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Abstract
This study developed and assessed a computerized scheme to detect breast abnormalities and
predict the risk of developing cancer based on bilateral mammographic tissue asymmetry. A
digital mammography database of 100 randomly selected negative cases and 100 positive cases for
having high-risk of developing breast cancer was established. Each case includes four images of
craniocaudal (CC) and mediolateral oblique (MLO) views of the left and right breast. To detect
bilateral mammographic tissue asymmetry, a pool of 20 computed features was assembled. A
genetic algorithm was applied to select optimal features and build an artificial neural network
based classifier to predict the likelihood of a test case being positive. The leave-one-case-out
validation method was used to evaluate the classifier performance. Several approaches were
investigated to improve the classification performance including extracting asymmetrical tissue
features from either selected regions of interests or the entire segmented breast area depicted on
bilateral images in one view, and the fusion of classification results from two views. The results
showed that (1) using the features computed from the entire breast area, the classifier yielded the
higher performance than using ROIs, and (2) using a weighted average fusion method, the
classifier achieved the highest performance with the area under ROC curve of 0.781±0.023. At
90% specificity, the scheme detected 58.3% of high-risk cases in which cancers developed and
verified 6 to 18 months later. The study demonstrated the feasibility of applying a computerized
scheme to detect cases with high risk of developing breast cancer based on computer-detected
bilateral mammographic tissue asymmetry.
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1. INTRODUCTION
Although periodic mammographic screening results in earlier detection of breast cancers and
reduces patient’s mortality rate [1], visually interpreting mammograms and detecting cancer
is quite difficult, due to a large variability of breast abnormalities, dense fibro-glandular
tissue overlapping, and low cancer prevalence of 3 to 5 cancers detected per every 1,000
examinations in the population-based screening environment [2]. As a result, the efficacy of
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mammography screening remains a very controversial issue to date [3]. To improve the
efficacy of breast cancer prevention and/or screening programs, such as detecting more early
cancer cases without increasing false-positive rates, accurately classifying women into two
groups of high and low risk of developing breast cancer is one important approach. Such
risk stratification approach can also help to optimally allocate cancer prevention and
diagnostic resources to the high-risk women and potentially reduce the overall medical cost
of the society. In cancer epidemiology field, many breast cancer risk models have been
proposed and tested for this purpose, but most of these models did not include breast density
as a risk factor [4]. Recent studies have shown that after age, breast density was the
strongest breast cancer risk factor discovered to date [5] and among many different methods
to assess breast density, mammographic tissue density measured by the percentage or ratio
between the fibro-glandular tissue area and the entire segmented breast area depicted on the
mammogram was a much stronger risk predictor than the others including the popular Wolfe
model that classifies mammographic parenchymal patterns into four categories based on
radiographic appearance of prominent ducts and dysplasia [6]. The mammographic tissue
density has also been proved to be associated with some of genetic risk factors including
BRCA1 and BRCA2 gene mutation [7]. As a result, researchers have suggested that the
mammographic density should be included into the breast cancer risk models to improve
their discriminatory power on individual women [8]. Meanwhile, assessing mammographic
tissue density is routinely performed by radiologists in the clinical practice. Currently, the
most widely used standard for assessing breast tissue density is using the Breast Imaging
Reporting and Data System (BIRADS) established by the American College of Radiology
[9]. Fig. 1 displays an example of four digital mammograms depicting breast tissue density
in four BIRADS categories.

