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Abstract
SPARC (a secreted protein acidic and rich in cysteine) has a reputation for being potent anti-
cancer and anti-obesity molecule. It is one of the first known matricellular protein that modulates
interactions between cells and extracellular matrix (ECM) and is associated with the ‘balance’ of
white adipose tissue (WAT) as well as lipogenesis and lipolysis during adipogenesis.
Adipogenesis is an indication for the development of obesity and has been related to a wide
variety of cancers including breast cancer, endometrial cancer, esophageal cancer, etc.
Adipogenesis mainly involves ECM remodeling, changes in cell-ECM interactions, and
cytoskeletal rearrangement. SPARC can also prevent hypertrophy of adipocytes and hyperplasia of
adipocyte progenitors. In addition to SPARC’s inhibitory role in adipogenesis, it has also been
known to be involved in cell cycle, cell proliferation, cell invasion, adhesion, migration,
angiogenesis and apoptosis. Molecular cancer biology and clinical biochemistry have significantly
enhanced our understanding of the mechanisms that motivate the anti-cancer and anti-obesity
action of SPARC. Recent studies elucidating the signaling pathways that are activated by SPARC
can help develop the beneficial aspects of SPARC for cancer therapy and obesity prevention. This
review focuses on the anti-cancer role of SPARC as it pertains to obesity.
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Introduction
Recent contribution of research in the areas of physiology, biochemistry, molecular biology,
endocrinology, nutrition, pathology and molecular genetics has resulted in new scientific
advances that have enhanced the efficacy of cancer therapy. Despite multimodal treatment
regimens including surgery, radiation, and chemotherapy, tumor recurrence is frequent, and
most of these patients eventually die from progressive tumorigenesis.1 Many of these
treatments are also toxic and can lead to long-term disabilities.2, 3 Consequently, finding
novel ways to suppress tumor growth using low-toxicity therapies is a major goal of various
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cancer research laboratories. Many groups have demonstrated tumor growth inhibition by
targeting potent intra- or extra-cellular molecules.4, 5 SPARC (Secreted protein, acidic and
rich in cysteine), a well-known matricellular molecule is known to be involved in multiple
processes in various cancers (Table. 1).6

SPARC is also known as osteonectin and basement-membrane protein and is secreted by
endothelial cells.7–9 Initially discovered as a component of bone, SPARC is also expressed
in epithelia showing high rates of turnover.10, 11 Immunocytochemical analysis of
embryonic chicken cells in vitro and in vivo show the presence of SPARC in the nucleus. In
addition, elution of soluble proteins and DNA from these cells show that SPARC may be a
constituent of the nuclear matrix.12 These evidences suggest that SPARC mediates
interactions between cells and components of the extracellular matrix. SPARC binds rapidly
to precise components of the extracellular matrix (ECM) and modulates the interaction of
cells.8 The ECM is a storehouse for a number of growth regulatory factors.13 Further, matrix
proteins modulate cell proliferation and migration.14, 15 The stimulation of growth in vitro
by ECM components has been attributed to morphological changes that result from
interactions between cells and their supportive matrices.16 Nevertheless, many matrix-
associated proteins also possess potential growth stimulatory activities that are autonomous
of their adhesive properties. SPARC is expressed in many cell types and its expression
increases during embryogenesis, adult bone tissues, wound healing, and tissue remodeling.

Even though earlier studies linked SPARC overexpression with bone mineralization, current
studies have shown that SPARC has pleiotropic effects on biological functions.
Phenotypically, SPARC-null mice develop age-related abnormalities due to unusual
differentiation of lenticular epithelial cells and partial fiber cell differentiation.17 SPARC
over-expression has been observed in human colorectal cancers (CRCs) that are sensitive to
chemotherapy, in contrast to therapy-refractory tumors.18 In vitro experiments have shown
the influence of SPARC on several cellular processes (Table. 1). SPARC has been shown to
inhibit cell adhesion to the extracellular matrix and modify cell shape.19 SPARC inhibits cell
cycle progression. SPARC also binds to collagens and other extracellular matrix proteins
and possibly plays a role in the organization of these components.20, 21 SPARC has been
shown to bind several growth factors including platelet-derived growth factor and vascular
endothelial growth factor and alter their biological activity.22, 23 SPARC indirectly
influences the effects of basic fibroblast growth factor, and transforming growth factor-β.24,
25 SPARC functions as a chemotherapy sensitizer by stimulating tumor deterioration in
response to radiation and chemotherapy in tumor xenograft models of chemotherapy-
resistant tumors.26 Following topics will be considered in this review.

