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The relative excess risk due to interaction (RERI) provides a useful metric of departure from additivity of effects
on a relative risk scale. In this paper, the authors show that RERI is identical to the product term in a linear odds
ratio or a linear relative risk model. SAS and STATA codes are provided for fitting a linear odds ratio model that
directly parameterizes RERI. In addition, this paper presents a method for obtaining likelihood-based 95% confi-
dence bound estimates for RERI. The authors show that likelihood-based confidence intervals may differ sub-
stantially from the asymptotic confidence interval estimates advocated by previous authors. The approach
presented in this paper should facilitate estimation of RERI and associated likelihood-based confidence bounds,
by using standard statistical packages.

confidence intervals; interaction; logistic regression; risk ratio

Abbreviations: ERR, excess relative risk; RERI, relative excess risk due to interaction; RR, relative risk.

Often, in epidemiologic research, a data analyst is inter-
ested in the joint exposure effects of 2 factors on disease risk.
Questions regarding the nature of joint effects arise in nearly
all areas of epidemiologic study, as investigators consider
potential interactions between factors that may be biologic,
behavioral, environmental, economic, or psychosocial.

Exponential models are widely used for the analysis of
disease rates, risks, and odds (1, pp. 393–398; 2). Under an
exponential model, a departure from multiplicativity in the
joint effects of 2 factors is readily evaluated by inclusion of
a product interaction term in the regression model. This has
led to a widespread phenomenon in the epidemiologic liter-
ature of authors making statements regarding the absence of
evidence of interaction between 2 factors when, more spe-
cifically, what they mean is that the data appear to conform
to multiplicativity of effects on a relative risk, relative rate,
or relative odds scale (1, pp. 74–80).

Rothman and others have noted that an assessment of in-
teraction on an additive scale is often of interest and, in some
contexts, is more meaningful than an assessment of interac-
tion on a multiplicative scale. For example, from a public
health perspective, a positive departure from additivity of

effects implies that the number of cases attributable to 2
hazards in combination is larger than the sum of the numbers
of cases that would be caused by each hazard separately (3).

The relative excess risk due to interaction (RERI), also
referred to as ‘‘ICR’’ (interaction contrast ratio), provides
one useful metric of departure from additivity of effects on
a relative risk scale (4, pp. 340–342). Hosmer and Lemeshow
(5) described an approach to calculating RERI, along with
the associated asymptotic 95% confidence interval, using the
output obtained from fitting a logistic regression model. This
approach is appealing as it utilizes the output from a standard
exponential odds regression model. Hosmer and Lemeshow
(5) acknowledged the limitations of their proposed Wald-
type interval estimates. Assmann et al. (6) subsequently
demonstrated that bootstrapping may give better coverage
of the 95% confidence interval for the estimate of RERI
than the method proposed by Hosmer and Lemeshow.
Recently, Zou (7) proposed an alternative approach to deri-
vation of confidence intervals for additive interactions via
a method of variance estimates recovery, referred to as
‘‘MOVER.’’ Similar to the approach advocated by Hosmer
and Lemeshow, the approach proposed by Zou utilizes the
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estimated variance and covariance of the estimated coefficients
from a standard exponential odds regression model (6, 7).

This article describes how additive interactions of odds
ratios for logistic or binomial regression models can be
easily assessed using standard commercial software pack-
ages, such as SAS (8) and STATA (9). The RERI is shown to
be identical to the product term in a linear odds ratio or
linear relative risk model, and the confidence interval ob-
tained via the method advocated by Hosmer and Lemeshow
(5) is shown to be equivalent to the Wald-type confidence
interval for this product term. Storer et al. (10) suggested
that, when working with linear relative risk models, Wald-
type statistics should be avoided entirely. They recommended
the use of likelihood ratio or score statistics in these settings
(10). Similarly, Greenland warned that, when working with
linear relative risk models, Wald-type confidence intervals
perform poorly at typical sample sizes; he argued for the use
of confidence intervals based upon likelihood ratio or score
statistics (11–13). Maldonado and Greenland (14) found, via
simulation analyses, that the performance of Wald-type con-
fidence intervals was poor when fitting nonmultiplicative
models, while the likelihood ratio interval consistently
performed well. We present a simple approach to deriving
likelihood-based confidence intervals for RERI and illustrate
how these bounds may differ from the asymptotic bounds used
by previous authors (5, 7, 15).

