscript; available in PMC 2012 July 22.
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RESULTS

Analysis of MA binding to RNA

A number of studies have shown that HIVV MA has a nucleic acid binding capacity that may
include the highly basic region of MA 22-26. 47 \We demonstrated previously that MA binds
to nucleic acids, and that P1(4,5)P,-containing liposomes successfully competed with
nucleic acids for MA binding, whereas alternate liposomes did not. Other results 26 have
shown that RNAse treatment of in vitro translated Gag protein preparations decreased the
binding specificity to membranes containing P1(4,5)P,, suggesting that RNA influences the
membrane binding specificity of MA. To further investigate the role of MA binding to
RNA, we used a fluorescently tagged 25mer RNA, Sel25, that was selected previously for
high affinity binding to MA 23, Using this ligand, we performed binding studies with the
myristoylated matrix protein that we will refer to here as MyrMA, and to the
unmyristoylated protein that we will refer to as MA. Interactions between matrix proteins
and Sel25 RNA were studied via bead binding assays and binding was quantitated by
fluorescent bead brightness which is indicative of RNA binding 25. Our experiments
indicated that fluorescently tagged Sel25 bound well to either HIV-1 MA (Figure 1A) or
MyrMA (Figure 1B) coated beads, but not to CA-coated beads (Figure 1C).

To confirm these results and to check Sel25 specificity for binding, we examined MA,
MyrMA and CA binding to a randomized sequence of Sel25 (Ran25), as well as Sel25 at
multiple concentrations. As expected, both RNA ligands bound poorly to CA (Figure 1F). In
contrast, both MyrMA and MA bound well to these RNAs and showed higher binding
affinities for Sel25 than Ran25. Interestingly, Sel25 versus Ran25 binding to MA appeared
to be more selective at higher concentrations than binding to MyrMA. These results suggest
that the presence or the absence of the MA myristoyl group may influence binding
selectivity of RNA to matrix proteins.

To determine whether RNA binding influences membrane binding to the matrix proteins, we
carried out membrane competition binding experiments. Interestingly, when MyrMA beads
plus fluorescent Sel25 RNAs were incubated with PI(4,5)P,-containing liposomes, bound
RNA levels were reduced significantly (Figure 2A). We also tested whether untagged RNAS
or phospholipid headgroups could compete successfully with tagged Sel25 for MA binding
(Figure 2B). Control experiments showed that 20 and 80 uM Sel25 RNA inhibited binding
of the fluorescent ligand whereas the Ran25 RNA did not (Figure 2B). We also observed
that 80 uM concentrations of a 15mer RNA that contained the Sel25 binding consensus
sequence (Sell15) were able to reduce tagged Sel25 binding levels. To extend our
investigations, we tested whether soluble phosphatidylserine (PS) with two six carbon acyl
chains (PSC6) or PI(4,5)P, analogues with saturated four (PIPC4) or eight (PIPC8) carbon
chains could inhibit RNA-MA interactions. As shown in Figure 2B, PSC6 and PIPC4 failed
to compete with tagged Sel25 for MA binding, whereas 80 uM PIPC8 reduced binding by
approximately 50%. These results are consistent with the notion that longer acyl chains of
the PIPC8 analogue contribute to PI(4,5)P,-MA binding?>: 38,

Characterization of MA-RNA binding

To further characterize the manner by which RNA binds to MA, we probed binding using
fluorescence anisotropy (FA). To do so, we titrated increasing concentrations of MA or
MyrMA to 5 nM samples of fluorescent Sel25 in either pH 7.8 or pH 5.5 buffers. Binding
curves (Figures 3A-D) showed tagged Sel25 affinities for MyrMA and MA were in the 0.5-
1 uM range, consistent with previous results 23, We also performed FA competition binding
assays. For these experiments, we employed 5 nM FITC-Sel25 and 1 uM of either MyrMA
or MA with increasing concentrations of unlabeled Sel15 or its randomized counterpart,

J Mol Biol. Author manuscript; available in PMC 2012 July 22.
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Ran15. As expected from bead binding results (Figure 2B), Sel15 inhibited FITC-Sel25
binding to MA or MyrMA at both pH 7.8 and pH 5.5 (Figures 3E-H). The Ran15 ligand
only slightly reduced the levels of tagged Sel25 binding to the matrix proteins, indicating
that Sel15 is a specific binding competitor. However, of note was the fact that differences
between Sell5 and Ran15 effects were more pronounced with MA than MyrMA at both pH
5.5 and 7.8 (Figures 3E-H). These differences correlate with MA versus MyrMA bead
binding results (Figure 1), and again suggest that the myristate group decreases the
selectivity of RNA binding