1. Structure of SPARC
SPARC is an extracellular matrix-associated glycoprotein and product of a single-copy gene
mapped to mouse chromosome 11 and to the long arm of human chromosome 9. Sequence
analysis of SPARC gene in bovine, mouse, and human has revealed a high degree of
sequence similarity and an absence of canonical CAAT and TATA box sequences.
Vertebrate SPARC cDNAs encode proteins of 298–303 amino acids that are post-
translationally modified by N-linked glycosylation.27 The open reading frame (ORF) of
SPARC gene is conceptually translated into a putative protein consisting of a typical
hydrophobic signal peptide with 17 amino acids followed by mature protein (Fig.1).28 The
signal peptide is removed during processing. The mature peptide of SPARC consists of three
individual structural domains (Fig. 1) based on the predicted secondary structure and
thought to mediate precise biological activities.29 1. An N-terminal highly acidic calcium-
binding domain (low affinity) of 52 amino acids (Ala1-Glu52) that inhibits cell spreading,
prevents chemotaxis, enhances plasminogen activator inhibitor-1(PAI-1) and decreases
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fibronectin (FN) and thrombospondin-1 (TSP-1).30 2. A cysteine-rich (contains 10 cysteine
residues) FS-like domain is located between the N-terminus domain sequence and EC
binding domain. This FS-like domain is 85 amino acids (Asn53-Pro137) long and consists
of several internal disulfide bonds that stabilize two weakly interacting molecules. This
domain abrogates focal adhesions, promotes angiogenesis and proliferation. 3. EC-binding
domain (extracellular calcium-binding domain); high affinity, which is 149 amino acid
residues (Cys138-Ile286) at the C-terminus, Val -Ile where the Valine residue serves as an
amidation site, followed by a stop codon. This domain has two EF-hand motifs that bind to
calcium with high affinity, and comprise almost entirely of α-helices. This region induces
MMPs, interactions between cells and matrix, inhibits cell spreading, proliferation and
adhesion.9, 31, 32 Follistatin-like domain of SPARC has been shown to control the
proliferation of endothelial cells in vitro.33 Amino acids 54-73 (Cationic region 1) have been
shown to inhibit the proliferation of sub-confluent endothelial cells, while amino acids
113-130 (cationic region 2) stimulates DNA synthesis (Fig.1). The role of phosphorylation
in the function of SPARC is unclear. The posttranslational phosphorylation modification has
been reported in bone osteonectin and in SPARC from PYS-2 cells, it was not found in
SPARC produced by endothelial cells.9, 34, 35

2. Truncation of SPARC protein
Matrix metalloproteinases (MMP-2, -3, -7 and -13, plasmin and trypsin, have been shown to
cleave SPARC in vitro, producing KGHK-containing fragment.7, 36 The presence of
truncated form of SPARC protein has been recently reported in hepatocellular carcinoma
(HCC) samples and esophageal carcinoma.37, 38 Immunoblotting studies show higher levels
of truncated SPARC (24-27kDa) in tissues in comparison to intact SPARC (37-43 kDa).37

Interestingly, cell lysates do not show truncated SPARC indicating that the presence of
truncated SPARC in tissues may possibly be associated with the existence of certain
proteinases in the surrounding environment. Cleavage of SPARC by MMP3 produces
peptides containing the KGHK sequence that can stimulate angiogenesis.36 Alpers et al.39

have suggested that AON-5031(anti-SPARC) recognizes the N-terminal part (amino acids
5–23) of the mature SPARC protein. So, the truncated protein should have the N-terminal
half of intact SPARC, which contains the KGHK sequence located at amino acids 119–122
from the N-terminus (Genebank AN: BC072457). Truncated SPARC in the tumor sinusoidal
area has been correlated to the tumor microvessel density (MVD), suggesting that truncated
SPARC may play a significant pro-angiogenic role in HCC.37 Over-expression of SPARC
leads to a decrease in MVD, at least in part, resulting in delayed tumor formation and
reduction of tumor size. The decrease in MVD–CD34 observed in nude mice xenografts has
been attributed to the high expression of anti-angiogenic intact-SPARC. In clinical samples,
the positive relationship between SPARC protein expression and MVD has been probably
due to the low expression of anti-angiogenic intact-SPARC and high expression of pro-
angiogenic truncated-SPARC. Likewise, high expression of truncated-SPARC protein in
tumor sinusoidal areas has been associated with increased tumor MVD while over-
expression of full-length SPARC correlates with a decrease in tumor MVD, accompanied by
a delay in tumor formation and a decrease in tumor size. Importance of exact sequence and
the angiogenic properties of truncated- and intact-SPARC proteins observed in human liver
cancer will be the subject of many future studies.

