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For comparing the performance of a baseline risk prediction model with one that includes an additional predictor,
a risk reclassification analysis strategy has been proposed. The first step is to cross-classify risks calculated
according to the 2 models for all study subjects. Summary measures including the percentage of reclassification
and the percentage of correct reclassification are calculated, along with 2 reclassification calibration statistics. The
author shows that interpretations of the proposed summary measures and P values are problematic. The author’s
recommendation is to display the reclassification table, because it shows interesting information, but to use
alternative methods for summarizing and comparing model performance. The Net Reclassification Index has been
suggested as one alternative method. The author argues for reporting components of the Net Reclassification
Index because they are more clinically relevant than is the single numerical summary measure.
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Abbreviation: NRI, Net Reclassification Index.

Development of risk prediction models is a common and
appealing area of research. Examples of well-known risk
calculators are the Framingham Risk Score for 10-year risk
of cardiovascular disease events (1) and the Gail model for
breast cancer occurrence (2, 3). Risk models are attractive
because they allow subjects to input data on their known risk
factors and to calculate the corresponding risk value. This
can be helpful for making decisions about treatment or other
prevention strategies. Decisions are easiest, of course, when
the calculated risk is very low or very high. Unfortunately,
many risk calculators yield risk values that are intermediate
for most persons. Therefore, enhancements to existing risk
models are sought to improve their capacities to predict in-
dividual risk. Towards this aim, C-reactive protein has been
added to the predictors in the Framingham Risk Score (4, 5),
and breast density has been added to the predictors in the
Gail model (6, 7).

How does one assess the performance of a risk prediction
model? Measures that quantify performance are crucial,
especially to gauge the improvement gained by addition
of a new predictor to an existing set. It is widely appreciated
that coefficients for predictors in a risk model are not ade-
quate for the task of quantifying the population performance

of the model for risk prediction (8). The population distri-
bution of risk values provides a useful metric (9–12), since
it displays the proportions of subjects deemed to be at low
risk and/or at high risk by the model when thresholds are
chosen to define low and/or high risk. Cook (13) suggests
that when clinically meaningful categories of risk have been
established by the medical community, such as they have
been for cardiovascular disease, one should evaluate the
proportions of subjects classified into each of the risk cate-
gories by the risk model. I agree with this suggestion.

Improvement in prediction performance might then be
quantified by the increases in proportions of subjects falling
into low and high risk categories by addition of a new pre-
dictor to a risk model. An alternative approach is the risk
reclassification analysis strategy proposed by Cook and
Ridker (14). This new analysis strategy has been promoted
in clinically oriented journals (13–15) and is appearing in
medical publications of research results (4, 16–18). How-
ever, it has received little attention from methodologists
to date. My goal in this paper is to elucidate some proper-
ties of the risk reclassification approach described by Cook
and Ridker (14) in order to better assess its role for evalu-
ating the improvement in performance gained by adding
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a new predictor to a baseline prediction model. I also discuss
some alternative strategies, including use of the Net Reclas-
sification Index (19).

THE RISK RECLASSIFICATION ANALYSIS STRATEGY

Data for illustration are presented in Table 1. I gener-
ated these data from a specified risk model for the binary
outcome, D, where D ¼ 1 for an event and D ¼ 0 for no
event during a 10-year follow-up period. Details are pro-
vided in the Appendix. The underlying risk model that
generated the data contained 3 predictors denoted by X,
Y, and W, P(D ¼ 1jX, Y, W). Suppose that X is the baseline
predictor and Y is a new predictor. The predictor W exists,
but we assume that it is as yet unknown, and therefore W
is not part of the observed data set. The data for analysis
are (D, X, Y), available for 10,000 persons. Given that data
are only available on the variables (D, X, Y), we fit models
to the observable risk functions, Risk(X) ¼ P(D ¼ 1jX)
and Risk(X, Y) ¼ P(D ¼ 1jX, Y), the event probability
given data only on predictor X and the event probability
given data on both observed predictors (X, Y), respec-
tively. We use logistic regression:

logit RiskðXÞ [ logit PðD ¼ 1jXÞ ¼ a0 þ a1X

and

logit RiskðX; YÞ [ logit PðD ¼ 1jX; YÞ ¼ b0 þ b1X þ b2Y ;

where logit (r)¼ log r/(1� r). Results are shown in Table 2.
Both models appear to fit the data well, with P values from
10-category Hosmer-Lemeshow goodness-of-fit statistics
of 0.22 for the baseline model, Risk(X), and 0.15 for the
enhanced model, Risk(X, Y). The coefficient for Y is highly
statistically significant (P < 0.001).