Since visual assessment of mammographic density into four BIRADS categories is difficult
and often inaccurate due to the large inter-observer variability [10], a number of research
groups have developed computerized algorithms and schemes to detect and quantify breast
tissue density based on a variety of features including the image statistic features of the pixel
values, such as mean, standard deviation, skewness, kurtosis, entropy, and the other higher
order momentum based measures, computed from the original and/or processed images, the
mathematical morphology and texture based features, such as power spectrum and fractal
dimension [11–18]. For example, Zhou et al. reported developing an automated method to
segment fibro-glandular breast tissue based on an adaptively determined histogram-based
threshold. The study reported that the correlation between the automated and radiologists’
visual segmentation of the fibro-glandular tissue ratios was 0.94 and 0.91 for CC and MLO
view images, respectively [13]. Oliver et al. also reported a correlation of 0.81 between an
automated scheme and radiologists’ assessment on mammographic tissue density [19]. By
computing eight texture-based features and deriving a computerized index to mimic
radiologists’ BIRADS rating, Chang et al. reported that the correlation between the
computerized index and the average rating of three radiologists in assessing mammographic
tissue density was 0.87, which was also comparable to the correlation levels between
radiologists [14]. Recently, several groups have developed and tested support vector
machine (SVM) based feature classifiers to detect and classify images that depict fatty,
glandular and dense tissue. The reported SVM classification accuracy ranged from 93.7% to
95.4% [20, 21]. In addition, previous studies have investigated whether using the computed
mammographic tissue density and texture features was able to classify women into two
groups with and without carrying BRCA1/BRCA2 gene mutation [22, 23]. Using a database
of 172 cases that include 30 women carrying BRCA1/BRCA2 gene mutation and the power
spectral analysis based on the manually selected regions of interest (ROIs) depicted on CC
view images, the classification performance measured with the area under receiver operating
characteristic (ROC) curve of AUC = 0.9 was reported [23].
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Although a large number of studies have been conducted in the breast cancer research field
to develop and assess breast cancer risk prediction models or schemes based on many
known risk factors including mammographic tissue density, one important fact is that more
than 60% of breast cancers actually arise or diagnosed in the women without any known risk
factors [4, 24]. Thus, the currently available breast cancer risk prediction models have very
limited discriminatory power or positive predictive value to correctly identify which
individual women are highly likely to develop breast cancer in the period of interests [8]. To
increase the positive predictive value of cancer risk prediction, we investigated and tested a
new approach based on a number of well-known facts including that (1) humans naturally
show bilateral symmetry in paired morphological traits including two breasts [25], (2) breast
asymmetry is one of very few radiographic image phenotypes that relates to the biology
process [26], (3) radiologists routinely examine bilateral mammographic tissue asymmetry
to detect early suspicious lesions, and (4) using computerized schemes can achieve more
reliable and/or consistent results in assessing mammographic tissue density or patterns by
avoiding the inter-observer variability. Despite these well-known facts and the other related
studies (i.e., predicting the risk of developing breast cancer based on the asymmetry of
bilateral breast sizes measured from mammograms [25] and detecting the subtle malignant
masses based on analysis of bilateral breast asymmetry using MRI images [27]), the bilateral
mammographic tissue asymmetry has not been investigated in any of previously developed
breast cancer risk assessment models [4]. Therefore, the hypothesis of our approach is that
using a computerized scheme, one can more accurately and consistently detect and assess
bilateral mammographic tissue asymmetry, and hence be able to increase the positive
predictive value in identifying women with high-risk of developing breast cancer. Flagging
these high-risk cases may ultimately help radiologists detect more breast cancers at an early
stage. To test this hypothesis, we have developed and preliminarily tested a unique
computerized scheme based on the bilateral mammographic tissue density asymmetry [28].
In our previous study, we only used bilateral mammographic tissue asymmetrical features
computed from the entire breast areas of two cranio-caudal (CC) view images [28]. In this
study, we first investigated and compared the scheme classification performance using the
optimally selected mirror-matched regions of interest (ROIs) and the entire segmented breast
areas depicted on two bilateral CC view images. We then investigated and assessed whether
adding bilateral breast tissue asymmetry computed from medio-lateral oblique (MLO) view
images into the scheme and fusing classification results from both CC and MLO view
images can significantly improve the classification performance of the scheme.

2. MATERIALS AND METHODS
2.1. An image dataset

A total of 200 cases were selected from an ascertained full-field digital mammography
(FFDM) image database pre-established in our research laboratory [29]. In brief, the FFDM
database includes a total of 6478 FFDM images acquired from 1120 women who underwent
regular mammography screening examinations in our medical center between 2006 and
2008. Some of the women had multiple sequential FFDM examinations during this period of
time. All examinations were acquired using Hologic Selenia (Hologic Inc., Bedford, MA)
FFDM systems. From this database, we randomly selected 200 cases, each of which
contains four FFDM images representing both CC and MLO views obtained from the left
and right breast of a woman. Thus, a total of 800 FFDM images were included in the
dataset. Of these 200 cases, 100 were randomly selected from the negative cases that were
not-recalled during the screening mammography, and 100 were positive cases for high risk
of developing breast cancer. Among these 100 positive cases, 39 were prior examinations of
verified cancer cases and 21 were prior examinations of the detected interval cancers. All
these prior examinations were interpreted as negative during the original screening
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mammography and no dominant masses and/or micro-calcifications were considered
visually detectable by radiologists during the retrospective review. However, the cancers
were detected and verified either during the next annual screening examination that were 12
to 18 months later for the 39 cancer cases or between two periodic screening examinations
that were 6 to 9 months later for 21 interval cancer cases. The other 40 cases were recalled
due to suspicious findings on the images, in which 8 were determined as high-risk pre-
cancer cases with surgical excision of the lesions and 32 were eventually biopsy-proved
benign cases. The majority of cases, namely 28.5% (57/200) and 61% (122/200), were rated
by radiologists as heterogeneously dense (BIRADS II) and extremely dense (BIRADS III),
respectively (Table 1).