3. Receptors and modulators for SPARC
Even though receptors have been discovered for some of the matricellular molecules, it
remains uncertain how SPARC cooperates with the cell surface to stimulate its effects.
Recent research has suggested that stabilin-1 and integrins α5 and β3 may mediate some of
the effects of SPARC.40, 41 Byzova and group 40 have shown that tumor cell migration
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attributed to SPARC is mediated by α5 β3 integrins and is controlled by an autocrine loop in
which VEGF engages VEGFR-2. Kzhyshkowska and group,41 using a phage display, have
proposed stabilin-1 as a cellular receptor for SPARC. Stabilin-1 interrelates with SPARC
through the extracellular epidermal growth factor (EGF)-like domain containing the
sequence FHGTAC. SiRNA knockdown of Stabilin-1 reduces SPARC expression, while
elevated SPARC level is observed in Stabilin-1 over-expressing cells.42 Stabilin-1 mediates
the internalization and delivery of SPARC to the endocytic pathway in stably transfected
CHO cells. These observations show that stabilin-1 acts as a specific and efficient receptor
in macrophages that mediates internalization of extracellular SPARC and its targeting to
lysosomes. ShRNA of SOX-5 in nasopharyngeal carcinoma (NPC) cells causes a significant
increase in SPARC. SOX-5 can bind directly to the SPARC promoter in a chromatin
immunoprecipitation assay signifying that SOX-5 acts as a vital transcriptional repressor of
SPARC.43 Exogenous TGF-β induces over-expression of both collagen and SPARC, while
this response is significantly attenuated in fibroblasts, pre-transfected with SPARC small
interfering RNA.44

4. DNA methylation
SPARC expression gets altered in both normal and tumor cells depending upon the tumor
type and culture conditions. Higher levels of SPARC expression have been observed in
some types of solid tumors, such as melanoma,45 glioblastomas,46 breast,47 and prostate48

while some others, such as endometrium, colorectal, and leukemia showed lower or
undetectable levels of SPARC due to SPARC promoter hypermethylation (Table. 1).49–53

These studies imply that carcinogenic effect of SPARC is cell type specific and may depend
on the tumor microenvironment. In general, alteration in DNA methylation involves DNA
methyltransferases (1, 3a and 3b) leading to inactivation of many tumor suppressor genes
during tumor growth.54, 55 DNA methylation is also involved in maintaining a normal
balance between cell proliferation and apoptosis in some cancer cell lines.56, 57 Several
studies have shown that changes in the methylation levels of SPARC promoter may lead to
SPARC silencing leading to tumor growth. For example, low SPARC expression in lung
cancer cell lines is due to DNA hypermethylation of the gene promoter. Consequently,
treatment with 5-Aza-2’-deoxycytidine leads to higher expression of SPARC in lung cancer
cells.58 Similar studies also demonstrated in colorectal cancer52 and pancreatic cancer cells.
51 5-Aza-2’-deoxycytidine is a demethylating agent and inhibits DNA methyltransferase
activity to upregulate SPARC expression. This mechanism leads to decreased cell viability
and improved response of cancer cells to chemotherapy.52

5. SPARC in adipogenesis
Obesity is a disorder that results from excess white adipose tissue (WAT) and has been
known as a risk factor for a wide variety of cancers including breast cancer, endometrial
cancer, esophageal cancer, colon cancer, rectal cancer, pancreatic cancer, kidney cancer,
ovarian cancer, cervical cancer and liver cancer.59, 60 Understanding the associations
between obesity, overweight and different types of cancers, as well as the underlying
biological mechanisms, remain a budding and presently very fascinating area of research.
WAT is an endocrine organ that plays a central role in the regulation of energy metabolism
mediating its biological effects by secreting a variety of peptide and protein hormones
(adipokines; such as leptin, adiponectin, visfatin, retinol-binding protein-4, tumor necrosis
factor and interleukin-6).60, 61 These adipokines target the central nervous system and
peripheral tissues (WAT, liver and muscle) to modulate energy metabolism.62–64