The objective of the analysis is to quantify the improve-
ment in performance gained by adding Y to the baseline risk
model that includes X alone. We use the 4 established risk
categories for cardiovascular disease events (<5%, 5%–
10%, 10%–20%, and >20%), in accordance with Cook
and Ridker’s analyses—categories derived from the guide-
lines of Adult Treatment Panel III (20). Each subject in

the data set has 2 risk values calculated, one according to
the baseline model and one according to the enhanced
model. Table 1 shows the cross-classified values obtained
using the 4 risk categories.

With baseline and enhanced risk models that appear to
fit the observed data well, the risk reclassification analysis
strategy is described as follows (14, p. 798):

1. Calculate the proportion of subjects classified into a dif-
ferent risk category by the enhanced model as compared
with the baseline model. This is the proportion of subjects
in off-diagonal cells. From Table 1, we see that there are
2,749 subjects reclassified, and we calculate

% reclassified ¼ 2; 749=10; 000 ¼ 27:49%:

2. Determine the proportion of reclassified subjects that are
‘‘reclassified correctly.’’ Correct reclassification is deemed
to have occurred for subjects in an off-diagonal cell if the
observed proportion of events in that cell is closer to the
category label for the enhanced model than to the category
label for the baseline model. From Table 3, we see that this
criterion holds for all off-diagonal cells. Correct reclassifi-
cation appears to have occurred for all reclassified subjects.

Reclassification correct % ¼ 100%:

3. Calculate 2 reclassification calibration statistics and their
P values, one for the baseline model and one for the en-
hancedmodel. The reclassification calibration test statistic,
RCC(model), compares the observed event rate in each

Table 2. Estimated Coefficients for Baseline and Enhanced Risk

Models

Factor
Baseline Model Enhanced Model

Coefficient SE Coefficient SE

Intercept –3.67 0.07 –4.23 0.09

X 1.72 0.05 1.77 0.05

Y 1.01 0.05

Abbreviation: SE, standard error.

Table 1. Reclassification Table Comparing 10-Year Risk Strata From a Baseline Model That

Includes Predictor X Only, Risk(X), With Strata From an Enhanced Model That Includes X and Y,

Risk(X, Y)a

Risk(X)
Risk(X, Y)

0%–5% 5%–10% 10%–20% >20% Total

0%–5% 5,558 342 95 25 6,020

5%–10% 727 317 221 101 1,366

10%–20% 309 275 282 285 1,151

>20% 40 116 213 1,094 1,463

Total 6,634 1,050 811 1,505 10,000

a Numbers of subjects are shown in the table. Data were simulated according to methods de-

scribed in the Appendix.
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interior cell with the average model-based risk for subjects
in that cell:

RCCðmodelÞ ¼
XK
k¼1

ðp̂k � �rkÞ2

�rkð1� �rkÞ=nk;

where p̂k is the observed event rate in the kth cell, �rk is the
average model-based risk for subjects in the kth cell, nk is
the number of subjects in the kth cell, and K is the number
of interior cells in the table for which nk � 20 (K ¼ 16 in
Table 1). Observe that these statistics are different from the
usual Hosmer-Lemeshow calibration test statistics that are
based on the margins of the reclassification table.

Components of the test statistic for the baseline model, p̂k
and �rk(baseline), and components of the test statistic for the
enhanced model, p̂k and �rk(enhanced), are shown in Table 3
for our data. The test statistics are

RCCðbaselineÞ ¼ 349:9

and

RCCðenhancedÞ ¼ 16:4;

which, when compared with the chi-squared distribution
with K � 2 degrees of freedom as recommended by Cook
and Ridker (14), yield P values of <0.00001 and 0.29, re-
spectively. According to the proposed risk reclassification
analysis strategy, the enhanced model is adequate but the
baseline model is not.