2.2. Feature extraction and normalization
The first step of our computerized scheme is to automatically segment the breast tissue area
depicted on each image and detect two landmarks including nipples and the chest wall. The
detailed description of this step has been reported in our previous study [30]. In brief, the
scheme first detects the orientation of an image of the left or right breast and automatically
flips the image of right breast. Thus, the chest walls of the breasts always align on the left
side (edge) of the image. Second, based on the grey level histogram of the image, the
scheme applies an iterative searching method to detect the smoothest curvature between
breast tissue and the air background as representing the skin line that is the interface
between breast tissue and air background. All air-background related pixels depicted on the
image are removed from the segmented breast area. Third, the scheme detects the chest wall.
Since the chest wall is often outside the depicted field of view on the CC images, for the
purpose of this work, our scheme is only applied to detect the chest wall depicted on each
MLO view image. The scheme horizontally scans the breast image from left to right and
searches for the pixel with the maximum gradient. Then, the chest wall is detected by
employing linear regression to fit all identified pixels with the maximum gradient on each
scan. After detecting the chest wall, all pixels located inside the chest wall (the pectoral
muscle region) are also excluded from the segmented breast area. Finally, the scheme
detects the nipple by searching either a small protruding area or a relatively low density
smooth area along the detected skin line. In this study, the results of automated breast area
segmentation and landmark detection on each of 800 images selected in our testing dataset
were visually examined and manually corrected if errors were detected. In this experiment,
we manually corrected approximately 10% and 15% of computerized detected nipple
locations depicted on CC and MLO view images, respectively, as well as 21.5% of detected
chest wall locations and/or orientations.

From a large number of image features that have been previously investigated and used to
quantify or classify mammographic tissue density or patterns by several research groups
[11–18], we initially selected 20 features in our studies. The detailed descriptions of these 20
selected features are presented in the appendix of this article. These features include image
statistics based features computed from the original FFDM image and the local pixel value
fluctuation mapping images (i.e., mean, standard deviation, skewness, and kurtosis), the
texture-based features of fractal dimension, and the features related to the simulated
BIRADS density ratings. In this study, we computed the same 20 features from the selected
regions of interest (ROIs) in the bilateral CC view images and the entire segmented breast
areas from the bilateral MLO view images. Two values of the same feature computed from
two matched regions depicted on the bilateral images were subtracted and the absolute
difference between these two values is used to represent bilateral mammographic tissue
asymmetry.

Unlike some of the previous studies that manually selected ROIs with 256 × 256 pixels
located in the central region behind the nipple [16, 23] to compute mammographic tissue
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related features, our scheme automatically selected the ROIs with sizes adaptively adjusted
based on the imaged breast size. Thus, the selected ROIs can cover the approximately
similar proportion of breast tissue regions that are independent to the variation of breast
sizes. Specifically, the size of each ROI is defined as d × d, where d equals to half of the
distance between the nipple and the edge of imaged breast area (close to the chest wall).
Using the mirror-matched concept, two ROIs will be defined and extracted from two
bilateral CC view images. If the sizes of the segmented breast areas vary between two
bilateral mammograms, the sizes of two extracted ROIs also vary. Fig. 2 shows an example
of two ROIs automatically extracted from two breasts with different sizes in CC view
images. From a pair of two matched ROIs, 20 features were independently computed and
two values of the same feature were subtracted to represent the region-based bilateral
mammographic tissue asymmetry. For each testing case, 20 image features were also
separately computed from the entirely segmented breast areas depicted on two bilateral
MLO view images and subtracted. In summary, to assess bilateral mammographic breast
tissue asymmetry, each feature used in this study is represented by the absolute difference
(subtraction) of two feature values computed from the two bilateral images.