MATERIALS AND METHODS

Let A and B denote 2 explanatory variables measured in
an epidemiologic study. A logistic regression analysis con-
ducted via an exponential odds model of the form,
odds ¼ eðb0þb1Aþb2BÞ, implies that the effects of A and B
are additive on an exponential scale.

A linear odds ratio model offers a useful alternative to the
log-linear model when a researcher is interested in questions
regarding departure from additivity of the effects of the
exposures. The linear odds ratio model has the form,
odds ¼ eðb0Þð1 þ b1Aþ b2BÞ, where b1and b2 represent
the excess odds ratio per unit of exposure to A and B, respec-
tively. Under a linear odds ratio model, in the absence of
a product interaction term between A and B, the effects of
these 2 factors are assumed to affect the odds of disease in
an additive fashion. A test of departure from additivity in-
volves inclusion of a product interaction term leading to
a model of the form, odds ¼ eðb0Þð1 þ b1Aþ b2Bþ b3ABÞ.

Relative excess risk due to interaction

The RERI has become a widely used metric of departure
from additivity of effects on a relative risk (RR) scale.
For a pair of dichotomous exposure variables, A and B,
Hosmer and Lemeshow (5) defined this quantity as
RRðABÞ � RRðA �BÞ � RRð �ABÞ þ 1. This could be written
equivalently as the excess additive risk divided by the base-
line risk (the risk among those exposed to neither A nor B).
Following Hosmer and Lemeshow, we focus on the scenario
in which the odds ratio approximates the relative risk. Con-
sider rewriting the expression for RERI in terms of excess
relative risk (ERR), where ERR ¼ RR � 1, as follows:

RERI¼½ERRðABÞþ1��½ERRðA �BÞþ1�� ½ERRð �ABÞþ1�þ1
¼ ERRðABÞ � ERRðA �BÞ � ERRð �ABÞ:

In a linear odds ratio model of the form, odds ¼
eðb0Þð1 þ b1Aþ b2Bþ b3ABÞ, the coefficient b3 describes
departure from additivity of the exposures effects on an
odds ratio scale. Therefore, b3 ¼ ERRðABÞ � ERRðA �BÞ�
ERRð �ABÞ, and b3 may be taken as estimator of RERI
(while b1and b2 may be taken as estimators of ERRðA �BÞand
ERRð �ABÞ, respectively). Notably, if the effects of A and B are
strictly additive on an odds ratio scale, b3 ¼ 0.

Likelihood-based confidence intervals for parameters in
a linear odds ratio model are generally preferred over Wald-
type confidence intervals as they have better coverage be-
havior (10–14). A likelihood-based confidence interval can
be derived by comparing the residual deviance (i.e., �2
log-likelihood) of a model in which all parameters are al-
lowed to vary to the residual deviance of a model in which
a parameter of interest is fixed at a specified level while allow-
ing the other model parameters to vary (1, pp. 229–230). The
2 values that fix the parameter of interest and result in a change
in the residual deviance by v2

ð1;aÞ represent the 100(1 � a)%
upper and lower confidence bounds for this parameter.

