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Summary
We propose an additive mixed effect model to analyze clustered failure time data. The proposed
model assumes an additive structure and include a random effect as an additional component. Our
model imitates the commonly used mixed effect models in repeated measurement analysis but
under the context of hazards regression; our model can also be considered as a parallel
development of the gamma-frailty model in additive model structures. We develop estimating
equations for parameter estimation and propose a way of assessing the distribution of the latent
random effect in the presence of large clusters. We establish the asymptotic properties of the
proposed estimator. The small sample performance of our method is demonstrated via a large
number of simulation studies. Finally, we apply the proposed model to analyze data from a
diabetic study and a treatment trial for congestive heart failure.
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1. Introduction
Clustered failure time data are commonly seen in biomedical studies. A popular model for
analyzing clustered failure time data is the gamma-frailty model, which models the intra-
cluster dependence by incorporating an unobserved random effect, the so-called frailty, into
the Cox (1972) proportional hazards model. The asymptotic distribution of the maximum
likelihood estimator for the gamma frailty model has been rigorously established by Murphy
(1994; 1995) and by Parner (1998).

The multiplicative hazards model focuses on estimating hazard ratios and its multiplicative
structure may not model real data well in many situations. In some cases, an additive effect
could be a more reasonable association. Such an effect can be modeled using the so-called
additive hazards model (Aalen, 1989; Huffer and McKeague, 1991; Lin and Ying, 1994; and
McKeague and Sasieni, 1994; among others). In this model, an additive structure of a
baseline hazards function and a covariate effect is assumed via the expression dΛ(t|X) =
dΛ(t) + X(t)T βdt, where Λ(t|X) denotes the cumulative hazard function for the given,
possibly time-dependent, covariates X and (t) is the baseline cumulative hazard function.
The regression coefficient β in the additive model is interpreted as risk difference and it has
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been eloquently advocated and successfully utilized for right-censored independent survival
data in many papers, e.g., Andersen, Borgan, Gill, and Keiding (1993, pp. 563–566), Lin
and Ying (1994), McKeague and Sasieni (1994), Shen and Cheng (1999), and Gandy and
Jensen (2005a; 2005b). The multivariate version of the above additive model has been used
to model clustered failure time data in Yin and Cai (2004): dΛij(t|X) = dΛ(t) + Xij(t)T βdt,
where Λij(t|X) denotes the cumulative hazard function for subject j in cluster i and Xij is the
associated covariate. Yin (2007) further developed a test for checking the additive structure
using clustered data.

All the previous additive models assume the marginal relationship between covariates and
survival times. In other words, they do not model the dependence among these events
explicitly. Therefore, the marginal models cannot be used for individual prediction given the
status of other individuals in the same cluster; neither can they be used to assess the
dependence between individuals. In this paper, we propose an additive mixed effect model
for clustered failure times. Our model includes a cluster-specific random effect as an
additional component. Thus, our model imitates the commonly used mixed effect models in
repeated measurement analysis but under the context of hazards regression; our model can
also be considered as a parallel development of the gamma-frailty model in additive model
structures. However, different from the gamma-frailty model, the proposed model still
induces an additive marginal model. In Section 2, we introduce the proposed model and
provide estimation procedure of the model parameters. We then establish the asymptotic
distribution of the estimators. In Section 3, we demonstrate small-sample performance via a
large number of simulation studies. When cluster size is large, we propose a consistent
testing procedure in Section 4 to evaluate the distribution of random effects. The application
to a diabetic study and the SOLVD treatment trial (SOLVD Investigators, 1990) is given in
Section 5.

2. Model and Inference Procedure
2.1 Models and data

Suppose that data are collected from n i.i.d clusters. Within cluster i (i = 1, …, n), there are
ni subjects and we use Tij to denote the failure time of subject j in this cluster. We denote Xij
as the covariates associated with this subject.