Since the mean and standard deviation of feature values can vary widely among these 20
features, a feature normalization process was applied for each of 20 features Fi, i = 1,…,20.
The mean (μi) and standard deviation (σi) of each feature vector (Fi) from all of 200 testing
cases were computed. The values of each feature were normalized within the range between
[μi −2σi] and [μi + 2σi]. For each feature value, if Fij < μi − 2σi, it is assigned to μi − 2σi, if

Fij > μi + 2σi, it is assigned to μi + 2σi. Then normalized feature value  is computed by

(1)

Where Fj min and Fj max is the minimum and maximum value for each input feature Fj. As a
result, all feature values are normalized and distributed in the range from 0 to 1. Thus, in
building a multi-feature based machine learning classifier, all selected features have the
same weights in the classifier. Thus, two new initial feature pools were built in this study,
one containing 20 bilateral mammographic tissue asymmetric features computed from the
selected ROIs of CC view images and one including the same 20 features computed from
the entire breast areas depicted on bilateral MLO view images.

2.3. Feature selection and optimization of an artificial neural network
Based on the computed features described above, we built a multi-feature based artificial
neural network (ANN) to detect the level of bilateral mammographic breast tissue
asymmetry and used it to predict the likelihood of the cases being positive for having high-
risk of developing breast cancer later. An ANN is designed to simulate a biological learning
system with a densely interconnected set of simple units (neurons), where each neuron takes
a number of real-valued inputs and produces a single real-valued output [31]. Each ANN
built in this study has a simple three-layer feed-forward topology, which includes N input
neurons connecting to N selected features in the first layer, M hidden neurons in the second
layer, and one output neuron in the third layer. The relationship between the input neurons
(xi) and the output neuron (y) is determined by

(2)
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where wj is the weight from the jth hidden neuron to the output neuron, wji is the weight
from ith input neuron to the jth hidden neuron, θin and θhid are two bias neurons in the input
and hidden layer of the ANN, respectively. A nonlinear sigmoid function

(3)

is used as the activation function for each process neuron, where Opj is the jth element of the
output pattern produced by the input pattern Opi. Using a back-propagation training concept,
the weights that link between the neurons are iteratively adjusted and computed as follows:

(4)

Where is the η learning rate, α is momentum that determines the effect of past weight
changes on the current changes, k is the number of iterations, and δpj is the mean squared
error (MSE) between the desired and actual ANN output value. Using a set of training data -
feature vectors, the ANN is iteratively trained to reduce the error and minimize the
difference between the desired and actual ANN output values. The decision neuron
generates a likelihood score ranging from zero to one [32]. The greater score, the higher risk
the case has to develop breast cancer.

Since selecting an optimal feature set through the process of discarding redundant features is
an important step in developing any data-driven computerized schemes, we applied a genetic
algorithm (GA) in this study to build an optimal ANN by selecting a set of optimal features
from the initial pool of 20 features and determine the appropriate number of hidden neurons.
GA is a machine learning method to simulate biological evolution process in which GA
generates successor chromosomes by repeatedly mutation and recombining parts of the best
currently known chromosomes [31]. Once the GA chromosomes are specifically coded to
represent a machine learning classifier and the GA iteration process is guided by an
application-based fitness function or criterion, GA can generate a classifier that achieves the
optimal performance. A publicly available GA software package [33] was modified and
used in this study. During the GA optimization process, a binary coding method was applied
to create GA chromosome strings that represent which features are either selected or
discarded and the number of selected hidden neurons. Specifically, each GA chromosome
includes 24 genes. Among these, the first 20 genes represent 20 features related to the
bilateral mammographic tissue asymmetry. In these 20 genes, the code of 1 indicates that the
feature represented by this gene is selected and implemented in ANN and 0 means that the
feature is discarded. The last four genes indicate the number of neurons. For example, the
code of 0101 represents 5 hidden neurons. In the first generation, 100 GA chromosomes
were randomly generated by the GA program. Once a GA chromosome was selected, the
corresponding ANN structure was also determined. During the ANN training, a limited
number of training iterations (500) and a larger ratio between the training momentum (0.9)
and learning rate (0.01) was used to minimize over-fitting and maintain robustness of ANN
performance. Due to the size limitation of our dataset and reduction of training bias, a leave-
one-case-out training and testing method [34] was implemented to train and assess
performance of the ANN built by the specific GA chromosome. During the process of
training and assessing each ANN, 199 cases were used to train the ANN and one remaining
case was used to test the ANN. This process was repeated 200 times, so that each case in the
dataset was used once to test the classifier. The ANN-generated detection (classification)
scores of all 200 cases were read and analyzed by a ROC curve fitting program (ROCKIT
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[35]). The computed area under the ROC curve (AUC) was used as a summary index to
assess ANN performance. If the ANN yielded higher performance, the corresponding GA
chromosome has the higher probability to be selected by the GA program to generate the
new chromosome in the next generation using the crossover and mutation process. The GA
optimization is terminated when no significant performance improvement can be achieved
or the number of iterations reaches the predefined maximum iteration generations. In this
study, the maximum iteration generation was 100.