Fitting the linear odds ratio model

Methods for evaluation of measures of additive interac-
tion within the context of standard exponential regression
models might have been promoted on the premise that fitting
the linear odds ratio model would require specialized soft-
ware. However, the linear odds ratio model may be readily
fitted using the SAS statistical package. PROC NLMIXED
produces likelihood estimates that are based on adaptive
Gaussian quadrature (8). A linear odds ratio model of the
form, odds ¼ eðb0Þð1 þ b1Aþ b2Bþ b3ABÞ, may be fitted
via SAS as follows:

proc nlmixed data ¼ ;

odds¼exp(b0)*(1þ b1*A þ b2*B þ b3*A*B);
model outcome ~ binary(odds/(1þodds));
run;

The term ‘‘odds’’ specifies that the odds of disease are
the product of exp(b0) and the linear term ‘‘(1þ b1*A þ
b2*B þ b3*A*B).’’ The model statement specifies that the
events follow a binomial distribution with the probability, P¼
(odds/(1þodds)). The parameters b0, b1, b2, and b3
are estimated from the data. A simple SAS macro can be used
to obtain likelihood-based confidence bounds (Web Appendix
1). (This information is described in the first of 2
supplementary appendixes; each is referred to as ‘‘Web
Appendix’’ in the text and is posted on the Journal’s website
(http://aje.oxfordjournals.org/).) STATA code for fitting a
linear odds ratio model and obtaining likelihood-based confi-
dence bounds is provided as well (Web Appendix 2).

Bootstrapping

Bootstrapping offers another approach for deriving ap-
proximate confidence intervals for parameters derived via
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a linear relative risk model (16). Assmann et al. (6) proposed
a nonparametric approach to bootstrapping of confidence
intervals for RERI. They suggested that a number of boot-
strap replications should be taken (with replacement) from
the original sample, each replication being the same size as
the original sample. The RERI is then estimated in each
replication, and the 95% confidence interval for RERI is
estimated as the 2.5th and 97.5th percentiles of the resulting
distribution (6, 17).

Example 1

Consider the data examined by Hosmer and Lemeshow
(5) to illustrate their approach to calculating confidence
intervals for RERI. The data concern smoking and alcohol
use in relation to oral cancer among male veterans under the
age of 60 years (18). Hosmer and Lemeshow reported that,
for the data shown in Table 1, RERI ¼ 3.74, and the asymp-
totic 95% confidence interval for RERI was �1.85, 9.33.
Zou (7) proposed an alternative method to deriving confi-
dence intervals for RERI; the resultant 95% confidence in-
terval obtained via Zou’s method is �11.41, 21.84.

A linear odds ratio model of the form, odds ¼ eðb0Þ

ð1 þ b1alcohol þ b2smoking þ b3alcohol3 smokingÞ, was
fitted to these data. Table 2 reports the parameter, estimate,
standard errors, Wald-type 95% confidence bounds, and
likelihood-based 95% confidence bounds. The value for b̂3
equals the estimate of RERI, and the Wald-type 95% confi-

dence interval obtained via fitting the linear odds ratio
model �1.85, 9.33 is equivalent to the asymptotic 95%
confidence interval derived via Hosmer and Lemeshow’s
approach. The likelihood-based 95% confidence bounds
for b̂3 are �3.29, 17.21.

A bootstrapped confidence interval was derived via 1,000
bootstrap replications of the original data. The 95% confi-
dence interval �10.77, 1.6 3 107 was wide as a consequence
of sparse cells in some bootstrap simulations. The 5th and
95th centiles of the resulting bootstrap sampling distribution
of RERI, which provide 90% confidence bounds via a boot-
strap percentile method, were �1.50 and 19.59, which may
be contrasted to the likelihood-based 90% confidence inter-
val �1.34, 13.10. These results suggest that the nonpara-
metric bootstrap approach proposed by Assmann et al. (6)
does not perform well when applied to an analytical data
structure of this size.