Adipogenesis or adipocyte differentiation is a greatly controlled process that has been
extensively studied for the last 35 years. Nutritional and hormonal signaling affects

Nagaraju and Sharma Page 4

Cancer Treat Rev. Author manuscript; available in PMC 2012 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



adipogenesis in a positive or negative manner, and factors involved in cell-matrix or cell-cell
interactions are also crucial in regulating the preadipocyte differentiation process. Multiple
signaling pathways regulate preadipocyte differentiation, including transforming growth
factor-β (TGF-β), tumor necrosis factor-α, Wnt, insulin/ insulin-like growth factor-1, and
other growth factors. The first characteristic feature of the adipogenesis process is the
remarkable change in cell shape as the cells switch from fibroblastic to spherical shape.
These morphological alterations are paralleled by changes in the level and kind of
cytoskeletal components and the level of extracellular matrix (ECM) components.62

Adipogenesis is characterized by cell-associated ECM switches from a Fibronectin (FN)-
enriched matrix into Laminin (LN)-rich basement membrane (BM); correspondingly,
integrin expression changes from α5 (FN) to α6 (LN).65 SPARC is the first known
matricellular protein associated to the ‘balance’ of WAT; during adipogenesis. SPARC
increases the deposition of FN and the expression of its receptor, α5 integrin.65 SPARC also
inhibits the deposition of LN during adipogenesis as well as expression of the α1 chain and
its receptor, α6.65 Further, SPARC also down-regulates the secretion and deposition of LN
in lens cells.66 LN and type IV collagen increase adipogenesis, in two-dimensional cell
culture.67 In addition, SPARC interacts with types 1 and IV collagen for stability of basal
lamina.29, 68 So, it is possible that SPARC inhibits adipogenesis in part by interference with
the formation of basement membrane. SPARC is enriched in both mesenteric and
subcutaneous WATs showing elevated levels of SPARC transcript.69 In humans, the plasma
concentration of SPARC was correlated positively with body mass index.70 The excess of
WAT is associated with increased TGF-β,71 which leads fibrosis and might enhance the
expression of SPARC. But, other adipokines may override the effects of TGF-β, SPARC,
and collagen.

SPARC-null mice show increased accumulation of WAT along with an increase in both
adipocyte size and number as compared to wild type (WT) mice.72 SPARC-null mice might
be highly susceptible to protease degradation and remodeling functions allowing adipocytes
to develop a larger size, hence, contribute to hyperplastic WAT. The ECM remodeling
associated with adipogenesis requires SPARC, to stabilize the tissue and maintain the
balance of lipogenesis and lipolysis. SPARC, to some extent, can prevent hypertrophy of
adipocytes and hyperplasia of adipocyte progenitors. Further SPARC-null mice contain
higher levels of soluble type VI collagen in their skin,72 and it may influence the expression,
folding, post-translational modification, and secretion of type VI collagen in WAT.
Consequently, SPARC could control adipogenesis through type VI collagen. SPARC also
interact with integrin α5β1 and this complex inhibits preadipocyte adhesion, focal adhesion
kinase (FAK), integrin-linked kinase (ILK) activity and it leads to cell migration. SPARC
also stimulates the phosphorylation and activation of FAK in glioma cells.73 Likewise
SPARC can also inhibit the formation of adipocytes but enhances that of osteoblastocytes by
its enrichment of the accumulation of β-catenin in both cytosol and the nucleus.66, 74 Both
endogenous and exogenous SPARC enhance the accumulation of β-catenin. Wnt/Beta-
catenin represses the expression of C/EBPα and PPARγ at early stages of adipocyte
differentiation.75 Further, SPARC also inhibits the expression of C/EBPα and PPARγ at
later stages of adipocyte differentiation. These evidence shows that SPARC suppresses the
central transcriptional cascades of adipogenesis through the Wnt/Beta-catenin pathway.
Further research is required to decipher the mechanisms underlying the inhibitory
consequences of SPARC on adipogenesis in vivo.