In summary, using this GA optimization process, we independently optimized two ANNs
using two initial feature pools including the bilateral mammographic tissue asymmetrical
features computed from (1) the ROIs with adaptive size extracted from the central regions of
two bilateral CC view images and (2) the entire segmented breast areas depicted on two
bilateral MLO view images.

2.4. Performance assessment
After GA optimization, the classification performance levels of two ANNs measured by the
areas under ROC curves (AUC) were separately computed using ROCKIT program. By
including another previously optimized ANN using the bilateral mammographic tissue
asymmetric features computed from the entire segmented breast areas depicted in two
bilateral CC view images [28], we compared the performance levels of three ANNs using
the features computed from either the selected ROIs or the entire segmented breast area
depicted on a single view (CC or MLO) images. To test whether the risk assessment
performance can be further increased by combining the results acquired from bilateral
images of different views, we also tested several ANN scoring fusion methods as reported in
the previous study for the similar fusion purpose [36] to select or combine the classification
results (detection scores) acquired from CC and MLO views of the same test cases. We
generated several sets of new detection scores (Snew) from the ANN-generated detection
scores in CC (SCC) and MLO (SMLO) view, which includes selecting the maximum score
Snew = MAX (SCC, SMLO), the minimum score Snew = MIN (SCC, SMLO), and computing a set
of weighted average detection scores Snew = (W1 × SCC + W2 × SMLO)/2, in which W1 and
W2 are different weights ranging from 0.5 to 1.5 in this study. Each set of 200 detection
scores for 100 positive and 100 negative cases were reprocessed by ROCKIT program to
generate a new performance index (AUC). The results of different fusion methods are
analyzed and compared. In addition, we analyzed and reported changes in the actual
sensitivity levels for detecting different types of cases including verified cancer cases, high-
risk pre-cancer cases recommended for surgery excision based on current clinical guidelines,
and other recalled cases with biopsy, as well as the relationships between classification
results and several clinical features at a set of specificity levels from 80% to 95%.

3. RESULTS
From the initial 20 features, GA independently generated three optimal ANNs with different
features and structures as shown in Table 2. Among these 20 features, 12 were selected
either once (6) or twice (6) used in three ANNs. No single feature was selected and used in
all three ANNs. The number of input neurons was 6, 5, 7 and the number of hidden neurons
was 8, 5, and 8 for these three ANNs, respectively. Table 3 shows and compares the
classification performance levels of applying each of three ANNs to each of three feature
datasets extracted from the entire segmented breast areas depicted on either CC or MLO
view images as well as from the adaptively selected ROIs from CC images. The results
indicated that due to the difference among the three methods to extract the bilateral
mammographic tissue asymmetry, GA was able to adaptively select a small set of effective
features (ranging from 5 to 7) and discard the majority of others based on the specific
training feature datasets. As a result, the GA-optimized ANN for each feature extraction
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method or dataset has its own unique structure including the selected input features and the
number of hidden neurons.

Fig. 3 shows and compares three ROC performance curves generated by three GA-
optimized ANNs. The areas under ROC curves (AUC) ranged from 0.688 ± 0.027 to 0.754 ±
0.024. Although the ANN optimized using the features extracted from the entire breast areas
depicted on CC view images yields the highest performance, the ANOVA (analysis of
variance) test shows that the performance levels of three ANNs is not significantly different
from each other with three p-values ranging from 0.12 (using the entire breast areas and
ROIs depicted on CC view images) to 0.76 (using the entire breast areas depicted on MLO
view images and ROIs depicted on CC view images).

