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Abstract

The unique size and complexity of the human cerebral cortex are achieved via a long and precisely
regulated developmental process controlling neurogenesis, neuronal migration and differentiation.
Traditionally, disorders of cortical development have been classified on the basis of the most
obvious defects in one of these developmental steps. However, the more we learn about the
cellular biological roles of genes that are essential for cortical development, the more we realize
that these functions map onto molecular processes, but not so cleanly onto anatomical processes.
Essential genes might be involved both in proliferation and migration as well as differentiation,
reflecting roles for underlying molecular mechanisms in different phases of development and
causing a stunning variety of cortical defects.

Introduction

After cortical neurons are generated from radial glial progenitor cells close to the ventricle,
they migrate towards the pial surface using radial glial processes as scaffold and form an
ordered laminar structure (Fig. 1A). Malformations of cortical development have been
traditionally classified based on which biological process is likely to be affected and
grouped under disorders of proliferation, migration and cortical organization [1-3]. In the
disorders of proliferation (or of the balance between proliferation and apoptosis), the number
of cells is significantly reduced, resulting in an abnormally small head (microcephaly)
(reviewed in [4-6]). In the disorders of migration, neurons do not reach their correct
destination in the cortical plate, either by remaining at the ventricular surface
(periventricular heterotopia), arresting in the white matter (subcortical band heterotopia) or
forming a disordered, often thickened, cortical plate. This thicker cortex affects the
formation of normal gyration, leading to a simplified gyral pattern (pachygyria) or a smooth
appearance of the cortical surface (lissencephaly), sometimes with overmigration of neurons
to the pial surface (cobblestone lissencephaly) [3, 7, 8]. The third category, disorders of
cortical organization or late migration, comprises mostly the polymicrogyrias, a
heterogeneous group of malformations with multiple small gyri and an abnormally thin or
thick cortex, sometimes so severely affecting brain structure as to cause clefting between the
ventricular and meningeal surface (schizencephaly) [9].
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The identification of clear diagnostic criteria to enroll suitable families for genetic analysis
has quickened the pace of discovery of genes responsible for many of these diseases as
multiple families with the same phenotype could be grouped for linkage studies. The genes
associated with each type of disorders often supported the mechanistic hypotheses behind
the clinical classification. Almost all microcephaly genes identified to date encode for
centrosomal proteins and DNA repair pathway members, whose perturbation is expected to
disrupt cell division ([5, 10] for review, and [11-14]). Likewise, genes responsible for
lissencephalies and heterotopias are predicted to cause neuronal migration defects, by
affecting cytoskeletal stability and trafficking, or by altering responses to extracellular
signaling and cellular interactions with the extracellular matrix [7, 8]. Only the
polymicrogyrias still defy the identification of a common mechanistic cause and may in fact
comprise several different disorders.

As new genes are identified and more diverse patient cohorts are used for resequencing, a
more complex picture is emerging shaking the one gene/one mechanism/one malformation
hypothesis and sometimes identifying all three malformation categories in the same patient.
By combining human genetics analyses with functional studies in animal models we are
beginning to understand how cortical malformation genes work together to form the normal
and diseased cortex. Here, we will discuss recent advances in the study of cortical
malformation genes affecting cytoskeletal function to show how phenotypic heterogeneity
can be explained by a single gene affecting multiple stages of differentiation or by different
genes converging on the same mechanism.

One gene — one malformation? Clinical variability in cortical malformations

a-dystroglycanopathies, a group of congenital muscular dystrophies associated with brain
malformations (also reviewed in this issue), were among the first examples of mutations in
the same gene [15] and sometimes the same mutation [16, 17] resulting in a varied spectrum
of brain phenotypes ranging from cobblestone lissencephaly or pachygyria to
polymicrogyria, to no brain defects at all [18, 19] and blurring the boundary between
disorders of neuronal migration and cortical organization.

In the past year, studies on microcephaly cohorts revealed that the border between disorders
of proliferation and migration is also not as sharp as previously thought. The very recent
identification of the WDR62 gene as the second most common known genetic cause of
microcephaly [11-13], 11 years after the mapping of the genetic locus [20], revealed that the
malformations associated with mutations in this gene are extremely variable, including
pachygyria, lissencephaly, polymicrogyria, schizencephaly, hippocampal and cerebellar
abnormalities. Patients with WDR62 mutations can even show considerable hemispheric
asymmetry in the findings within a given brain [12]. Such clinical heterogeneity contributed
to the long delay in the identification of WDR62, since many cases would not have been
grouped together for linkage studies. However, even ASPM mutations, the most common
cause of primary microcephaly, have been occasionally associated to variable cortical
phenotypes in a large resequencing effort, revealing instances of gyral simplification,
polymicrogyria and corpus callosum agenesis [21]. From a clinical genetics standpoint these
findings complicate the choice of a specific genetic test for molecular diagnosis, and more
resequencing of large patient cohorts with variable malformation patterns may be beneficial
to determine the frequency of mutation for each gene and develop better testing guidelines.
From the functional standpoint this phenotypic differences support the hypothesis that
cortical malformation genes may be involved in multiple developmental steps.