SELF-FULFILLING RESULTS

I now show that some results from the Cook and Ridker
risk reclassification analysis strategy are essentially prede-
termined, as long as standard statistical procedures are fol-
lowed. Specifically, we assume that the new predictor, Y, has
been determined to be a risk factor and that goodness-of-fit
procedures have been carried out to ensure that the fitted
models for P(D ¼ 1|X) and P(D ¼ 1|X, Y) approximate the
observed data reasonably well. If one or both risk models do
not appear to fit the observed data, there is no point in
assessing risk reclassification, since those models are clearly
not appropriate risk calculators.

Reclassification almost always appears ‘‘correct’’

Consider an off-diagonal cell that we denote by AB, where
a subject is in the cell if his calculated value for Risk(X) is in
category A and that for Risk(X, Y) is in category B. Because
the cell is defined by functions of X and Y, it follows math-
ematically that the anticipated event rate in cell AB is equal
to the average of Risk(X, Y) for subjects in that cell:

P½D ¼ 1jcell AB� ¼ average ðRiskðX; YÞjcell ABÞ: ð1Þ

A formal proof of equation 1 is:

P½D ¼ 1jcell AB� ¼ E½D ¼ 1jcell AB�

¼ E½E½D ¼ 1jX; Y �j cell AB�

¼ E½RiskðX; YÞjcell AB�;

where the second line follows because values of (X, Y) de-
termine whether an observation is in cell AB, and the third
line follows from the fact that E[D ¼ 1jX, Y] ¼ P(D ¼ 1jX,
Y)¼ Risk(X, Y). In real data, one uses a model for Risk(X, Y)
that approximates the observed data frequencies P(D ¼ 1jX,
Y), implying that equation 1 holds to a good approximation.

Therefore, in large samples, the event rate in cell AB
will approximate the average Risk(X, Y) for subjects in that
cell. That average is necessarily in category B, because
Risk(X, Y) is in category B and not in category A for all
subjects in that cell. We conclude that reclassifications
should always appear to be ‘‘correct’’ using the criterion
set forth in item 2 of the reclassification analysis strategy,
at least in large samples. Deviations can only occur due to
sampling variability. Correspondingly, in the analysis of
Table 1, we found that the criterion was satisfied by all
off-diagonal cells. It is not surprising that we found 100%
of reclassifications correct according to the Cook and Ridker
criterion.

The reclassification calibration test of the enhanced
model almost always accepts the null

Neither is it surprising that the reclassification
calibration test of the enhanced model accepts the null
hypothesis. This is because, assuming that preliminary
analysis has shown a good fit of the observed data to the
enhanced model, it follows that equation 1 holds to a good
approximation. The equality in equation 1 in turn implies
that the null hypothesis for the reclassification calibration
test of the enhanced model always holds. Therefore, the
test should only reject at the nominal rate, which is
typically chosen to be 0.05. There is no point in
performing this test.

The reclassification calibration test of the baseline
model should reject the null

I contend that the reclassification calibration statistic for
the baseline model is really a test statistic for an association
between YandD, controlling for X. To see this, consider first
the simple setting in which the baseline model contains no
covariates, so the baseline risk is the 10-year incidence of
events for all subjects: Risk(X) ¼ P(D ¼ 1). Table 4 shows
the reclassification table for this scenario. In this simple
setting, the reclassification calibration statistic is exactly
the same as the usual Pearson chi-squared statistic for asso-
ciation between the categorized version of Y and D; both are
equal to 824.2 (P < 0.001). This is a general result that is
proven algebraically in the Appendix.