Table 4 summarizes and compares the classification performance levels of two ANNs
optimized using features computed from the entire segmented breast areas depicted on CC
and MLO views as well as the performance levels yielded using three basic scoring fusion
methods namely, the average, the minimum, and the maximum of detection scores generated
by these two ANNs. The correlation coefficients of two sets of ANN-generated detection
scores between using two bilateral CC and MLO view images are 0.486 (for positive cases)
and −0.201 (for negative cases), respectively. Comparing three scoring fusion methods,
using both maximum and minimum scores the classifier yielded the lower performance
levels than using the scores generated from the ANN using features computed from the
entirely segmented breast area depicted on CC view images only, while using average
scores, the classifier yielded comparable performance with AUC = 0.754±0.024 versus AUC
= 0.756±0.026. Table 5 summarizes and compares the performance levels of applying the
weighted average scoring fusion method in which the weights varied from 0.5 to 1.5 on the
detection scores generated by two ANNs that use the features computed from the entire
breast areas depicted on either CC or MLO view images. The best classification
performance was AUC = 0.781±0.023 achieved using the weight of 1.25 on the CC view
and 0.75 on the MLO view images, which is significantly higher than using features
computed only from CC or MLO view (p < 0.05).

Table 6 summarizes the actual number of positive cases correctly detected and classified by
our scheme when using the weighted average scoring method to combine detection results of
two ANNs at four specificity levels (from 80% to 95%). The sensitivity levels applying to
this testing dataset with 100 positive cases are 49% and 59% at specificity levels of 90% and
80%, respectively. Specifically, our scheme detected 59 and 79 “positive” cases at these two
specificity levels. Among the 59 detected cases at 90% specificity, 49 are true-positive (TP)
cases and 10 are false-positive (FP) cases, while among the 79 detected cases at 80%
specificity, 59 are TP and 20 are FP cases, Thus, the positive predictive values (PPV) are
0.83 (49/59) and 0.75 (59/79) at these two specificity levels, respectively. By analyzing the
sensitivity levels for four different high-risk sub-groups namely, the prior examinations of
the cancer cases and the interval cancer cases, as well as the high-risk cases with surgery
excision of the lesions and the recalled suspicious cases with biopsy-proved benign lesions,
we found that although the classifier was not specifically trained with cancer cases only
rather trained using a mix group of positive high-risk cases, it yielded a higher classification
sensitivity on actual cancer cases than the other suspected benign cases. For example, at
90% specificity, 58.3% (35/60) cancer cases were detected at 6 to 18 month early, while
34.4% (11/32) recalled benign cases were detected as the positive for high-risk of
developing breast cancer. The classification results also showed that the performance of our
scheme was not affected by breast density levels. At 90% specificity, our scheme detected
50% (2/4), 50% (13/26), 50% (32/64), and 33% (2/6) positive (“high-risk”) cases at each of
four BIRADS categories (1 to 4), respectively.
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4. DISCUSSION
This study supported no matter whether the features were computed from the mirror-
matched ROIs or the whole segmented breast areas depicted on the bilateral CC or MLO
view images, using bilateral mammographic tissue asymmetry related features was able to
classify women into two groups of high and low risk of developing breast cancer with
relatively higher positive predictive value (PPV) than the currently available breast cancer
risk models [4]. For example, PPV = 0.90 (44/49) for all positive high-risk cases or PPV =
0.63 (31/49) for cancer cases only at 95% specificity (Table 6). The results demonstrated
that after one baseline mammography examination, a new computerized scheme using a set
of bilateral mammographic tissue asymmetry related features was able to detect or flag a
higher fraction of high-risk cases for developing breast cancer six to 18 months later.

Although using the local-based bilateral mammographic breast tissue asymmetry has been
tested to detect suspicious breast masses by several groups in developing computer-aided
detection (CAD) schemes [37–39], this approach has not been implemented in any
commercialized CAD schemes to date due to the difficulty of bilateral mammogram
registration. Our approach to compute bilateral mammographic tissue asymmetry is
different. Unlike the commercialized CAD schemes that focus on detecting subtle but
visually detectable masses and micro-calcification clusters depicted on single digitized or
digital mammograms [40], our scheme does not target and detect any specific lesions. We
detected bilateral mammographic tissue asymmetry without performing automated image
registration to avoid the potential registration error between two bilateral images. Hence, our
computerized risk assessment scheme does not directly compete with the conventional CAD
schemes due to the different application purposes. All images in our database were
interpreted as negative or benign by the radiologists during the original mammographic
screening. Without the dominant and visually detectable masses or micro-calcifications
depicted on the images of these examinations, applying the conventional CAD schemes to
process these images can only generate false-positive detections (marks) that cannot help
radiologists in their interpretation of these images. However, our scheme is able to flag
warning signs for the cases with high-risk of developing breast cancer based on the detection
and analysis of the bilateral mammographic tissue asymmetry. The results may attract
radiologists more attention to analyze or monitor (follow-up) these cases and eventually help
them to detect a large fraction of cancers early.