In addition to FA RNA competition studies, we measured competition between the tagged
Sel25 RNA and membrane phospholipid mimics. To do so, MyrMA plus fluorescent Sel25
incubations were supplemented with increasing concentrations of soluble P1(4,5)P, and PS
derivatives. As a control, we used unlabeled Sel25 as a competitor. As expected, Sel25 RNA
readily reduced FITC-Sel25-MyrMA binding levels (Figure 4). We also observed that the
P1(4,5)P, headgroup mimic reduced MyrMA-RNA binding levels to a greater extent than
the PS mimic (Figure 4). These results are in agreement with our bead competition binding
results (Figure 2), and support the hypothesis that the matrix protein RNA-binding and
P1(4,5)P,-binding sites overlap.

As a complementary approach to the characterization of matrix protein binding to RNA, we
employed native electrophoretic mobility shift assays (EMSA), using a native
polyacrylamide gel electrophoresis (PAGE) system. As illustrated in Figure 5, MyrMA or
MA binding to Sel25 RNA was much more apparent than binding to Ran25 RNA,
supporting bead binding (Figure 1), and FA results (Figure 3). In particular, well-defined
Sel25 shift bands were observed with MyrMA (Figure 5A) and MA (Figure 5C), along with
lower mobility smears. In contrast, Ran25 shift bands (Figures 5B, D) were much fainter
than their Sel25 counterparts, and appeared only as diffuse smears. Additional experiments
were conducted with the shorter RNAS, the Sel15 and Ran15 ligands. With these partners,
little evidence of Ran15 binding was seen (Figure 5F), while the Sel15 shifts appeared as
distinct bands (Figure 5E), consistent with the interpretation that matrix proteins can bind
Sel15 with a defined, possibly 1:1 stoichiometry.

To confirm our hypotheses as to the stoichiometry of MA-RNA binding, we examined MA
interactions with FITC-tagged Sel15 RNA via analytical equilibrium centrifugation. As a
control, we examined sedimentation of the fluorescent RNA by itself (Figure 6A). Assuming
partial specific volume of 0.53 cm3/g for the RNA, its mass corresponded to 5098 + 900
daltons, close to that of the calculated tagged Sel15 mass (5362.4 daltons). We obtained the
oligomerization state MA-RNA complex indirectly by focusing on the apparent size of
fluorescently tagged RNA-bound complex in the presence of an excess of MA (Figure 6B).
For the RNA-MA complex, the measured mass corresponded to 18013 + 700 daltons,
assuming a partial specific volume of 0.678 cm3/g. This value is slightly lower than the
calculated 20963.9 dalton value for a 1:1 complex, but this may be attributed to the fact that
incomplete binding yielded a lower weight average than would a completely bound FITC-
Sel15 complex. Taken together, our gel shifts (Figure 6) and centrifugation (Figure 7) data
indicate that MA and Sel15 RNA form a 1:1 complex.

Identification of binding site residues

What MA surfaces are sensitive to RNA binding? In an attempt to analyze this, NMR
binding studies were performed. Our initial efforts with MyrMA and with Sel25 RNA
caused protein aggregation, NMR signal line broadening and loss of signals. So, to avoid
these complications, MA and Sel15 were used. For our purposes, the MA NMR structure,
and databases for 1H, and 15N assignments were available 35 37, and the availability of
chemical shift assignments provided us a baseline for our comparisons. We first performed

J Mol Biol. Author manuscript; available in PMC 2012 July 22.
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NMR HSQC experiments on MA only. The 2D H-15N HSQC spectra were collected for
uniformly labeled MA, and the assignments (Figure 7A, Supplementary Table 1) were
cross-checked with the available assignments of MA. Most of the residue assignments were
accounted and matched the reported assignments for MA 3% 37-39 \We were unable to locate
a few residues, such as residues 2-5, 9, 26, 30 and 36, which may be attributed to the
strength and resolution of the instrument used in these experiments. Before we analyzed
MA-RNA interactions, we duplicated previous work on MA-di-C4 P1(4,5)P, binding, so as
to validate our approach. In this controlled study, we observed similar chemical shifts as
reported previously 38, For example, the addition of di-C4 PI(4,5)P, to MA led to significant
chemical shift changes for residues such as R22, N73, S77 (Figures 7B, D, E), and not for
residue E42 ( Figure 7C) that is far from the P1(4,5)P, binding site of MA. These results
confirmed past investigations, and validated our methodologies.