Since the failure times from the same cluster may be correlated, in order to account for such
dependence, we introduce a cluster-specific random effect ξi which is independent of
covariates. We assume that Ti1, …, Tini are conditionally independent given all the
covariates and the random effect ξi. Additionally, if letting Λij(t) be the cumulative hazards
function given all the covariates and the cluster-specific random effect, our semiparametric
additive mixed effect model assumes

(1)

Here, Λ(t) is an unknown baseline function and β is an unknown coefficient vector. We also
assume ξi follows a one-parameter distribution with density function f (x; θ) which has mean
zero and a finite moment generating function. Note that our model (1) imitates the usual
mixed effect model with a random intercept in the analysis of longitudinal data; more
interestingly, it can be considered as an additive counterpart of the usual multiplicative
frailty model for clustered failure time.
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In practice, failure time Tij may be right censored. We denote Cij as the censoring time for
subject j in cluster i and assume (Ci1, …, Cini) are independent of (Ti1, …, Tini) and ξi given
all the covariates. Subject to censoring, the actual observations from these clusters are (Zij =
Tij Λ Cij, Xij, Δij = I(Tij ≤ Cij)), j = 1, …, ni, i = 1, …, n, where a Λ b = min(a, b) and I(·) is
the indicator function. We let τ be the study duration.

2.2 Parameter estimation and inference
To estimate parameters (β, θ) and Λ (t), we use the moment methods to construct estimating
equations. First, from model (1), it is easy to calculate the marginal survival function Tij
given covariates Xij which is given by

(2)

where exp{−G(t; θ)} = ∫ e−xt f (x; θ)dx. Equivalently, if Nij(t) denotes the counting process
ΔijI(Zij ≤ t) and Yij denotes the at-risk process I (Zij ≥ t), then the relationship in (2) implies

(3)

where H(t) = Λ(t) + G(t; θ).

Since equation (2) implies another marginal additive model studied in Lin and Ying (1994),
the estimating equations developed in their paper can be used here. Following Lin and Ying
(1994), we can construct the following estimating equation to estimate β and H:

(4)

and

(5)

The solutions to these equations have an explicit expression and we denote them as β ̂ and Ĥ
respectively. Specifically,

where a⊗2 = aaT and . Additionally,
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From (3), Ĥ(t) estimates the function which involves both Λ(t) and θ. Thus, we need
additional information to be able to discriminate between these two parameters. Note that θ
describes the dependence among the failure times within the same cluster. This motivates us
to consider the cross-moment among the marginal residual process (dNij(t) − dH(t) − Xij(t)T

βdt), also denoted as dεij(t). First, suppose Xi. denotes the vector covariate (Xi1, …, Xini).
Then for j ≠ l,

On the other hand,

and

Thus, we have

. Since E(ξie−tξi) = G′(t; θ) exp{−G(t; θ)} and ,
where G′ (t; θ) and G″ (t; θ) denote the first and the second derivative of G(t; θ),
respectively, with respect to t, some algebra yields
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(6)

After replacing H(t) and β with their estimators, we can estimate θ by solving the following
estimating equation

(7)

where dε ̂ij(t) = dNij(t) − dĤ(t) − Xij(t)T β ̂dt and

We denote the solution to (7) as θ ̂. Then an estimator for Λ(t) is given by Λ̂(t) = Ĥ(t) − G(t;
θ ̂).

In equation (7), G(t; θ) and its derivatives can be evaluated for each specific distribution for
ξi. For example, if ξi is assumed to be from a normal distribution with mean zero and
variance θ, then G(t; θ) = −t2θ/2, G′(t, θ) = − tθ and G″(t; θ) = −θ. Then, with time
independent covariates, equation (7) becomes

which has an explicit solution. If (ξi + θ) is assumed to be from an exponential distribution
with mean θ, then G(t; θ) = log(1 + θt), G′ (t; θ) = θ (1 + θt)−1 and G″(t; θ) = −θ2(1 + θt)−2.
Under this case, the solution to equation (7) can be obtained via Newton-Raphson iteration.

In Appendix, we will show that the estimators β ̂, Ĥ and θ ̂ are all asymptotic linear estimators
for the respective true parameters. Thus, the asymptotic covariance can be consistently
estimated using the empirical covariance of the corresponding estimated influence functions.
The details are given in Web Appendix.