When the baseline model is not constant, as in Table 1, I
contend that the reclassification calibration statistic is at
least conceptually similar to the Pearson chi-squared
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statistic but replaces the overall event rate in Table 4, P(D¼
1) ¼ 10.17%, with a version that conditions on the values of
X for subjects in each cell. Moreover, observe that the null
hypothesis tested by the reclassification calibration statistic
of the baseline model is that, for each cell,

PðD ¼ 1jRiskðXÞ in A; RiskðX; YÞ in BÞ
¼ EðRiskðXÞjRiskðXÞ in A;RiskðX; YÞin BÞ:

By equation 1 above, we can write this as

EðRiskðX; YÞjRiskðXÞ in A; RiskðX; YÞ in BÞ
¼ EðRiskðXÞjRiskðXÞ in A; RiskðX; YÞ in BÞ:

ð2Þ

Therefore, if the reclassification calibration test of the base-
line model is rejected, we must conclude that Risk(X, Y) 6¼
Risk(X) for some subjects. However, this is simply the con-
clusion that Y is a risk factor after adjusting for X, a fact

Table 4. Reclassification Table When the Baseline Model Contains No Covariates, So That the Fitted Baseline Risk ¼ 10.17% for All Subjects

Baseline Risk 5 10.17%

Risk(Y)

<5% 5%–10% 10%–20% >20% Total

No. % No. % No. % No. % No. %

Subjects included 3,538 2,898 2,302 1,262 10,000

Event rate 3.02 7.42 13.42 30.59 10.17

Table 3. Reclassification Table Showing Components of the Risk Reclassification Calibration and Event Rates (P̂k ) Statistics, RCC(Baseline)

and RCC(Enhanced), and Event Rates (p̂k )
a

Risk(X)

Risk(X, Y)

0%–5% 5%–10% 10%–20% >20% Total

No. % No. % No. % No. % No. %

0%–5%

nk 5,558 342 95 25 6,020

p̂k 1.30 7.89 11.58 16.00 1.89

�r k (baseline) 1.49 3.12 3.39 3.86 1.62

�r k (enhanced) 0.97 6.77 13.22 26.95 1.60

5%–10%

nk 727 317 221 101 1,366

p̂k 2.06 5.99 12.67 28.71 6.66

�r k (baseline) 6.99 7.26 7.64 7.76 7.21

�r k (enhanced) 2.53 7.12 13.93 28.32 7.34

10%–20%

nk 309 275 282 285 1,151

p̂k 1.94 7.27 13.48 29.82 12.95

�r k (baseline) 13.34 13.99 14.67 15.11 14.26

�r k (enhanced) 2.84 7.15 14.13 33.48 14.22

>20%

nk 40 116 213 1,094 1,463

p̂k 0.00 6.90 11.74 57.59 45.32

�r k (baseline) 24.00 28.20 31.49 50.050 44.90

�r k (enhanced) 3.20 7.57 14.71 56.21 44.86

Total

No. of subjects 6,634 1,050 811 1,505 10,000

p̂k 1.40 7.05 12.58 49.70 10.17

�r k (baseline) 2.78 9.99 15.85 39.83 10.17

�r k (enhanced) 1.24 7.06 14.12 49.55 10.17

Abbreviation: RCC, reclassification calibration.
a In the kth cell, nk is the number of subjects, p̂k is the observed event rate, �r k (baseline) is the average baseline model risk, and �r k (enhanced) is

the average enhanced model risk p̂k . �r k (baseline) and �r k (enhanced) are shown as percentages.
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already established in preliminary analysis and which there-
fore does not need to be tested again.

Moreover, observe that the null hypothesis in equation 2
cannot hold for off-diagonal cells, since the average on the
left-hand side must be in risk category B, while that on
the right-hand side must be in risk category A. Therefore,
in large samples, the reclassification calibration test of the
baseline model must reject its null hypothesis, at least when
there are observations in some off-diagonal cells. In practice,
with finite sample sizes, it is possible for the baseline model
reclassification calibration test not to reject while the test in
preliminary analysis shows Y to be a risk factor. However,
this can only be due to sampling variability and lower power
for the reclassification calibration test compared with effi-
cient likelihood-based procedures that are typically used to
test whether Y is a risk factor in preliminary analyses.

In summary, if Y has been determined to be a risk factor,
with a sufficiently large sample size the reclassification cal-
ibration test of the baseline model will be rejected. There is
no point in performing this test.