Next, the interactions between MA and RNA were monitored by tracking chemical shifts in
2D HSQC spectra during titrations with RNA. This approach allowed us the identification of
MA residues involved in RNA binding. As illustrated in Figure 8A, high quality 2D HSQC
spectra were obtained for MA upon titrations with Sel15. While the majority of signals were
not sensitive to Sell5 addition, titrations of Sell5 led to significant changes in the

backbone 1H and 1°N chemical shifts of a subset of residues located at several domains of
MA (Figure 8A, Table 1; Supplementary Table 1). In particular, we observed significant
shifts (= 0.15 ppm) for residues Ser-6, Leu-13, Trp-16 (Table 1) located at the N-terminus
helix | of MA: these residues were shown previously to interact with the myristoyl group,
supporting the idea (Figures 1, 3) that the myristoyl group may influence binding selectivity
of RNA to MA. Significant 1H and 1°N chemical shifts also were observed (Table 1) for
residues GIn-28, His-33, Glu-40, Glu-42, lle-60, Leu-68, Thr-70, Glu-73, Arg-76, Ser-77,
Tyr-79 and Asn-80. Examples of data for Gly-10, which was unaffected by RNA binding
(Supplementary Table 1), and for affected residues GIn-28, Glu-42 and Ser-77 are shown in
Figures 8B-E. Interestingly, several shifted residues locate to the matrix protein B-11-V cleft,
and some of them (residues 33, 73, 76 and 79) were shown previously to contribute to the
P1(4,5)P, binding site. Non-linear least square fits of the titration data gave dissociation
constant (Kd) values of 30 + 9 uM (Figures 8F-I), which is higher than our FA data would
suggest (Figure 3; discussed below). Nevertheless, our results are in agreement with recent
work that implicates residues 28-33 and to a lesser extent residues 70-79 in MA-DNA
interactions 34. We also observed 1H and 15N chemical shifts corresponding to residues
Val-94, Thr-97, and Lys-103 and Ile-104. These residues are located on helix VI, away from
the B-11-V cleft, and may be due to overall conformational changes of MA upon RNA
binding. These observations are discussed in more detail below.

DISCUSSION

MA serves multiple roles in the HIV replication cycle. Among these is its role in regulating
PrGag-membrane interactions 6-10. 12-15, 26, 38-39, 42/ Another function is the incorporation
of the viral Env protein complex into virus particles 16-21, A number of reports also have
implicated nucleic acid binding properties to retroviral MAs 22-27, While the NC domain is
the most prominent RNA-binding element of HIV Gag, experiments have shown that either
MA or NC must be present on Gag for efficient RNA binding and assembly 22. These results
indicate that MA can substitute at least in part for the NC virus assembly function, probably
by virtue of its ability to concentrate PrGag proteins on an RNA scaffold 22. We and others
have demonstrated that HIV MA has a nucleic acid binding capacity that may include the
highly basic region of MA 22-26.47_previously, we reported that HIV MA has an RNA
binding capacity. Furthermore, we demonstrated that MA binds to nucleic acids, and that
P1(4,5)P,-containing liposomes successfully compete with nucleic acids for MA binding,
whereas other liposomes do not 25, These and other results 26 suggested that RNA may

J Mol Biol. Author manuscript; available in PMC 2012 July 22.
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provide a chaperone function in preventing Gag proteins from binding to membranes until
they reach P1(4,5)P,-rich plasma membranes.

Our current results clearly indicate that MA binds to an RNA that previously has been
shown to have high affinity binding to MA (Figure 1). These investigations identify RNA as
a competitor for membrane binding, and assays indicate that P1(4,5)P,-containing liposomes
significantly reduce RNA binding to MA (Figure 2A). Bead competition binding
experiments showed that soluble PIPC8 reduced Sel25 binding to MA, whereas a PSC6
mimic did not (Figure 2); while FA competition data indicated that PIPC8 reduced MyrMA-
RNA binding levels to a greater extent than did the PS mimic (Figure 4). These results are
consistent with the notion that RNA-MA interactions increase the ability of MA to
distinguish between phospholipid headgroups.

Our NMR studies are consistent with the above results and identify residues on MA that are
sensitive for RNA binding. In particular, we observed significant NMR shifts for residues
located to the matrix protein B-11-V cleft corresponding to residues GIn-28, His-33, Glu-40,
Glu-42, 1le-60, Leu-68, Thr-70, Glu-73, Arg-76, Ser-77, Tyr-79 and Asn-80 (see Figures
9A, C). Some of these residues (residues 33, 73, 76 and 79) previously were shown to
contribute to the P1(4,5)P, binding site (Figures 9B, D; 38). This observed overlap of PIP2-
MA and RNA-MA binding sites reinforces a chaperone function hypothesis. These results
also are in agreement with recent studies which implied that MA residues 28-33 and (to a
lesser extent) residues 70-79 contribute to MA-DNA interactions of the preintegration
complexes at the entry place of virus replication 34.