Curr Opin Genet Dev. Author manuscript; available in PMC 2011 December 1.
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One gene - one function? The centrosome in proliferation and migration

Considering the unique morphology of neurons it should not be surprising that the
cytoskeleton is emerging as a key element in the regulation of all aspects of neuronal
differentiation. Cytoskeletal components or regulators are mutated in all three categories of
cortical malformations (Table 1) and understanding the roles of the cytoskeleton in cortical
development can help reconcile how different malformations may be caused by the same
gene. Six of the seven genes identified for microcephaly vera (or primary microcephaly,
defined as a small brain with normal gyral pattern and few or no other associated features)
encode proteins localized in or around the microtubule organizing center (MTOC) in the
centrosome (ASPM, CDK5RAP2, CENPJ, CEP152, STIL, WDR62) [5, 11-13]. Since these
proteins are expected to regulate the mitotic spindle, the prevailing hypothesis is that mitotic
defects in the neuronal progenitors underlie the reduction in neuronal number in the
microcephalic brain [5]. In fact, recent studies removing Cdk5rap2 [22, 23] or Aspm [24, 25]
in the developing mouse cortex found early cell cycle exit in the progenitor cells leading to
early neuronal differentiation and a likely depletion of the progenitor pool (Fig. 1Bi).
Similar results were observed by knockdown of pericentrin, a centrosomal protein involved
in microcephalic osteodysplastic primordial dwarfism [23]. Questions are still open on the
exact mechanisms leading to cell cycle exit, whether the mitotic spindle is abnormal as
found in some models [22, 24] but not in others [23, 25], and on the differentiation and
survival of the prematurely born neurons. Cortical size reduction in the Aspm mice has been
modest compared to the human phenotype [22, 25], possibly due to the reduced proliferation
potential of murine progenitor responsible for the generation of a much smaller cortex than
the human one [26]. The generation of additional mouse models or allelic series involving
multiple centrosomal proteins responsible for microcephaly may lead to a more severe
phenotype and provide new mechanistic insight into the condition of the mitotic spindle.
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The multiple brain malformations identified in microcephaly patients with mutations in
WDR62 and to a lesser extent in ASPM argue that the fewer neurons generated may also be
impaired in their ability to migrate properly [12, 13, 21], as seen in studies on the
lissencephaly gene LIS1, which established the importance of the centrosomal function in
both neurogenesis and migration. Lis1 is a microtubule stabilizing protein acting primarily at
the centrosome [27, 28] and de novo dominant mutations or deletion in the LIS1 gene cause
classic lissencephaly [29]. While mice with heterozygous Lis1 loss of function only show
mild lamination defects in the cortex and a delay in neuronal migration [30-32], the
combined loss of Lis1 and its binding partners such as the centrosomal proteins Ndel and
Ndell and the molecular motor cytoplasmic dynein uncovered how Lis1 acts in multiple
developmental processes such as mitotic spindle stability [33, 34], nuclear movement during
migration (nucleokinesis) and extension of the leading migratory process [28, 31, 35], and
the interaction between the microtubules and the actin cytoskeleton [36]. Microcephaly
genes, which are associated with the centrosome and cause multiple cortical malformations,
may be involved in a similar array of cellular processes. As a result the cells that survive the
primary mitotic defects may not be able to complete neuronal migration due to a secondary
disruption in the establishment of cell polarity, nucleokinesis and/or leading process
extension (Fig. 1Bii).
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One malformation —one mechanism? The microtubules multi-task

The discovery of mutations in LIS1 and another microtubule-binding protein DCX in
lissencephaly cases and follow-up studies on the function of these proteins firmly
established the importance of microtubule stability in the disorders of cortical migrations
(for review see [3, 7]). In the past few years, the structural components of the microtubules
themselves, a and B tubulin, have been tied to the pathogenesis of cortical malformations
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with different tubulin isotypes causing different malformations and sometime different
syndromes altogether: TUBALA in classical lissencephaly [37, 38], TUBB2B and TUBAS in
two different forms of polymicrogyria [39, 40] and TUBB3 in a wide array of neurological
malformations including microlissencephaly, frontal polymicrogyria, gyral simplification or
normal cortical appearance all associated with axon guidance defects [41, 42]. These
findings suggest that different tubulin isotypes have specific roles in cortical development
and tubulin disorders will be reviewed in this issue by Tischfield at al. We will focus on
what these genes can tell us about the etiology of polymicrogyria, which mechanistically is
the most elusive of the cortical malformations.