2.3 Asymptotic properties
The technical conditions for obtaining the asymptotic properties of the proposed estimators
are given in Web Appendix. Let β0, θ0, and Λ0(t) denote the true values for β, θ, and Λ0(t),
respectively. Under those conditions, we obtain the following results.
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Theorem 1—Under conditions (C.1)–(C.4) in Web Appendix and assuming that the true
density for ξ is f(ξ; θ), there exits a local consistent estimator θ ̂ solving equation (7).
Moreover, β ̂ →p β0 and Λ̂(t) →p Λ0(t) uniformly in [0, τ].

Theorem 2—Under conditions (C.1)–(C.4) in Web Appendix and assuming that the true
density for ξ is f(ξ; θ),  converges in distribution to a mean-
zero Gaussian process in the metric space Rd+1 × l∞ [0, τ], where d is the dimension of β0
and l∞ [0, τ] is the space of bounded functions in [0, τ] equipped with the uniform bounded
norm.

The proofs of Theorem 1 and Theorem 2 are given in Appendix. In addition, we provide a
consistent estimator of the asymptotic covariance in Web Appendix.

3. Simulation Studies
In the first simulation study, covariate Xij contains one Bernoulli random variable and the
other random variable is from the uniform distribution in [0, 1]. The survival time Tij is
generated using model (1), where Λ(t) = 2t2 + 3t and ξi follows a standard normal
distribution. The true value for β is set to be (0.5, 1) and θ0 = 1. The censoring time is
generated from the uniform distribution in [0, 3], which yields the average censoring rate of
23%. Finally, the cluster size is chosen randomly from 2, 3 and 4. Since in many multi-
center studies, the center size can be large, we also consider the cluster size to be as large as
50 while the number of clusters is relatively small.

For each simulated data set, we solve equations (4) and (5) to estimate β and H then solve
equation (7) for θ. Since ξi follows the normal distribution, the function Q(t, s; θ) is equal to
θ2t2s2/4 + θts. Thus, solving equation (7) is equivalent to solving a quadratic equation,
which may have two solutions. To ensure θ to be positive, we choose the maximum between
0 and the larger of these two solutions as the estimate for θ. To estimate the asymptotic
variance, we first estimate the influence functions as given in Appendix then calculate the
empirical variance of these influence functions.

Table 1 summarizes the results from 1,000 replicates for each choice of sample size and
cluster size. In the table, column “Est” is the average of the estimates from 1,000 replicates;
column “SE” is the sample standard deviations of these estimates; column “ESE” is the
average of the estimated standard errors; column “CP” is the coverage probabilities of 95%
confidence intervals, which are given using the asymptotic normality. Table 1 reports the
results for estimating β and θ. In addition, we also summarize the results for Λ(t) for some t
values which are chosen to be some quantiles of Zij. The table shows that the estimators for
the regression coefficient β and the cumulative baseline functions Λ(t) have negligible bias
and the inference appears to be correct with the estimated variance being close to the
empirical variance and with proper confidence interval coverage. Moreover, we observe that
even if the number of clusters is as small as 20, the estimators for the regression coefficients
and the baseline cumulative hazard functions still perform well when the cluster size is
large. There seems to be some bias in estimating the frailty parameter, due to the small
number of the clusters or small cluster size.

We also conduct a second simulation study, in which the data are generated using the same
model except that the cluster-specific frailty (ξi +3) is from an exponential distribution with
mean θ = 3. In this case, G(t; θ) = log(1 + θt) and
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Then the double integration of Q(t, s; θ) in equation (7) is equivalent to

Thus, we can solve equation (7) for θ ̂ via one-dimensional numerical search algorithm. In
our simulations, we find that for sample size 200, the proportion of equation (7) having no
solution is about 5%; however, this number reduces to 0.5% for sample size 400. Table 2
summarizes the simulation results from 1,000 replicates after excluding these non-
convergence cases. The same conclusion as in the previous simulation study can be made.