In terms of the nature of MA-RNA binding, bead binding, fluorescence anisotropy, and gel
shift results indicate that MA-RNA binding can be selective, and that a randomized version
of Sel RNA (Ran RNA) bound poorly to MA (Figures 1, 3, 5). Our results also showed a
slight selectivity of Sel RNA binding to the unmyristoylated MA protein, suggesting a
myristate effect on MA-RNA binding specificity (Figure 1, 3). These results are consistent
with the identification of chemical shifts on Sel15-MA binding corresponding to MA
residues Ser-6, Leu-13 and Trp-16. However, the significance of the contributions of
myristoyl binding residues to Sel RNA binding is unclear, since the Sel RNA sequence
might not be the preferred MA-binding RNA in vivo. Another point worth noting is that
while the gel shift and sedimentation equilibrium results suggest that MA and Sel15 bind
with 1:1 stoichiometry, we can not exclude the possibility of multimeric binding to Sel25
substrates (Figures 5A-B). Moreover, some aggregation at high MA to RNA ratios was
observed during NMR titrations, and that may have contributed to the higher calculated
NMR dissociation constants than those inferred from FA data. We envision that
multimerization could contribute to specificity and selectivity of RNA binding in vivo. It is
pertinent to note also that NMR titrations indicated residues 94, 97, 103 and 104 were
affected by RNA titrations. These residues are located on MA helix VI and may involve a
conformational change of MA upon RNA binding that also could affect binding specificity.

Our results support a hypothesis in which RNA binding to MA acts as a chaperone that
protects MA from associating with inappropriate cellular membranes prior to PrGag delivery
to the PM. However, the exact identity of the RNAs that bind to MA in vivo remains to be
determined. Our results demonstrate that MA binds to an RNA that has previously been
shown to have high affinity binding to MA, and a version of this sequence is found in HIV
RNA 23, However, while mutations of consensus nucleotides involved in MA-RNA binding
reduced binding in vitro, they were less severe in reducing viral infectivity in vivo 23. It is
possible that MA may bind to other sequences on viral or cellular RNAs. Moreover, it is
likely that viral genomic RNA simultaneously can bind both NC and MA, which is
consistent with previous observations and modeling of a proposed compact conformation of
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PrGag 4749, Whatever the role of MA-nucleic acid binding in the HIV-1 replication cycle
is, it can not be essential under all circumstances, since viruses that have large deletions in
the MA coding region may be infectious in certain cell culture models 31 59, Nevertheless,
the MA domains of natural HIV-1 isolates and the RNA-binding residues we have identified
are highly conserved. Thus, it seems likely that further examination of HIV-1 MA
interactions with nucleic acids will be of interest.

MATERIALS AND METHODS

Protein preparation

Myristoylated HIV-1 MA protein (MyrMA), as well as the unmyristoylated MA protein
(MA), were expressed in Escherichia coli strain BL21(DE3)/pLysS (Novagen) along with
Saccharomyces cerevisiae N-methyltransferase from pET-11a-based vectors kindly provided
by Michael F. Summers (University of Maryland Baltimore County) as described
previously 373944 The MA protein was prepared similarly to MyrMA, except that myristic
acid was excluded from the bacterial growth media during the induction phase. The proteins
were desalted by three rounds of buffer exchange using dialysis buffer of 10 mM sodium
phosphate (pH 7.8) and 50 mM NaCl, supplemented with B-mercaptoethanol (BME; 1 mM
final concentration), aliquoted, and stored at —80°C under nitrogen gas. 1°N isotopically
labeled proteins were prepared by growing cells on 15SNH,CI (Cambridge Isotopes;
NLM-467-5) as the sole nitrogen source as described previously 3> 37-39, For NMR studies,
the proteins were dialyzed against 50 mM sodium phosphate (pH 5.5), 100 mM NaCl and 5
mM dithiothreitol (DTT), and then concentrated by Pierce ultrafiltration concentrators
against the same buffer. Protein purities were evaluated after fractionation by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)2>: 1-55 and by Coomassie
blue staining 25 51-53,

RNA Samples

The RNAs used for our studies were selected for high affinity binding to MA 23, The
consensus sequence for the high affinity RNA ligand to HIV-1 MA derived from screening
of random 76 mer and 31 mer libraries 23 24, yielding a consensus, 5’GGAAU UAAUA
GUAGCZ3' (Sel15). As a control, we obtained a randomized (Ran15) version of the 15mer,
with a sequence of 5’GAAGG AGAUU UAUAC3'. We also prepared a 25mer stem-loop
(Sel25) version of Sell5 that retained its high MA binding affinity: its sequence is 5’
GGACA GGAAU UAAUA GUAGC UGUCC3'. As another control we prepared a
randomized version (Ran25) of Sel25, with the sequence of 5’GGACA GAAGG AGAUU
UAUAC UGUCC3'. In addition to the untagged RNAs, we procured fluorescently tagged
versions of Sell5, Ran15, Sel25, and Ran25. All RNAs were obtained from Invitrogen.