6. Role of SPARC in cell cycle and proliferation
Generally, ‘vital functions’ of the cells are gauged by assaying for one of these parameters:
cell viability, cell proliferation and cell growth. These ‘vital functions’ of the cells are
mainly modulated by the signaling molecules or growth factors that convey information to
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cells during cellular differentiation or growth. Recent studies have shown that SPARC and
TGF-β employ each other in a mutual relationship to modulate these cellular functions.
SPARC and TGF-β acts as inhibitors of cell cycle progression and proliferation in several
types of cells.31, 32, 76, 77 SPARC stimulates TGF-β expression in mesangial cells and, on
the other hand, TGF-β stimulates SPARC expression in a number of cell types, including
endothelial cells, fibroblasts, keratinocytes, and smooth muscle cells.20, 78-81 SPARC
inhibits epithelial cell proliferation by commandeering the TGF-β signaling system, via
coupling of C-terminal extracellular calcium (EC)-domain (i.e., SPARC-EC) to a TGF-β
receptor/Smad2/3-dependent pathway.82 SPARC and TGF-β are both expressed in epithelial
cells; however, the association between these signaling molecules in regulating epithelial
cell behaviors remains to be addressed. SPARC negatively regulates breast cancer cell
proliferation without stimulating metastasis.83 Elevated levels of SPARC increases cell de-
adhesion from matrix in gliomas.84 SPARC also alters glioma growth by changing the tumor
microenvironment and by repressing tumor vascularity through inhibition of VEGF
expression.84 These results present a novel mechanism, whereby SPARC controls VEGF
function by preventing the available growth factor. Haber et al.85 show that SPARC alters
the proliferation of stromal but not melanoma cells. They also show that SPARC inhibits
endothelial cell proliferation, spreading, and migration. In fact, low expression of integrins
following exposure to SPARC considerably reduces cell proliferation and adhesion, in part
by down-regulating the activation of Akt, FAK, MAPK 44/42 and Src.86 Treatment with
exogenous SPARC significantly inhibits the growth of pancreatic cancer, colorectal cancers,
neuroblastomas, and leukemia cells.18, 87

SPARC and its peptide 2.1 and 4.2 (from a disulfide-bonded domain of SPARC) inhibit
DNA synthesis in BAEC, as determined by (3H) thymidine incorporation and delay the
entry of cells into S phase.88 An inhibitory effect of SPARC on cell-cycle progression might
facilitate the short-term withdrawal from the cell cycle that frequently happens after cellular
responses to developmental or injury signals. Over-expression of SPARC protein and
mRNA is frequently observed in non-proliferating, but actively secreting, Leydig, Sertoli
cells and migrating cells 89, 90 showing that SPARC might direct a metabolic pathway in
addition to cell cycle. SPARC is stimulated after cells have primarily proliferated and may
function to withdraw cells temporarily from the cell cycle in preparation for migration.90

The recognition of SPARC as an anti-spreading factor for specific cells, together with its
capability to direct noticeable changes in cell shape, suggests that the evident proliferation in
the presence of SPARC may result from alteration in cell shape.90 Nevertheless, potential
actions of SPARC on mitosis and cellular migration, need disconnection from ECM, have
not been studied very well.