Finally, in another simulation study, we simulate data using the same setting as in the second
simulation study. However, we misspecify the frailty distribution as a normal distribution.
The simulation results which are reported in Table 3 indicate that due to the misspecification
of the frailty distribution, the estimators for the baseline cumulative hazard function have
more than 100% bias and the coverage probabilities are as low as 10%. However, the
estimators for β’s and also H(t)’s are the same as before. This is because the estimating
equations for β’s and H’s are independent of the frailty distribution.

4. Assessing Frailty Distribution
In practice, it is impossible to know what distribution the frailty follows and our numerical
experience showed that misspecifying the frailty distribution leads to large bias in the
aforementioned approaches. Therefore, an important issue is how to assess the frailty
distribution using empirical data.

By examining our approach, we have the following relationship H(t) = Λ(t)+G(t; θ), where
G(t; θ) is the Laplace transformation of ξ’s density. Moreover, we find that the estimators
for H(t) and β are obtained from equations (4) and (5), which never use the information
about the distribution of the frailty. In fact, the proof of Theorem 1 shows that Ĥ(t) and β ̂ are
always consistent estimators of H0(t) and β0 respectively, no matter how the frailty
distribution is assumed in the models. Hence, if we can obtain a consistent estimator of Λ(t)
disregarding the frailty distribution and denote it as Λ̃(t), then the difference between Ĥ(t)
and Λ̃(t) should be close to G(t; θ) when the frailty distribution is correctly specified.

To obtain such an estimator Λ̃, we use the following fact:
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Thus, using the observations from cluster i and substituting β by β ̂, we can estimate dΛ(t)+

ξidt by . After taking the average over all the
clusters, we have

Since  converges to zero, we thus drop the second term on the right-hand side and
obtain an estimator for Λ(t) as

Hence, we compare D ̂(t) ≡ {Ĥ(t) − Λ̃(t)} with G(t; θ ̂) to examine the validity of assuming
ξ’s density as f(ξ; θ). Additionally, we can obtain a confidence interval of {D ̂(t) − G(t; θ ̂)}
using the following result.

Theorem 3
Under conditions (C.1)–(C.4) in Web Appendix, supt∈[0, τ] |Λ̃(t) − Λ0(t) |→p 0. Furthermore,
if assume that ξi’s density is f (ξ; θ0),  converges in distribution to a zero-
mean Gaussian process in l∈ [0, τ].

In the proof of Theorem 3, we obtain , where

with SH, i(t), Sβ, i and Sθ,, i being the respective influence functions for Ĥ(t), β ̂ and θ ̂ from the
ith cluster observations. To construct a uniform confidence band for the true function of
{D(t) − G(t; θ ̂)}, we use a resampling method: we generate ω1,…, ωn independently from

the standard normal distribution and calculate ,
where Ŵi(t) has the same expression as Wi(t) except that we replace Λ0 and β0 by Λ̃ and β ̂
and use consistent estimators for Sβ, i and Sθ, i. We repeat this resampling procedure many
times and determine the 95%-percentile of the calculated values, denoted by c0.95. Then a
uniform 95% confidence band is given by {D ̂(t) − G(t; θ ̂) − c0.95, D ̂(t) − G(t; θ ̂) + c0.95}, t ∈
[0, τ]. If the band contains the horizontal line at zero, then there is no significant evidence to
reject the assumed frailty distribution.

Finally, we conduct simulation studies to examine the performance of this assessment
approach. The setting is similar to Section 4 but we only look at the case with large cluster
size of 25. We simulate the frailty ξ from either normal or exponential distribution but we
estimate all the parameters treating ξ as from a normal distribution. This way, we can
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examine both the type I error and power of the proposed method. The results show that
under the nominal level of 0.05, if using the correct frailty distribution, the type I error for

the test statistic , where t0 is the median time of the observed events, is
0.067 for both n = 20 and n = 50; while if using the incorrect frailty distribution, the power
becomes 0.214 for n = 20 and increases to 0.520 for n = 50. Our additional numerical
experience indicates that the proposed procedure may not work well if the cluster size is as
small as 5. This is because in the estimation of each cluster-specific hazards function may Λ̃
be very inaccurate with small clusters. However, the above simulation study shows that the
procedure is valid when the cluster size is at least 25.