CAUTIONARY REMARKS

True underlying risk

Cook (15) motivated the development of the new risk
reclassification analysis strategy in part by distinguishing
between risk prediction research and diagnostic research.
In the diagnostic setting, the event has already occurred,
whereas in the prediction setting, an event may or may not
occur in the future. Cook argues that the stochastic nature of
that occurrence must be recognized. A subject’s ‘‘true un-
derlying risk,’’ denoted by p, is his inherent probability of
a future event. In general, this seems like a nebulous entity.
Nevertheless, this underlying risk may be different from the
observable risks that are well-defined conditional probabil-
ities, Risk(X)¼ P(D¼ 1jX) and Risk(X, Y)¼ P(D¼ 1jX, Y),
modeled by the baseline and enhanced risk prediction
models, respectively. Specifically, Risk(x) is defined as a fre-
quency, namely the event rate among subjects with X ¼ x,
while Risk(x, y) is defined as the event rate in the subset of
those subjects with Y ¼ y as well as X ¼ x.

The ‘‘true underlying risk,’’ p, will be different from the
observable risk, Risk(X, Y), which is a function of observed
predictors (X, Y), if there exist additional, possibly unmea-
sured or unknown variables that are predictive. The data set
we simulated includes 1 additional predictive variable, W,
and the true underlying risks, p ¼ P(D ¼ 1jX, Y, W), are
known to us because we specified them in order to generate
the outcome data. For analysis, however, we have assumed
that we have available only D, X, and Y.

The algorithm for determining ‘‘correct
reclassification’’ is not correct

We can compare true underlying risk values with the en-
hanced model risk values, Risk(X, Y), for our simulated data.
Specifically, we compared risk category assignments made
with values of p ¼ P(D ¼ 1jX, Y, W) with those made using
values of Risk(X, Y) for subjects in the reclassified cells of

Table 1. Of the 2,749 reclassified subjects, we found that 919
risk category assignments (33.4%) made on the basis of
Risk(X, Y) were incorrect, in the sense that they were different
from the risk category assigned to them on the basis of their
‘‘true underlying risk,’’ p. In contrast, the risk reclassification
analysis strategy concludes that 100% of reclassifications are
correct. Thecriterion stipulated for identifying reclassifications
as correct or not in item 2 of the strategy is simply not valid.

Inference about true underlying risk is not possible

Although the notion of true underlying risk is interesting,
underlying risk cannot be revealed by data, except in ex-
tremely predictable scenarios such as those involving cer-
tain Mendelian disorders. Given only observed variables (X,
Y, D), one cannot know whether there exists an unmeasured
predictive marker, W, or not. If not, (X, Y) contains all pre-
dictive information, and true underlying risk is the same as
Risk(X, Y). On the other hand, in our data, true underlying
risk is P(D ¼ 1jX, Y, W), which is very different from
Risk(X, Y) ¼ P(D ¼ 1jX, Y) for a large number of people,
because W is highly predictive.

Using the observed variables (X, Y, D), one can only make
inference about the conditional probabilities, Risk(X, Y) ¼
P(D¼ 1jX, Y), not specifically about p. Interestingly, we can
also think of Risk(X, Y) as averaging true underlying risk
among subjects defined by X and Y,

Riskðx; yÞ ¼ meanðpjX ¼ x; Y ¼ yÞ:

Thus, we canmake inference about averages of underlying risk
among subpopulations defined by X and Y, but beyond that,
true underlying risk cannot be identified from data.

Much reclassification does not imply improvement

It is tempting to consider reclassification of risk for sub-
stantial numbers of subjects as evidence of improved risk
prediction with the enhanced model (21). However, Cook
has repeatedly emphasized that a large number of reclassi-
fied subjects does not necessarily imply improved perfor-
mance for the enhanced model over the baseline model (14,
22). Consider, for example, that the amount of reclassifica-
tion is determined in part by the numbers and choices of risk
categories. Correlation between risk predictors also affects
reclassification percentage (23).

In our data, approximately 28% of subjects were reclas-
sified, yet the number of subjects classified into the highest
risk category increased only slightly, from 1,463 to 1,505.
If the objective is to identify high-risk subjects, the addition
of Y to the baseline predictors did not help, despite substan-
tial reclassification. The number of subjects classified into
the lowest risk category did increase, but only by 10.2%
(614/6,020 ¼ 10.2%).