In contrast, SPARC expression increases cell survival under stress commenced by serum
removal through a decrease in apoptosis.91 Administration of SPARC quickly stimulates
AKT phosphorylation, an effect that is blocked by a neutralizing SPARC antibody. AKT
activation is crucial for the anti-apoptotic effects of SPARC as the reduced apoptosis and
caspase activity linked with SPARC expression can be blocked with a specific AKT
inhibitor or dominant-negative AKT.91 As tumor cells experience stressful
microenvironments predominantly during the metastatic process, these results propose that
SPARC functions, in part, to help tumor progression by facilitating tumor cells to survive
under stressful environment. Greater MMP9 expression in the absence of SPARC has an
additive effect in stimulating tumor development.92 The mechanisms of SPARC functions in
cancer development remain multifaceted and depend on tumor cell type and the
microenvironment.
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7. Role of SPARC in cell invasion, adhesion and migration
Understanding the molecular mechanisms controlling invasion, adhesion and migration of
tumor cells is essential for improvement of novel therapies to cancer. Invasion and
metastasis are constituted of several steps, which are not well distinguished at the cellular
and molecular levels. The early steps in invasion and metastasis by a tumor cell consist of
the breakdown of cell-cell connections, disconnection of tumor cells, proteolysis of the
ECM, and distribution throughout neovascularization. SPARC inhibits cellular adhesion.
Several in vitro studies have shown that secretion of SPARC influences cell morphology by
reducing the number of focal acquaintances and blocking the adhesion of cells to their
substratum or to adjacent cells.93, 94 SPARC regulates cell-ECM communications that
manipulate cell adhesion and migration. In vitro, pancreatic cancer cells over-expressing
MMP9 show higher cell invasion and migration, which can be efficiently inhibited by the
addition of SPARC.92 Over-expression of SPARC in gliomas induces brain tumor invasion
and migration in vitro and in vivo, 95 whereas administration of SPARC siRNA into glioma
cells results in down-regulation of SPARC expression, and considerable suppression in
glioma cell migration in vitro96 and lower tumor cell survival and invasion.73 The level of
SPARC correlates with total and phosphorylated HSP27. SPARC and HSP27 co-localize to
invading cells in vivo. Inhibition of HSP27, mRNA reverse SPARC–stimulated changes in
morphology, migration and invasion in vitro.95 These experiments indicate that HSP27-
mediated actin polymerization, cell migration and contraction are novel downstream
effectors of SPARC functions on cell morphology and migration. Variations in cell-cell and
cell-matrix adhesion in tumors depend on the degree of cohesiveness and the mode of tumor
growth. Abrogation of general cell adhesion function plays a vital role in the development of
cancer. This change in tumor cell adhesion is essential because detachment of tumor cells is
an initial step in the invasion of adjacent tissues and metastasis to distant sites. In vitro
experiments have revealed that addition of exogenous SPARC to cultured cells inhibits cell
distribution and stimulates cellular rounding. This effect leads to the detachment of cells.19

SPARC and TSP inhibit cell attachment and spreading and cause partial detachment and
rounding of cells in vitro.9 Over-expression of SPARC in stably transfected F9 embryonal
carcinoma cell lines results in rounding and aggregation.97 SPARC may change these cell-
cell or cell-matrix connections by breaking cell-substrate bonds and stimulating the
reorganization of actin cytoskeletal elements.19 SPARC plays a role in melanoma
progression, because lower levels of SPARC limits the invasive and adhesive capabilities of
melanoma cells in vitro, where as in vivo, down-regulation of SPARC in melanoma cells
inhibits tumor development in nude mice, but also show an increase in polymorphonuclear
leukocytes (PMNs) recruitment to this peri-tumoral region,98 because lower levels of
SPARC stimulated greater migration of PMNs to the site of the tumor.99 High levels of
SPARC in normal human melanocytes inhibits expression of E-cadherin and P-cadherin and
stimulates a fibroblast-like morphology.100 However, this study does not explore whether
melanocytes over-expressing SPARC produce tumors in vivo. Further notably, is it the
secretion of SPARC by melanocytes or by adjacent myofibroblasts that is essential for
tumorigenesis in this microenvironment?

8. Role of SPARC in angiogenesis
Angiogenesis, the process of new blood vessel formation from pre-existing ones, plays a
vital role in various pathological and physiological circumstances, including embryonic
development, wound repair, tumor growth and inflammation.101 From a pathological point
of view, angiogenesis is a major limiting step in tumor progression and is necessary for
tumor development at metastatic sites. Angiogenesis consists of a sequence of phases that
includes suspension of basement membrane, migration, and proliferation of endothelial
cells, formation of vascular loop and formation of new basement membrane. These multiple
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steps are regulated by different factors such as growth factors, proteases, oxygen levels and
extracellular matrix components, during which the endothelium gives rise to new vessels.
Over the past two decades, matricellular proteins have expanded more attention in their role
in regulating cellular functions and angiogenesis. SPARC has nominal effects on
angiogenesis in vivo. Nevertheless, SPARC has some angiogenic properties.102 Microarray
studies showed that SPARC and SPARC-like 1 are over-expressed in HCC and clustered
with CD34 (a well-known angiogenic marker compared with non-tumorous liver cells, and
both genes may play a role in HCC angiogenesis.103