Polymicrogyria is a common cortical malformation and is extremely variable in appearance
and topography in both imaging and neuropathology studies [9] occasionally accompanying
different cortical disorders. The actual cellular mechanisms of this malformation are unclear
and recent comprehensive analyses of hundreds of patients with polymicrogyria suggest that
it may in fact comprise several different disorders [43, 44]. One possible mechanism for this
loss of cortical organization was suggested by studies on the GPR56 gene, which causes
bilateral frontoparietal polymicrogyria (BFPP) in humans [45]. In the Gpr56 knockout
mouse there are regional cortical organization defects where the radial glia orientation is
disrupted and the basal lamina is discontinuous, leading to neuronal overmigration to the
pial surface [46] (Fig. 1C). These findings are remarkably similar to those observed in both
patient neuropathology and animal models of cobblestone lissencephaly, which is often seen
in association with a-dystroglycanopathies, and is also characterized by a disruption of the
basal lamina, cortical dysplasia and overmigration, primarily due to defects in the radial glial
progenitors [47-49], supporting the hypothesis that BFPP and cobblestone lissencephaly
may lie on the same spectrum and belong to a common migration disorder caused by radial
glial disruption [9, 50].
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Unexpectedly, neuropathology studies identified a similar disruption of the radial glial
scaffold and neuronal overmigration in a 27-week fetus carrying a dominant missense
mutation in TUBB2B, which causes asymmetric polymicrogyria of predominantly frontal
distribution [39]. Mechanistically, mutations in these genes appear to lead to radial glial
instability via different means, loss of interaction with the basal membrane in the case of
Gpr56 [46] and dystroglycan [47], and cytoskeletal destabilization for TUBB2B [39, 51]. An
analogous phenotype in the mouse is also observed when the meninges are missing due to
mutations in the Foxcl gene [52, 53], suggesting an additional role of structures outside the
cortex in regulating its development (also reviewed in this issue).
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Together, these findings illustrate how multiple different genetic defects in functionally
distinct processes regulating a common structure, the radial glial scaffold, may lead to
related anatomical malformations. It will be important to determine whether the radial glia is
disrupted in other forms of polymicrogyria, in particular those associated to mutations in
TUBAS8 or TUBB3, or WDR62 which also show instances of cobblestone cortex. Other forms
of polymicrogyria may have a different origin altogether and only more complete genetic
and functional characterizations will help sort through this heterogeneity.

The future

The heterogeneity of clinical presentations of cortical malformations and of the genetic
causes of these disorders is staggering, but by organizing the disease genes in functional
groups and modeling the genetic lesions and functional interactions in the mouse cortex, we
can begin to understand how these genes contribute to normal and abnormal cortical
development. As these mechanisms are unraveled, the variability of brain phenotypes
becomes less daunting as multiple developmental defects can be explained by different roles
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of the same gene or the concerted function of groups of genes. Due to the speed in the
identification of novel cortical malformations genes in recent years, several mouse models
still need to be generated and crossed with the existing ones. However, due to obvious
limitations in the mouse cortex, such as the lack of gyration, more detailed neuropathology
and better imaging in human brains are also necessary to instruct or corroborate findings in
the mouse.

Multiple genetic causes of cortical malformations are still unknown, particularly as it
pertains to polymicrogyria and cobblestone lissencephaly, where extreme genetic and
clinical heterogeneity makes linkage studies arduous. Next generation sequencing
technologies will surpass the heterogeneity via the sequencing every coding region in the
genome or the entire genome of each affected individual and family members (whole-exome
or whole-genome sequencing) in order to complete the catalogue of disease mutations. This
will help build a framework to start identifying functional groups of genes and separating
disorders in different functional categories to illuminate how the cerebral cortex is
assembled.
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A. Stages of normal cortical development
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Figure 1. Examples of abnormal cortical development leading to malformations

A. Normal cortical development results from a balance of progenitor cell proliferation,
neurogenesis and neuronal migration, leading to normal cortical lamination. Progenitor cells
are in yellow and neurons are in blue, for simplicity only one of the cortical layers is shown
here. Abbreviations: CP, cortical plate, VZ, ventricular zone. B. Centrosomal defects can
lead to different malformations: microcephaly (i), where progenitor proliferation is reduced,
sometimes due to the formation of abnormal mitotic spindles, and neurogenesis is
anticipated; or lissencephaly (ii), where a thickened, disorganized cortical plate is generated
following migration defects, reduced cell motility, disrupted leading process formation,
uncoupling of the centrosome and nucleus during nucleokinesis. C. Disruptions in the
orientation of the radial glial scaffold, such as observed in cobblestone lissencephaly and
some forms of polymicrogyria, lead to cortical dysplasia and neuronal overmigration
through the basal lamina on the pial surface.
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