Liposome preparation

Liposomes were prepared as previously reported 2° from stocks of cholesterol (Sigma); 1,2-
dioleoyl-sn-glycerol-3-phosphocholine (PC; Avanti); brain P1(4,5)P, (Avanti); 1,2-dioleoyl-
sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (Rhodamine-
DOPE; Avanti). For liposome preparation, lipids were mixed and dried in glass vials with a
stream of nitrogen gas. Dried lipids were supplemented with liposome buffer (10 mM
HEPES [pH 7.4], 50 mM NacCl, 0.002% sodium azide), and suspended by twenty 30 sec
rounds of sonication in a Branson 1210 bath sonicator, with incubations on ice between each
sonication round. Final liposome lipid concentrations were 2 mg/ml, and liposomes were
stored for up to 1 week under nitrogen at 4°C. By weight, PI(4,5)P5 liposomes were
composed of 10% (wt/wt) P1(4,5)P,, 20% cholesterol, 69.8% PC, and 0.2% Rhodamine-
DOFPE.

J Mol Biol. Author manuscript; available in PMC 2012 July 22.
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Bead binding assays

For bead binding assays, 0.2 ml of packed nickel-nitrilotriacetic acid (Qiagen) beads were
washed with 0.5 ml of wash buffer (25 mM sodium phosphate [pH 7.8], 50 mM NacCl, 0.1
mg/ml bovine serum albumin [BSA; Sigma A4503]), suspended in 0.5 ml of wash buffer
supplemented with 20 ul of 10 mg/ml BSA, incubated for 5 min at 4°C, and washed three
times with 0.3 ml wash buffer. After the washes, packed beads were supplemented with 0.2
ml wash buffer minus or plus 2 — 3 ug of His-tagged MA or CA. Proteins and beads were
incubated for 2 h at 4°C, after which beads were pelleted to remove unbound protein,
washed twice with 0.3 ml wash buffer, and suspended in a total volume of 360 pul wash
buffer on ice: the estimated bead-bound MA or CA concentration used in each assay was
300 nM.

For RNA binding assays, beads in 60 ul wash buffer were supplemented with fluorescently
tagged RNAs to final concentrations of 0 — 0.5 uM, and incubated for 1 h at 4°C, after which
beads were pelleted (1 min; 13,700 x g), quickly washed twice with 300 ul wash buffer, and
resuspended in 60 pl of wash buffer on ice. For RNA-liposome competition assays, beads
were incubated with 0.16 pM of fluorescent RNA either without liposomes or with 725 nM
P1(4,5)P, in Rhodamine-DOPE-tagged 20% cholesterol-70% PC-10% P1(4,5)P, liposomes
(prepared as described above). Beads were incubated for 16 — 18 h at 4°C, after which beads
were pelleted (1 min; 13,700 x g), quickly washed twice with 300 ul wash buffer, and
resuspended in 60 pl of wash buffer on ice. For RNA and lipid competition assays, MA
beads were incubated with 0.16 pM fluorescent RNAs in the absence (control) or presence
of the indicated concentrations of untagged RNAs or 1,2-dihexanoyl-sn-glycero-3-phospho-
L-serine (PSC6; Avanti), di-C4 P1(4,5)P, (PIP2C4; Echelon) or di-C8 P1(4,5)P2 (PIP2CS8;
Avanti). Competitors were added to incubations from stocks in water to achieve final
concentrations of 20 — 80 uM, respectively.