The fact that substantial reclassification can occur in
the absence of substantial improvement in risk model per-
formance has also been observed in other data sets. For
example, Gail (21) found that adding 7 single nucleotide
polymorphisms to a breast cancer risk model resulted in
substantial risk reclassification but negligible gain in terms
of a cost-benefit analysis.
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BETTER METHODS FOR EVALUATING PREDICTION
MODELS

This paper is not intended to provide comprehensive
guidance on how to evaluate and compare the performances
of risk prediction models. There is a growing body of liter-
ature on the topic, and I recommend several papers to the
interested reader (9, 10, 19, 23–28). Instead, the focus here
is on use of the Cook and Ridker (14) risk reclassification
analysis strategy defined in items 1–3 above. I have noted
some major concerns that I have about interpretations for
the percentage of reclassification, the percentage of correct
reclassification, and the 2 reclassification calibration statis-
tics. My discussion assumes that fitted risk models appear
to approximate the observed data reasonably well, as
assessed by standard goodness-of-fit procedures. Assess-
ment of goodness of fit is a precursor to evaluating risk
reclassification (14, 16, 23). In my example, simple linear
logistic models fitted the observed data well, but in practice
more complex models are often needed. I also ignored
potential biases due to evaluating model performance in
the same data used to fit the risk models. Ideally, one
would use independent data sets to fit models and assess
performance.

Certainly, the cross-tabulation itself is not problematic. It
can be interesting to examine the extent to which individuals’
risk categories change (or not) by adding a new predictor to
a baseline model. In order to compare the population perfor-
mance of the enhancedmodel with that of the baseline model,
however, the margins of the risk reclassification table are
more relevant than are the interior cells of the table, because
the margins show the net increases in numbers of subjects
classified into high or low risk categories (23). Moreover, I
and others have argued for displaying the net changes sepa-
rately for subjects with and without events (19, 23). We see
from the margins of Table 5 that of the 1,017 subjects with
events, the proportions in the 4 risk categories changed from
(11.2%, 9.0%, 14.7%, 65.2%) with use of the baseline model
to (9.1%, 7.3%, 10.0%, 73.6%) with use of the enhanced

model, a shift towards the higher risk categories. In particular,
we see that of subjects who had events, 8.4% more (73.6 –
65.2 ¼ 8.4%) would have been classified in the highest risk
category at time 0 by including Y in the risk model. The
margins of Table 5 also show that for the 8,983 subjects
without events, the proportions in the 4 risk categories
changed from (65.8%, 14.2%, 11.2%, 8.9%) with use of
the baseline model to (72.8%, 10.9%, 7.9%, 8.4%) with use
of the enhanced model, a shift towards the lower risk cate-
gories. Of subjects who did not have events, 7.0% more
(72.8 – 65.8¼ 7.0%) would have been classified in the lowest
risk category at time 0 by including Y in the risk model.

The Net Reclassification Index (NRI) is a popular statistic
that is computed from the event and nonevent reclassifica-
tion table (Table 5). For subjects with events, it counts the
proportion that moved to a higher risk category, less the
number that moved to a lower risk category. That is, it
counts the proportion above the diagonal in the table versus
the proportion below the diagonal—for our data, (184 �
74)/1,017 ¼ 0.108. Similarly, for subjects without events,
it counts the proportion shifted to a lower risk category,
which is the proportion below the diagonal versus the pro-
portion above the diagonal: (1,606 � 885)/8,983 ¼ 0.080. It
then sums the 2 components. For our data, therefore, the
NRI is 0.188. Interpretation of the NRI is problematic, how-
ever, partly because the summation of the 2 components
masks the relative contributions of each. An NRI of 0.188
may be due, at one extreme, to 18.8% of subjects with events
moving to a higher risk category without any shift for sub-
jects without events or, at the other extreme, to 18.8% of
subjects without events moving to a lower risk category
without any shift for subjects with events; or it may be due
to approximately equal proportions of events and non-
events moving to improved risk categories, as was the case
for our data. I suggest at least reporting the 2 components
of the NRI separately, the event NRI (10.8%) and the non-
event NRI (8.3%). Better still would be to report the
changes in proportions of subjects in each of the risk cat-
egories. The changes in the distribution of risk categories
for subjects with and without events are (�2.1%, �1.7%,
�4.6%, 8.4%) and (7.1%, �3.3%, �3.3%, �0.5%), re-
spectively. I find this summary more informative because
the risk categories are acknowledged explicitly. For exam-
ple, if one is concerned primarily with the highest and
lowest risk categories, we see that for subjects with events
the enhanced model improves the proportions of them in
the highest and lowest risk categories, and improvement is
also seen in both risk category proportions for subjects
without events.