Example 2

Consider the data examined by Assmann et al. (6) to
illustrate bootstrapping of confidence intervals for RERI.
The data are derived from a case-control study of herniated
lumbar disc in relation to sports participation and smoking
(19) (Table 3). As in Assmann et al. for the purposes of this
example, we ignore the matched design. The estimate of
RERI is �1.28 (Table 4). Using the approach described by
Hosmer and Lemeshow (5), we found that the associated
95% confidence interval is �3.12, 0.56; while using the
approach described by Zou, the associated 95% confidence

Table 1. Distribution of Cases and Controls With Respect to

Alcohol Use and Smoking in a Study of Oral Cancer Among 458

Veteransa

A 5 Alcohol Use B 5 Smoking
Oral Cancer

Cases, no. Controls, no.

1 1 225 166

1 0 6 12

0 1 8 18

0 0 3 20

a Data are from an example presented by Rothman and Keller (18)

and Hosmer and Lemeshow (5).

Table 2. Alcohol Use and Smoking in Relation to Oral Cancer in a

Study of 458 Veteransa,b,c

Parameter Estimate
Standard
Error

Wald-Type
95% Bounds

Likelihood-based
95% Bounds

Constant �1.90 0.62 �3.11, �0.68 �3.34, �0.83

Alcohol 2.33 2.65 �2.88, 7.55 �0.26, 17.21

Smoking 1.96 2.22 �2.41, 6.34 �0.27, 14.14

Alcohol 3
smoking

3.74 2.85 �1.85, 9.33 �3.29, 17.21

a Data are from an example presented by Rothman and Keller (18)

and Hosmer and Lemeshow (5).
b Output was from fitting of a linear odds ratio model to the data in

Table 1 of the present paper.
c Estimates were obtained via fitting of a model of the form:

odds ¼ eðb0Þð1þ b1alcoholþ b2smokingþ b3alcohol3 smokingÞ.

Table 3. Distribution of Cases and Controls With Respect to Sports

Participation and Smoking in a Case-Control Study of Herniated

Lumbar Discsa

A 5 No sports B 5 Smoking
Herniated Disc

Cases, no. Controls, no.

1 1 36 28

1 0 31 20

0 1 138 113

0 0 82 126

a Data are from the study by Mundt et al. (19).

Table 4. Sports Participation and Smoking in Relation to Herniated

Lumbar Discsa,b

Parameter Estimate
Standard
Error

Wald-Type
95% Bounds

Likelihood-based
95% Bounds

Constant �0.43 0.14 �0.71, �0.15 �0.71, �0.15

No sports 1.38 0.76 �0.12, 2.88 0.28, 3.52

Smoking 0.88 0.36 0.18, 1.58 0.29, 1.73

No sports 3
smoking

�1.28 0.94 �3.12, 0.56 �3.62, 0.43

a Data are from the study by Mundt et al. (19).
b Output was from fitting of a linear odds ratio model to the data in

Table 3 of the present paper.
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interval is �3.66, 0.42. Direct fitting of a linear odds ratio
model with a product term describing departure from addi-
tivity of effect on the odds ratio scale results in a likelihood-
based 95% confidence interval of �3.62, 0.43. Bootstrapping
1,000 replications of the original data results in a 95% con-
fidence interval for RERI of �3.63, 0.53.

RESULTS AND DISCUSSION

This article illustrates how to directly evaluate additive
interactions on the odds ratio scale within the context of
a linear odds ratio regression model. An assessment of de-
parture from additivity of effects on an odds ratio scale is
encompassed within a regression analysis context, with a pa-
rameter representing RERI estimated simultaneously with
all other regression model parameters. A formal statistical
test of the contribution of a product term describing depar-
ture from additivity of effects is obtained by contrasting
nested models. Although significance testing shouldn’t be
the sole criterion for evaluation of odds ratio modification
(on a multiplicative or additive scale), such a test statistic
provides a useful piece of information in assessment of
statistical interactions.