For viewing of fluorescently tagged beads, samples were mixed by pipetting up and down,
10 ul samples were applied to microscope slides, and covered with 22 x 22 mm coverslips.
Fluorescent green beads were imaged on a Zeiss AxioPlan fluorescence microscope using a
20x (LDA-PIan) objective and Zeiss filter set 10 (excitation band-pass, 450 to 490; beam
splitter Fourier transform, 510; emission band-pass, 515 to 565). After collection of multiple
bead images per sample as grayscale tagged-image-file-format (TIFF) files using
Improvision OpenLab software, images were ported to NIH Image J 25 23 for analysis for
each bead, normalized bead brightness values were determined as described previously 2°.
Briefly, areas and average brightness values were collected from circled beads. Average
background brightness values were calculated by dividing total image average brightness
values (with bead area brightness values zeroed out) by total image areas minus bead areas.
Normalized bead brightness values (average bead brightness minus background brightness)
were averaged for all beads of a given incubation in an experiment, and results of
experiments were normalized to results with control beads of MyrMA or MA bound to
Sel25 RNA.

Fluorescence Polarization

Fluorescence polarization was used to measure binding of MA to RNA. Measurements were
conducted using 5 nM FITC-labeled RNAs in either pH 7.8 buffer (25 mM sodium
phosphate [pH 7.8], 50 mM NaCl) or pH 5.5 buffer (50 mM sodium phosphate [pH 5.5], 100
mM NaCl, 5 mM DTT). Measurements were obtained using a Pan Vera Beacon 2000
fluorescence polarizer (Invitrogen) with a 490 nm excitation wavelength. All readings were
obtained in triplicate at room temperature. To determine binding affinities of MA to RNA
variants, one ml of 5 nM FITC-Sel25, FITC-Ran25, FITC-Sel15, or FITC-Ran15 RNAs
were placed in 12 x 75 mm disposable borosilicate glass tubes. Binding reactions were
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titrated by successive additions of 30 uM MA or MyrMA to achieve final concentrations of
0-5120 nM. Polarization values correspond to emitted light intensities as defined by the
ratio (parallel — perpendicular)/(parallel + perpendicular) °6. Binding isotherms were fitted
assuming 1:1 binding curves using Prism (www.graphpad.com). Competition assays
employed 5 nM FITC-Sel25, 1 uM MyrMA and increasing concentrations of Sel25, PSC6,
or PIPCS.

Analytical ultracentrifugation

Sedimentation equilibrium measurements were performed with a Beckman model XLA
analytical ultracentrifuge. Samples of 10 uM FITC-Sel15 RNA only or 10 uM FITC-Sel15
RNA plus 4 fold molar excess of MA were prepared in 25 mM sodium phosphate [pH 7.8],
50 mM NaCl. Centrifugation runs were carried out at 16°C in an An60-Ti rotor using 12 mm
cells and Epon, 2 channels, centerpieces at 20,000 rpm; monitoring the absorbance of the
free and bound FITC- labeled RNA at 490 nm. Partial specific volumes were calculated
from the protein sequence 37 58 and estimated for RNA. The radial distribution was
analyzed with a program written for Scientist (Micromath), and molecular mass estimates
derived from the slopes of In (concentration) versus (radius) plots after baseline adjustment
to optimize linearity.

Electrophoretic mobility shift assays (EMSA)

RNA and MA samples were prepared in stocks containing 50 mM sodium phosphate (pH
5.5), 100 mM NaCl. For binding reactions, 3 pl of 100 uM RNA (15 pM final
concentration) was mixed with increasing amounts of 150 uM MA to yield final
concentrations of 0-37.5 uM MA or MA:RNA ratios ranging from 0:1 to 2.5: 1. Samples in
final volumes of 20 ul were incubated at 35 °C for 30 min. Following incubations, samples
were supplemented with 6 ul of 50% glycerol, and then loaded onto 12% native
polyacrylamide gels in 0.5 x Tris-borate buffer (44.5 mM Tris base, 44.5 mM boric acid, pH
8.0)°9. Gels were electrophoresed at 4 °C at 30-35 mA. For visualization of bound and free
RNAs, gels were stained with Stains-all (Sigma), destained by light exposure, and scanned
immediately on an Epson Perfection 1240U scanner. Band intensities were obtained with
Image J software2>: 53,