5. Applications
5.1 Diabetic study

We now apply the proposed model to analyze the well-known Diabetic Retinopathy Study
(Huster et al. 1989), which was conducted to assess the effectiveness of laser
photocoagulation in delaying visual loss among patients with diabetic retinopathy. One eye
of each patient was randomly selected to receive the laser treatment while the other eye was
used as a control. The failure time of interest is the time to visual loss as measured by visual
acuity less than 5/200. We confine our analysis to a subset of 197 high-risk patients, and
consider three covariates: X1ij indicates, by the values 1 versus 0, whether or not the jth eye
(j = 1 for the left eye and j = 2 for the right eye) of the ith patient was treated with laser
photocoagulation, X2i1 = X2i2 indicates, by the values 1 versus 0, whether the ith patient had
adult-onset or juvenile-onset diabetics, and X3ij = X1ij * X2ij.

To justify why the covariates may have additive effects, we plot the differences among the
cumulative hazards estimates for each combination of (X1ij, X2ij) (a total of four
combinations), where the estimates are the Breslow-estimates of the cumulative hazards
function within each group. The plot as shown in Figure 1 indicates that the differences are
clearly linear in time, which imply that additive effects of the covariates may be plausible.
Thus, we fit model (1) with these three covariates, along with ξi to account for the
correlation between the two eyes of the same patient. We consider fitting the model with ξi
from the normal distribution or the exponential distribution. The results are given in Table 4.
They show that there is a high degree of dependence between the failure times of the two
eyes from the same patient. Both the treatment indicator and the interaction term are
significant, whereas the diabetic type is not. These findings agree with the results fitting the
gamma-frailty proportional hazards model or proportional odds model (Zeng, Lin and Yin,
2005).

Another nice feature for our model is to make individual prediction. For example, we can
predict the conditional survival probabilities of the treated eye given that it has not failed
before 30 months while the untreated eye failed between 24 and 30 months, i.e., Pr(T2 > t|T2
≥ 30, 24 < T1 < 30, X11 = 0, X12 = 1, X2) for t > 30, where T2 is the failure time for the
treated eye and T1 is the failure time for the untreated eye, X1k is the treatment status for the
kth eye (k=1, 2), and X2 is the diabetic type for this patient. It is straightforward to show that

We can estimate this probability function by replacing β, θ and Λ by their respective
estimates. The variance function is given by the Delta method. Figure 2 displays the
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estimated survival curves along with the 95% confidence intervals for the two diabetic types
using model (1) with the normally distributed frailty, where the solid curve is the survival
function for the patient with the juvenile-onset type, the dot-dash curve is for the patient
with the adult-onset type, both the dashed and dotted curves are the confidence bands.

5.2 SOLVD study
We also apply our method to analyze the SOLVD (SOLVD Investigators, 1990) Treatment
Trial data. This study was a randomized, double-masked, placebo-controlled trial conducted
between 1986 and 1991. The participants were of age 21 to 80 years old, inclusive, with
overt symptoms of congestive heart failure and left ventricular ejection fraction less than
35%. The latter is a measure of the efficiency of the heart in ejecting blood and is a number
between 0 and 100%. The study was done at 23 medical centers in US, Canada and Belgium
and the average number of patients per center was slightly over 100. The event of interest
was the number of years to the first hospitalization for congestive heart failure or death from
all causes, whichever happened first. The goal was to examine the effect of treatment by
enalapril versus placebo but the participants’ age, gender and ejection fraction could be
potential confounders so they should also be adjusted for in the analysis. We fit our
proposed model for this data, assuming that the frailty follows a normal distribution.
Because of the large size in each cluster, the test process in Section 5 can be used to assess
the goodness-of-fit of the assumed frailty model. It shows that there exists little evidence to
reject the normal frailty (p-value is 0.33). The results are summarized in Table 5.