Although the results are encouraging, we recognized that this was a very preliminary study
using a small dataset which cannot be adequately cover or represent the actual population
base in the clinical practice. Thus, the actual performance level and the robustness of this
scheme needs to be further tested in future studies. In addition, due to the limitation of
dataset size, we used the leave-one-case-out training and testing method in which features
were normalized based on the entire dataset of 200 cases. This is different from the
traditional feature normalization method only based on the training dataset. However, based
on our experiments, we found that the difference of the feature normalization between using
the entire 200 cases and adaptively using 199 training cases was negligible. Hence, the
reported testing results are valid when using our dataset and the leave-one-case-out testing
method.

At our current research stage, we only selected and computed mammographic density or
texture based features that have been investigated by other researchers in previously
reported studies and proved to be effective in quantifying the breast tissue density or
patterns depicted on single mammogram [12–18, 22, 23]. However, the difference of our
study is that we investigated the effectiveness of these features in correlating with bilateral
mammographic tissue asymmetry. Thus, all features used in this study were represented as
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the absolute differences or subtraction of the same features computed from two bilateral
mammograms. The study results demonstrated that a genetic algorithm was able to select a
set of optimal features to detect bilateral mammographic tissue asymmetry and build an
optimal machine learning classifier (e.g., an ANN) to predict a fraction of cases with high-
risk of developing breast cancer. In addition, we also investigated and compared our scheme
performance levels using the features extracted or computed from either adaptively selected
ROIs or the entire segmented breast areas of mammography images in both CC and MLO
view images. Although using the global features computed from two bilateral CC view
images our scheme yielded the relatively higher performance than using the features
computed from MLO view images (as shown in Fig. 3), the correlation coefficients of the
ANN-generated detection scores between using features extracted from CC and MLO view
images are relatively lower. Thus, applying the scoring fusion method to select or combine
two sets of detection scores is able to further improve the classifier performance. Due to the
higher classification performance generated by the ANN using global features computed
from CC view images than that using MLO view images, higher weights needs to be added
in the classification scores generated from the ANN using CC view images than using MLO
view images. In this study, when using the weight ratio of 1.25 on CC view to 0.75 on MLO
view, the scheme yielded the best classification performance (Table 5). Hence, the bilateral
mammographic breast tissue asymmetrical features computed from both CC and MLO
views can make contribution to improve the final classification performance of our scheme.

In summary, we investigated and assessed several issues to optimize a unique computerized
scheme that is able to flag or classify a fraction of women with high-risk of developing
breast cancer within the period of interest namely (i.e., 6 to 18 months in this preliminary
study). The robustness of the scheme performance needs to be further tested using large and
diverse image databases in the future studies. If it succeeds, this computerized scheme with
high positive predictive value may eventually provide a new and reliable breast cancer risk
stratification tool to identify a group of women with high-risk of developing breast cancer at
an early stage.
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APPENDIX: Summary of 20 bilateral mammographic tissue asymmetric
features

The selected 20 features are divided into five groups. Each is computed by the subtraction
(the absolute difference) of two same feature values computed from two bilateral images.

Group 1
This group includes 5 features computed from the gray level histogram of the segmented
breast area.

1
, where NM is the number of pixels within the bin of the maximum value

inside the histogram, and N is the total pixel number of the segmented breast
area.

2
, where NH is the number of pixels with gray value larger than the

average value of the histogram.

3

, where m is the total number of histogram bins, Hi and
Hi+1 are two histogram values in two adjacent histogram bins (i and i+1)
representing the average local value fluctuation of the histogram.

4

, the mean of histogram values.
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5

, the standard deviation of histogram values.