NMR Spectroscopy

NMR data were collected at 35 °C on a Bruker Avance I11 (600 MHz 1H) spectrometer,
processed with Bruker-Topspin 2.1 software (BRUKER, http://www.bruker-biospin.com),
and analyzed with NMRVIEW 609, All of the NMR samples were prepared in a buffer
containing 50 mM sodium phosphate at pH 5.5, 100 mM NaCl and 5 mM DTT using 1°N
uniformaly labeled protein samples of 60-80 uM (10% 2H20). Amide [1HN-1°N] backbone
assignments for MA were obtained using standard two dimensional heteronuclear sequential
quantum correlation 2D [*H-1°N] HSQC with pulse program hsqceftf3gp as described
previously 61, The 2D HSQC spectrum was recorded as 2048 t, x 256 t; data points with
90° pulses for H and 1°N of 10 us and 36 us respectively. The 2D HSQC spectrum was
processed by Fourier transformation after zero-filling to 2048 x 1024 real data points,
followed by phase and base line correction. The 2D HSQC spectrum was recorded first with
MA only. Signal assignments and verification of MA were matched with the chemical shift
assignments that have been deposited at the BioMagResBank 3% 37, The interactions of di-
C4-P1(4,5)P5 and MA were monitored by the chemical shift changes of THN-1°N cross-
peaks in the HSQC spectra of 1°N labeled MA upon titration with di-C4-PI(4,5)P, as
described previously 38, Similarly, the association of Sel15 RNA and MA was monitored by
observing the changes in the THN-15N cross-peaks in the HSQC spectra of 1°N labeled MA
upon titration with of unlabeled Sel15 stock of 10 mM in 50 mM sodium phosphate at pH
5.5, 100 mM NaCl and 5 mM DTT. Residues that exhibited significant chemical-shift
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changes upon titrations with either di-C4-P1(4,5)P, or Sel15 RNA were analyzed for the
extent of the chemical-shift changes of the combined 1H and 1°N (ASHN) by calculating
ASHN = ((A8 1H)2 + (A8 15N)2)1/237.38 Binding isotherms from 1H-15N NMR HSQC
titration experiments were calculated using Prism software (www.graphpad.com). Surface

representations of the MA structure (pdb ID: 1UPH) were generated with PYMOL
(http://pymol.sourceforge.net).

Supplement

ary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Fluorescent RNA bead binding assay

In panels (A-C), binding assays were performed with 0.16 uM FITC-Sel25 RNA and beads
coated with (A) MyrMA, (B) MA or (C) CA proteins. After binding and washing steps,
beads with bound RNA were imaged by fluorescence microscopy under identical gain and
exposure settings, and photographed: note that bead brightness is indicative of RNA
binding. In panels (D-F) levels of binding were quantitated for beads coated with the
indicated proteins and FITC-Sel25 RNA (black bars) or FITC-Ran25 RNA (white bars) at
the indicated 0.5, 0.16, and 0.05 pM RNA concentrations. For quantitation, background-
subtracted bead brightness values were calculated, averaged from multiple beads for each
incubation, and normalized to MyrMA plus FITC-Sel25 RNA (0.5 uM) signals. For capsid
beads, averages derive from four readings each; for matrix beads, averages derive from 12
separate beads collected from experiments on three separate dates.
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Figure 2. Competition binding assays
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(A) MyrMA beads were incubated with 0.16 pM of FITC-Sel25 RNA either without
liposomes (control) or with rhodamine-DOPE-tagged 20% cholesterol-70% PC-10%
P1(4,5)P, liposomes (liposomes). (B) MA beads were incubated with 0.16 uM FITC-Sel25
RNA in the absence (control) or presence of the indicated concentrations of untagged Sel25

RNA (Sel), Ran25 RNA (Ran), Sel15 RNA (Sel15), Ran15 RNA (Ran15), di-C6

phosphatidyl serine (PSC6), di-C4 PI(4,5)P, (PIP2C4), or di-C8 P1(4,5)P, (PIP2C8). After
incubations and washes, beads were imaged and RNA binding (brightness) was quantitated
as described for Figure 1. Values each derive from 6-12 beads, collected from experiments

on three separate dates.
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Figure 3. Fluorescence Anisotropy RNA binding to MA

(A-D) Fluorescence Anisotropy (FA) measurements were conducted using 5 nM FITC-
Sel25 RNA in buffers at the indicated pHs for either MyrMA (A,C) or MA (B,D). Affinities
determined were 813 + 74 nM for MyrMA pH 7.8; 1032 + 80 nM for MA pH 7.8; 410 £ 72
nM for MyrMA pH 5.5; and ~1000 nM for MA pH 5.5. Changes in the fluorescence
polarization were fitted assuming 1:1 binding curves. (E-H) FA competition binding assays
used 5 nM FITC-Sel25 RNA ligand, 1 uM MyrMA or MA, and increasing concentrations of
untagged Sel15 or Ran15 RNAs. Measurements were obtained in triplicate, and dissociation
curves were fitted to exponential decay best fit curves.
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Figure 4. Fluorescence Anisotropy competition binding assays

FA competition binding assays were performed with 5 nM FITC-Sel25 and 1 uM MyrMA
plus increasing concentrations of untagged Sel25, di-C6 phosphatidyl serine (PSC6) or di-
C8 PI(4,5)P, (PIP2C8). Measurements were obtained in triplicate and dissociation curves
were fitted to exponential decay best fit curves.
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Figure 5. Electrophoretic mobility shift assay