The results indicate that the treatment had a significant effect in reducing the risk of first
hospitalization for congestive heart failure or death from all causes; younger patients had
lower risk; patients with higher ejection fraction had lower risk as well. There is no strong
evidence that significant difference exists between the two gender groups. The non-
significance of the frailty parameter implies that the survival behaviors among all these
centers were similar to one another. In fact, we plot the estimated cumulative hazards
functions from all 23 centers in Figure 3 and they have very small differences except that
one particulary medical center had a relatively larger baseline hazards. In Figure 4, we plot
the proposed test process (the bold black curves) and the randomly simulated 100 curves
from the null distribution. The figure indicates that using the normal frailty distribution may
be appropriate.

Finally, we exclude that particular center identified from Figure 3 and re-do the analysis.
The p-value for assessing the normality frailty assumption is around 0.30. The fitted results
are also given in Table 5 and the conclusion are similar to before. For comparison, we also
report the results by fitting the data using multiplicative gamma frailty models. The results
show that the direction and significance of the estimates for the covariate effects are similar,
although the interpretation of the coefficients is very different.

6. Discussion
We have proposed an additive model with random effects for clustered survival times. The
proposed model takes a similar expression as one would fit longitudinal data via mixed
effect models. Thus, the parameters in our model enjoy similar nice interpretations as in the
usual mixed effect models, but in terms of hazard risks. The inference approach we have
proposed can be treated as a generalization of the generalized estimating equations to the
hazards models. As the result, any working dependence matrices can be used as weights in
equations (4) and (5) to construct consistent estimators of regression parameters. One natural
question is how to obtain the most efficient weight matrices; however, although in the
longitudinal data analysis, the true dependence covariance matrices should give the most

Cai and Zeng Page 10

Biometrics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



efficient estimation, it is unclear how the covariance matrices are even defined under
survival context.

One limitation of the additive structure is that the estimated hazards rate function may not
always be positive so the derived survival functions, S̃(t), are not necessarily non-increasing.
With an additional random effect introduced in our proposed model, the non-positive
hazards problem may be lessened or worsened depending on the monotonicity of G(t; θ).
For example, in a normal frailty case, H(t) = Λ(t) − θt2/2, where H(t) is the baseline after
integrating out the random effect. Then even though H(t) may be estimated to have negative
jumps at some t, the estimator for Λ(t) may not. In the exponential case, H(t) = Λ(t) + log(1
+ θt)/θ. Then Λ(t) can have more negative jumps but this also depends on the scale of θ. To
fix the non-monotonicity problem in the estimated survival function, we can make a minor
modification and define a new estimator as infs≤t S̃(s). Theoretically, if S̃(t) is a consistent
estimator, the latter should also be consistent due to the increasing property of the truth. This
type of modification has been employed in the literature for additive rate models (Lin and
Yin, 1994; Yin and Cai, 2004).

In comparison to the multiplicative frailty model, the proposed model can be viewed as a
parallel generalization of the additive hazards model to clustered data. Thus, when data (as
shown in the diabetic study and seen in Figure 1) really present additive structure and cluster
heterogeneity, the proposed model is more appropriate as the multiplicative assumption for
the multiplicative model could be violated and may not fit the data well. Our proposed
model provides information on hazard differences instead of hazard ratios. Additionally, the
frailty variance represents the variability of the baseline hazards rates across clusters and
therefore provide us information on the heterogenity of the hazard rate across clusters.

With the specified random effect distribution, the observed likelihood function can be
expressed in terms of all the parameters. Therefore, some possible maximum likelihood
approaches can be applicable to obtain the efficient parameter estimators. Unfortunately, due
to the additive model structure as well as the semiparametric model structure, such inference
and computation will be more complicated than the multiplicative frailty model. Further
research is being investigated by us.