Finally, I reiterate that analyses using risk categories are
predicated on the existence of risk categories that have been
defined on the basis of sound, clinically motivated criteria.
Unfortunately, the existence of categories that are widely
agreed upon is more the exception than the rule in practice.
When risk categories have not been defined on the basis of
sound, clinically motivated criteria, the continuous distribu-
tions of Risk(X) and Risk(X, Y) can be presented instead of
categorized versions (10, 24). These allow viewers to over-
lay various risk categories and ideally clinically meaningful
risk categories that may be developed post hoc. Scatterplots

Table 5. Event and Nonevent Reclassification

Risk(X)
Risk(X, Y)

0%–5% 5%–10% 10%–20% >20% Total

Events

0%–5% 72 27 11 4 114

5%–10% 15 19 28 29 91

10%–20% 6 20 38 85 149

>20% 0 8 25 630 663

Total 93 74 102 748 1,017

Nonevents

0%–5% 5,486 315 84 21 5,906

5%–10% 712 298 193 72 1,275

10%–20% 303 255 244 200 1,002

>20% 40 108 188 464 800

Total 6,541 976 709 757 8,983
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of Risk(X, Y) versus Risk(X) can be used instead of cross-
tabulations to avoid the use of specific risk categories in
presentation.
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APPENDIX

Data for illustration

I generated data on 4 variables, {D, X, Y, W}, for 10,000
subjects, so that the binary outcome D is equal to 1 with
probability P(D ¼ 1jX, Y, W), where

logit PðD ¼ 1jX; Y ;WÞ
¼ �6:14þ 1:70X þ 1:00Y þ 2:00W :

My method for generating data, described below, implies
that logistic regression models also hold for the observable
risk functions, Risk(X, Y) ¼ P(D ¼ 1jX, Y) and Risk(X) ¼
P(D ¼ 1jX):

logit PðD ¼ 1jX; YÞ ¼ �4:14þ 1:70X þ 1:00Y

and

logit PðD ¼ 1jXÞ ¼ �3:64þ 1:70X:

For the simulation algorithm, I first created a population
covariate distribution by simulating 900,000 observations
with (X, Y, W) from independent standard normal distribu-
tions and 100,000 observations with (X, Y,W) from indepen-
dent normal distributions with mean values of (1.7, 1.0, 2.0)
and standard deviations of (1, 1, 1). I then generated D with
binomial probability P(D ¼ 1jX, Y, W), given in the expres-
sion above, and selected 10,000 subjects at random for the
study cohort.

I prove below that this procedure gives rise to data with
conditional distributions P(X, Y, WjD ¼ 1) and P(X, Y,
WjD ¼ 0) that are multivariate normal with identity covari-
ance matrices and means of (1.7, 1, 2) and (0, 0, 0), respec-
tively. From this it follows that the conditional distributions
of (X, Y), P(X, YjD ¼ 1) and P(X, YjD ¼ 0), are bivariate
normal with identity covariance matrices and that the con-
ditional distributions of X, P(XjD ¼ 1) and P(XjD ¼ 0), are
normal with variance 1. It follows from classic discriminant
analysis that when data are (multivariate) normal with equal
variance-covariance in 2 classes, D ¼ 0 and D ¼ 1, the
corresponding risk functions are linear logistic. This follows
from a simple application of Bayes’ theorem and some
algebra.