Electrophoretic mobility shift assays (EMSA) used 12% native polyacrylamide gels and
were stained for detection of free and bound RNAs after electrophoresis. (A—F) Native
PAGE data were obtained with 15 uM Sel25 (A, C), Ran25 (B,D), Sel15 (E), and Ran15 (F)
RNAs with increasing concentrations (0, 7.5, 15, 22.5, 30, 37.5 uM) of MyrMA (A-B) or
MA (C-F) proteins. Bound (B) and free (F) RNAs are as indicated.
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Figure 6. Equilibrium sedimentation

Equilibrium sedimentation profiles for (A) 10 uM FITC-Sel15 and (B) 10 uM FITC-Sel15
plus 40 uM MA were obtained by analytical ultracentrifugation. Absorbance was measured
at 490 nm to detect the FITC signal of the tagged RNA. Sedimentation corresponded to a
mass of 5098 + 900 daltons for FITC-Sel15 alone, assuming a partial specific volume of
0.53 cm3/g. For the MA-RNA complex, assuming a partial specific volume of 0.678 cm3/g,
the measured mass corresponded to 18013 + 700 daltons, indicative of 1:1 RNA: protein
binding profile.
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Figure 7. NMR of MA-PI(4,5)P, binding

(A) H-15N heteronuclear single quantum coherence spectrum (HSQC) of 1°N-labeled MA
at 60 uM was obtained at pH 5.5 and 35°C. Indicated in circles are some of the
unambiguously residue assignments. (B-E) 1°N NMR chemical shift titration data of 60 uM
MA and 0, 60, 120 and 240 pM di-C4-P1(4,5)P,, di-C4-P1(4,5)P,: MA=0:1, 1:1, 2:1, and
4:1 were obtained at pH 5.5 and 35°C. Binding curves are plotted for representative residues
and are in agreement with previously obtained results.
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Figure 8. MA binding to Sel15 RNA

200 300
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(A) shown is an overlay of 2D TH-15N HSQC spectra upon titrations with Sel15 RNA at the
following RNA: MA ratios: 0:1 (black), 0.25:1 (blue), 0.5:1(green), 1:1 (yellow), 2:1
(orange), and 4:1 (red). Indicated in circles are some of the unambiguously assigned
residues. (B-E) representatives of overlay expanded portions of the 2D 1H-15N HSQC are
shown, with same titration ratios as in (A). (F-I) Representative binding curves of 1H-1°N
NMR chemical shift titration data of MA are depicted. The A values are defined as ASHN =
((A8 TH)? + (A8 15N)2 )", and binding isotherms were fitted assuming a 1:1 binding
stoichiometry. Note that G10 is provided as an example of a residue that is not affected by
RNA binding, whereas Q28, E42 and S77 are examples of residues that were affected by

binding.
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Figure 9. MA binding sites of RNA and PI1(4,5)P»

Shown is a surface representation of MA structure (pdb ID: 1UPH) from the side (A, B) and
slightly tilted from the side (C, D). In panels A and C, residues that exhibited significant
chemical shift changes (ASHN > 0.15 ppm) on Sel15 RNA binding are colored in red. In
panels B and D, di-C4-PI1(4,5)P, binding residues are highlighted in green. For convenience
a subset of the binding residues is labeled.
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Table 1
MA residues showing significant chemical shifts on RNA binding

Shown are MA residues that displayed significant 1H -15N NMR chemical shifts on Sel15 binding. The
association of Sel15 RNA and MA was monitored by observing changes in TH-1°N cross-peaks of HSQC
spectra of 15N labeled MA upon titration with Sel15 RNA. Residues that exhibited chemical shifts of > 0.15
ppm upon titrations with Sel15 RNA are listed. The extent of the chemical-shift changes of the combined 1H

and 15N (ASHN) was calculated according to the formula ASHN = (A8 1H)2 + (A8 15N)2 )12, as determined
from data at a final RNA: MA ratio of 4:1.

Residue  A8'H-°N (> 0.15 ppm)
6 Ser 0.28
13 Leu 0.15
16 Trp 0.26
28 GIn 0.45
33 His 0.21
40 Glu 0.47
42 Glu 0.32
60 lle 0.16
68 Leu 0.24
70 Thr 0.15
73 Glu 0.31
76 Arg 0.32
77 Ser 0.15
79 Tyr 0.44
80 Asn 0.18
94 Val 0.22
97 Thr 0.22
103 Lys 0.18
104 lle 0.33
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