Group 2
We converted the original image of the segmented breast area into a local pixel value
fluctuation map by applying a 5×5 square convolution kernel to scan the original image. The
absolute pixel value differences between the center pixel (i) and each of the other pixels (j)
inside the kernel were computed. The maximum difference value (PFi) computed inside the
kernel was used to replace the original pixel (i) value in the map. This group includes 3
features computed from this converted map.

6

, mean of the pixel value in the map.

7

, the standard deviation of the pixel values in the
map.

8

, the skewness of the pixel values in the map.

Group 3
This group includes 2 fractal dimension based features reported by Chang et al [14].

9 F9 is a slope of a log scale fitted regression line between a kernel (k), k = 4×n +
1, n = 1,2,3,4,5. and the F (k) by Gaussian functions:

, Where  is a low-pass filtered image by
Gaussian functions.

10 F10 is a slope of a log scale fitted regression line between the distance (t) of the

pixels and the gradient  within
the region (R).

Group 4
This group includes 4 conventional statistical data analysis features computed from the pixel
value distributions of the segmented breast areas.

11

, the mean of all pixel values (Ii, i = 1,2,…, N).

12

, the standard deviation of all pixel values.

13

, the skewness of all pixel values.
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14

, the kurtosis of all pixel values.

Group 5
This group includes 6 features that mimic the BIRADS rating method to divide the
segmented breast area into four regions based on the pixel value.

15 – 17
, where Ī25%, Ī50%, Ī75% are the average

gray value of the pixels under three thresholds of 25%, 50%, 75% of the
maximum pixel value, respectively.

18 – 20
, where N25%, N50%, N75% are the

number of the pixels with pixel values smaller than three thresholds
representing 25%, 50%, and 75% of the maximum pixel value inside the
segmented breast area.
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Fig. 1.
Four example images showing mammographic breast tissue density rated by radiologists in
four BIRADS categories including (a) BIRADS 1 - almost entire fatty, (b) BIRADS 2 -
scattered fibro-glandular density, (c) BIRADS 3 - heterogeneously dense, and (d) BIRADS
4 - extremely dense.
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Fig. 2.
Two regions of interest adaptively selected and extracted from two breasts with different
sizes in CC view.
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Fig. 3.
Comparison of three ROC curves generated by three ANNs trained using the features
computed from the selected ROIs, the entire segmented breast areas depicted on either MLO
view or CC view images. The areas under these three ROC curves are 0.690± 0.026, 0.688±
0.027, and 0.754± 0.024, respectively.
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Table 1

The distribution of BIRADs rating in 100 negative and 100 positive cases of the testing dataset

BIRADS I BIRADS II BIRADS III BIRADS IV

Negative 4 31 59 6

Positive 4 26 63 7
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Table 2

Summary of three GA-optimized ANNs using bilateral mammographic tissue asymmetry related features
computed from the entire segmented breast areas depicted on either CC or MLO view images as well as from
the selected ROIs from CC images

ANN Input neurons Hidden neurons Output neurons Selected input features

Entire breast areas in CC view 6 8 1 1,4,8,11,12,13

Entire breast areas in MLO view 5 5 1 3, 8, 10, 14,20

Selected ROIs in CC view 7 8 1 1,4,11,12,13,15,17
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Table 3

Comparison of AUC for using the same ANN structure and input features extracted from the entire segmented
breast areas depicted on either CC or MLO view images as well as from the selected ROIs from CC images

Input– hidden– output neuron

AUC

6-8-1 5-5-1 7-8-1

Entire breast areas in CC view 0.754 0.653 0.721

Entire breast areas in MLO view 0.558 0.688 0.549

Selected ROIs in CC view 0.681 0.569 0.690
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Table 6

The actual number of positive cases correctly identified (sensitivity levels) at four specificity levels when
using the optimal weighted average scoring method to combine the detection results of two ANNs using the
features computed from CC and MLO view images.

Specificity 95% 90% 85% 80%

All positive cases 44 (44.0%) 49 (49.0%) 54 (54.0%) 59 (59.0%)

39 cancer cases 18 (46.2%) 21 (53.8%) 23 (59.0%) 26 (66.7%)

21 interval cancer cases 13 (61.9%) 14 (66.7%) 14 (66.7%) 14 (66.7%)

8 high-risk cases 2 (25.0%) 3 (37.5%) 4 (50.0%) 5 (62.5%)

32 recalled benign cases 11 (34.4%) 11 (34.4%) 13 (40.6%) 14 (43.8%)
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