Conditional distributions of (X, Y, W)

To simplify notation, we use Z for the vector (X, Y, W), l
˜for (1.7, 1.0, 2.0), and q for 0.1. The distribution of Z is

written as p(Z) ¼ q/0(Z) þ (1 � q)/1(Z), where /0 and /1

are trivariate normal distributions with identity variance-
covariance matrix and means (0, 0, 0) and l

˜
, respectively.

Observe that logðq=ð1 � qÞÞ � l
˜
l
˜
=2 ¼ � 6:14:

PðD ¼ 1jZÞ

¼ expð�6:14 þ 1:7X þ Y þ 2WÞ
1þ expð�6:14 þ 1:7X þ Y þ 2WÞ

¼
q=ð1� qÞexpð� l

˜
l
˜
#=2þ Zl

˜
#Þ

1þ q=ð1� qÞexpð� l
˜
l
˜
#=2þ Zl

˜
#Þ

¼
q exp

�
�1

2

�
ZZ#�2Zl

˜
#þ l

˜
l
˜
#
�
þ 1

2

�
ZZ#

��
�
1� q

�
þ q exp

�
�1

2

�
ZZ#�2Zl

˜
#þ l

˜
l
˜
#
�
þ 1

2

�
ZZ#

��

¼ q/1ðZÞ
ð1� qÞ/0ðZÞ þ q/1ðZÞ

�

Therefore,

PðZjD ¼ 1Þ ¼ PðD ¼ 1jZÞPðZÞ
PðD ¼ 1Þ

¼ q/1ðZÞPðZÞ
fð1� qÞ/0ðZÞ þ q/1ðZÞgPðD ¼ 1Þ

¼ q/1ðZÞ=PðD ¼ 1Þ;

because P(Z) ¼ (1 � q)/0(Z) þ q/1(Z) according to the
procedure generating Z.

It follows by integratingP(D¼ 1jZ) over Z thatP(D¼ 1)¼
q, so the result P(ZjD ¼ 1) ¼ /1(Z) follows. A similar proof
shows P(ZjD ¼ 0) ¼ /0(Z).

The raw data are available on the Web site of the
Diagnostic and Biomarkers Statistical Center (http://labs.
fhcrc.org/pepe/dabs/datasets.html).

Risk classification with no baseline covariates

I show that the risk reclassification calibration statistic is
equal to the Pearson chi-squared statistic for association in
the simple setting where the baseline risk is the overall event
rate for all subjects. Appendix Table 1 defines the relevant
notation. Let Ek (and nk � Ek) be the expected events (and
nonevents) in the kth Risk(Y) category. Under the null, Ek ¼
nkp (and nk � Ek ¼ nk (1 � p)). We write

Pearson v2 ¼
P
k

ðOk�EkÞ2
Ek

þ ðnk�Okðnk�EkÞÞ2
ðnk�EkÞ ;

¼
P
k

ðpk�pÞ2
nkp

þ ðpk�pÞ2
ðnkð1�pÞÞ;

¼
P
k

ðpk�pÞ2
nk

n
1
p þ 1

1�p

o
;

¼
P
k

ðpk�pÞ2
nkpð1�pÞ:

This is identical to the expression for the reclassification
calibration test of the baseline model when the baseline
model assigns all subjects the same risk; p ¼ the overall
event rate, that is, when there are no baseline covariates.
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Appendix Table 1. Notation used to demonstrate that the Pearson

chi-squared statistic is equal to the risk reclassification statistic for the

baseline risk modela

Category for Risk(Y)

1 2 . . . K Total

Events O1 O2 . . . OK O ¼
P

Ok

Nonevents n1 � O1 n2 � O2 . . . nK � OK n �
P

Ok

No. of subjects n1 n2 . . . nK n ¼
P

nk

Event rate p1 ¼ O1

n1
p2 ¼ O2

n2
. . . pK ¼ OK

nK
p ¼ ROk

n

a The upper 2 rows show notation corresponding to the Pearson

chi-squared statistic. The lower 2 rows show notation corresponding

to the risk reclassification statistic. There is only 1 category for the

baseline risk.
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