In model (1), we can further allow for heterogeneity of mixed effects among subjects. This
can be achieved by including the interaction between random effects and some covariates.
The proposed estimating equations should be applicable but in more complex forms. Finally,
as a counterpart to the usual gamma-frailty multiplicative model, developing a valid test to
discriminate our model from the gamma-frailty model is an important problem in practice.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

Proofs of Theorems 1–3
Proof of Theorem 1

We first show the consistency of the estimators. Clearly, since {Ykl(t): t ∈ [0, τ]} is a P-
Glivenko-Cantelli class, we obtain that uniformly in t ∈ [0, τ],

and the second limit is strictly positive from condition (C.2) in Web Appendix. Thus,

uniformly in t ∈ [0, τ]. As a result,
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In Web Appendix, we show Σ is invertible. Therefore, from the expression of β ̂ and
equation (3), we have

which is also equal to

Similarly, for fixed s ∈ [0, τ],

which is equal to H0(s). Since H0(s) is continuous in [0, τ], the pointwise consistency can be
strengthened to the uniform convergence in [0, τ].

The consistency of θ ̂ is based on the estimating equation for θ ̂ as given in (7), i.e.,

From the consistency of (β ̂, Ĥ), it is clear that the left-hand side of the above equation
converges to

where dεij0(t) = dNij(t) − dH0(t) − Xij(t)T β0dt. The above limit, by the derivation in Section
2, is also equal to
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Moreover, this convergence is uniformly in for in a compact set. By condition (C.4) in Web
Appendix,

is non-singular in a neighborhood of θ0. Thus, from the inverse mapping theorem, for any
small ε, there exists a unique solution θ ̂ to equation (7) such that |θ ̂ − θ0| < ε. This proves the
consistency of θ ̂.

Proof of Theorem 2
We use Pn to denote the empirical measure from n i.i.d clustered data and use P to denote
the true probability measure. From the expression of β ̂, we obtain

Since  and X ̄(t) uniformly converges to μ(t) and it
belongs to some Donsker class, we have

(A.1)

That is, β ̂ is an asymptotic linear estimator for β0 with the influence function

where Oi denotes the observed data from cluster i. Similarly, using the expression of Ĥ, we
obtain
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Thus, from (A.1),

(A.2)

Additionally, (A.2) holds in the metric space l∞[0, τ]. Equivalently, Ĥ(s) is an asymptotic
linear estimator for H0(s) with influence function

Finally, a similar expansion applies to the left-hand side of (7) and yields

(A.3)

for some influence function Sθ. The detail of Sθ is given in Web Appendix.

Proof of Theorem 3
According to the expression of Λ̃(t), we obtain

(A.4)

where dMij(t) = dNij(t) − dΛ0(t) − Xij(t)T β0dt − ξidt. Clearly,

 and {dMij(t) = t ∈ [0, τ]} and {Yij(t): t ∈ [0, τ]}are the
Glivenko-Cantelli class. Thus, the second term on the right-hand side converges uniformly

to zero. Finally, since β ̂ converges to β0 and  converges to zero, we obtain the
uniformly convergence of Λ̃ (t) to Λ0(t).

The above expansion also implies

Thus, combining with the expansions in (A.1)–(A.3), we immediately have

Cai and Zeng Page 15

Biometrics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where

with SH,i(t), Sβ,i and Sθ, i being the respective influence functions for Ĥ(t), β ̂ and θ ̂ from the
observations in the ith cluster, as given in the expansions (A.1)–(A.3).
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Figure 1.
Differences among the estimated cumulative hazard functions versus time in the DRS study
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Figure 2.
Predicted survival functions in the DRS study
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Figure 3.
Estimated baseline hazards functions from all medical centers in the SOLVD study
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Figure 4.
Plot of the test process and simulated curves under the null in the SOLVD study
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Table 4

Results of analyzing DRS data

Covariates Est SE Z p-value

treated vs untreated −.0046 .0020 −2.2847 .022

diabetic type .0057 .0034 1.705 .088

treat*type −.0091 .0034 −2.673 .007

Normal frailty −.000066 .000018 3.741 <.001

Exponential frailty .0545 .0092 5.944 <.001
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