SPARC modulates cell adhesion and proliferation and is thought to function in tissue
remodeling and angiogenesis. SPARC binds to VEGF, thus inhibiting VFGF interaction
with EC surface, ERK 1/2 activation and VEGF stimulated DNA synthesis.23 SPARC also
binds to PDGF-AB and -BB, but not -AA, and inhibits the interaction of these growth
factors with TK receptors.22 SPARC can also inhibit angiogenesis indirectly by regulating
the expression of MMPs and TGF-β1 in vivo.25, 37, 92, 104, 105 SPARC, in combination with
other known angiogenic factors, may act pleiotropically during angiogenesis. Angiostatin, a
cleavage product of plasminogen, most probably acts through inhibition of angiogenesis.
Over-expression of SPARC is correlated with a good prognosis in neuroblastoma, probably
due to reduced angiogenesis.87 SPARC mediated inhibition of angiogenesis is indicated in
SPARC-null mice that shows increased angiogenic activity in sponge cell invasion assays.
106 The angiogenic activity of SPARC is complex, as different proteolytic fragments show
contrasting effects. An EGF-like part of the follistatin-like domain in SPARC has been
shown to be angiosuppressive.104 Whereas another fragment of this domain in SPARC
consists of a KGHK amino acid sequence that is pro-angiogenic.20, 107 However, it is
feasible that secreted modular calcium-binding protein (SMOC-2) apply its effects via the
follistatin-like domain, which has been shown to have growth factor binding potential. In
vivo, SPARC is also capable of suppression of VEGF-stimulated integrin activation and
down-regulation of MMP-2 and -9.87, 92, 108 Recent research is paying attention on the
angiostatin and angiogenic and antiangiogenic properties of SPARC. This research will offer
a better understanding of how these key factors regulate angiogenesis.

9. Role of SPARC in apoptosis
Programmed cell death, apoptosis is vital for normal development and tissue homeostasis.
Nevertheless uncontrolled apoptosis may occur after treatment with cytostatic chemicals. It
is a patho-physiological process and is connected with the various human diseases.109 In
general, there are two different pathways that initiate apoptosis: one is extrinsic pathway
mediated by death receptors on the cell surface and the other is intrinsic pathway mediated
by mitochondria.109, 110 In both extrinsic and intrinsic pathways, cysteine aspartyl-specific
proteases (caspases) are stimulated that cleave cellular substrates, leading to the
morphological and biochemical changes that feature apoptosis. Evidence that SPARC may
promote apoptosis in cancer cells is presented by Yiu and colleagues, who show that
exogenous treatment of various ovarian cancer cell lines with SPARC induces apoptosis.111

In support of this observation SPARC exposure increases cleaved caspase 3 in human
ovarian carcinoma cells.108 SPARC induces apoptosis of endothelial cells in a dose-
dependent manner, accomplishing maximal effect with 20μg/ml of SPARC.87 In colorectal
cancer cell lines, over-expression of SPARC reduces cell viability and enhances apoptosis in
cells exposed to various chemotherapeutic agents.18 This SPARC-mediated apoptosis occurs
by activating the extrinsic pathway while enhancing the intrinsic pathway of apoptosis.112

The ability of SPARC to enhance apoptosis appears to involve its physical interaction with
the N-terminus of caspase 8, which enhances the chemosensitivity of colorectal cancer cells
through the apoptotic cascades.112 Apoptosis of colorectal cancer cells overexpressing
SPARC can be further augmented following concomitant exposure to vitamin D and
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chemotherapy, by reducing phosphorylation of Akt and subsequent inactivation of the pro-
survival pathway.26

Conclusion
Recent studies have putforth many promising molecules that are integral for metastatic
progression of cancer cells including many proteases, angiogenic factors, and adhesive or
deadhesive molecules. Depending on the type of SPARC is either associated with aggressive
tumor phenotype (gliomas, melanoma, gastric cancers) or exhibits anti-tumor activity
(ovarian, colorectal, neuroblastoma).113 The present review provides an overview of
SPARC’s role as an anti-cancer molecule and its role in obesity.
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3-D 3-dimensional
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SPARC Secreted protein acidic and rich in cysteine

TSP-1 Thrombospondin-1

TGF-β Transforming growth factor
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VEGF Vascular endothelial growth factor

WAT White adipose tissue

WT Wild type
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Figure 1.
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