A number of authors have cautioned against the use of
Wald-type confidence intervals for nonmultiplicative mod-
els (11, 14, 20). In general, relative risk models, such as the
linear odds ratio model, and likelihood-based confidence
intervals are preferred because methods based on as-
ymptotic variance estimates may be misleading (11). The
approach to deriving confidence intervals for RERI recom-
mended by Hosmer and Lemeshow and the approach sub-
sequently advocated by Zou utilize the estimated standard
errors of coefficient estimates. The first example in this
paper illustrated the difference between likelihood-based
95% confidence intervals for RERI and the asymptotic
95% confidence intervals used by previous authors (in anal-
yses of the same data). The second example illustrated that,
in a larger study, the confidence intervals derived via these
various approaches tend to be more similar, although the
likelihood-based confidence bounds are still preferred and
are readily used for these purposes.

An alternative to deriving likelihood-based confidence
intervals for RERI is to bootstrap confidence intervals, as
suggested by Assmann et al. (6). However, this approach has
its limitations. For exponential models, the bootstrap can be
thought of as 1 way of constructing the likelihood intervals;
for nonmultiplicative models, DiCiccio and Efron (16) cau-
tion that, although likelihood-based intervals are accurate in
a conditional sense, in order to get good conditional prop-
erties bootstrap sampling would have to be done according
to the appropriate conditional distribution, which is usually
difficult to implement. Barlow and Shun (20) found that, in
the simulation scenarios that they considered, bootstrapped
confidence intervals did not perform well for linear relative
risk models, while likelihood-based confidence intervals
had values close to nominal coverage. Furthermore, as we
observed in example 1, the bootstrapping approach pro-
posed by Assmann et al. (6) may perform poorly for small
tabulations of data if samples are too small to rely upon (21).

Following Hosmer and Lemeshow, we focus on the fitting
of regression models that estimate the odds ratio. Linear
relative risk models of the form, risk ¼ eðb0Þð1 þ b1dÞ,
may be of interest in some settings (e.g., analyses of inci-
dence proportions in closed cohorts); further, it has been
noted that for common outcomes RERI is preferably calcu-
lated in terms of risk ratios rather than odds ratios (7). SAS
PROC NLMIXED is highly flexible, and an analogous ap-
proach to fitting a linear relative risk model is possible to
implement as well.

Importantly, these models do not address questions re-
garding interactions that influence the distribution of times
to disease onset (e.g., whether the empirical induction pe-
riod among those exposed to A differs in the presence of B).
Nor do these methods consider scenarios in which the
temporal ordering of exposures impacts their joint effects,
as might be envisioned under a multistage model for a dis-
ease process. While these are important questions, alterna-
tive methods of analysis are necessary to investigate them
(22–24).

Greenland (12) noted that an evaluation of departure from
additivity of relative risks, as explored herein, is not equiv-
alent to an evaluation of departure from additivity of effects
on the risk scale (except in the special case where there
is a single stratum of data defined by covariates). In an
additive risk model, departure from additivity is defined
by the quantity, RðABÞ � RðA �BÞ � Rð �ABÞ � Rð �A �BÞ; and
therefore depends upon the baseline risk estimate, Rð �A �BÞ;
which may vary across strata of covariates and is often not
readily estimable in case-control analyses. In contrast, we
have focused on departures from additivity of relative
risks and specifically on a quantity, RERI, which does not
depend upon Rð �A �BÞ and is estimable in both cohort and
case-control designs. Along lines similar to those of Green-
land (12), Skrondal (25) noted that, if the population model
of the exposure-disease association conforms to an additive
risk model, then RERI will vary across the strata of co-
variates; correct model specification, not surprisingly, is
a fundamental requirement for valid estimation of interac-
tion terms.

Concepts of interaction play an important role in epide-
miologic data analysis and interpretation. This paper illus-
trates an approach to estimation of interaction on an additive
scale within a multiple logistic regression framework, along
with derivation of appropriate likelihood-based confidence
intervals for this metric. Procedures for deriving confidence
intervals based upon likelihood ratio statistics have long
been advocated as the preferred method for parameters in
linear relative risk models (11–13). The approach presented
here should facilitate assessment of additive interaction on
an odds ratio scale.
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