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Abstract
The RNA-binding motif protein 3 (RBM3) was initially discovered as a putative cancer biomarker based on its dif-
ferential expression in various cancer forms in the Human Protein Atlas (HPA). We previously reported an associ-
ation between high expression of RBM3 and prolonged survival in breast and epithelial ovarian cancer (EOC).
Because the function of RBM3 has not been fully elucidated, the aim of this study was to use gene set enrichment
analysis to identify the underlying biologic processes associated with RBM3 expression in a previously analyzed
EOC cohort (cohort 1, n = 267). This revealed an association between RBM3 expression and several cellular pro-
cesses involved in the maintenance of DNA integrity. RBM3-regulated genes were subsequently screened in the
HPA to select for putative prognostic markers, and candidate proteins were analyzed in the ovarian cancer cell line
A2780, whereby an up-regulation of Chk1, Chk2, and MCM3 was demonstrated in siRBM3-treated cells compared
to controls. The prognostic value of these markers was assessed at the messenger RNA level in cohort 1 and the
protein level in an independent EOC cohort (cohort 2, n = 154). High expression levels of Chk1, Chk2, and MCM3
were associated with a significantly shorter survival in both cohorts, and phosphorylated Chk2 was an adverse
prognostic marker in cohort 2. These results uncover a putative role for RBM3 in DNA damage response, which
might, in part, explain its cisplatin-sensitizing properties and good prognostic value in EOC. Furthermore, it is dem-
onstrated that Chk1, Chk2, and MCM3 are poor prognostic markers in EOC.
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Introduction
Epithelial ovarian cancer (EOC) is the fifth most common cause of
cancer-related death in women and carries the highest mortality rate
of gynecological malignancies in the western world. In 2008, it was
estimated that 21,650 new ovarian cancer cases would be diagnosed
in the United States and that 15,520 would die of the disease [1].
The poor ratio of survival to incidence in EOC is related to the high
percentage of cases that are diagnosed at an advance stage and the
lack of effective therapies for advanced refractory disease. Adjuvant
systemic chemotherapy for ovarian cancer is empiric and initial treat-
ment involves paclitaxel-platinum–based regimens, which continue
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to show improved outcomes compared with other cytotoxic agents
such as gemcitabine, topotecan, and liposomal doxorubicin [2]. De-
spite aggressive surgery and chemotherapy, most patients relapse
within 3 to 5 years, and the median time to relapse is 15 months
after diagnosis [3]. Such poor statistics indicate the urgent need for
the development of new diagnostic, prognostic, and predictive bio-
markers, which are essential for the development of personalized
therapeutic regimens for ovarian cancer patients [4].
RNA-binding proteins with RNA-binding motifs (RBM) are in-

volved in many aspects of RNA processing and regulation of gene
transcription [5,6]. The RNA-binding motif protein 3 (RBM3) pro-
tein has been shown to bind to both DNA and RNA [7]. We initially
described RBM3 as a putative cancer biomarker based on its differ-
ential expression in various cancer forms in the Human Protein Atlas
(HPA) (www.proteinatlas.org) [8,9]. Within this context, we described
RBM3 as a prognostic biomarker in breast cancer, which is associated
with an improved survival, particularly in estrogen receptor–positive
tumors [10]. We subsequently reported an association between
RBM3 messenger RNA (mRNA) and protein expression and good
prognosis in two independent EOC cohorts and demonstrated that
RBM3 expression conferred sensitivity to cisplatin in vitro [11].
These data suggest that RBM3 may play a key role in both breast

and ovarian tumorigenesis and progression; however, its exact function
is still to be fully elucidated. The aim of this study was to identify the
Figure 1. Identification of cellular processes associated with RBM3
biomarker discovery whereby transcriptomic and proteomic data can
that increased RBM3 expression was associated with a number of p
remodeling P < .05, DNA replication P < .01, DNA integrity checkp
underlying biologic processes associated with RBM3 expression in
EOC and use this approach to identify new prognostic and predictive
biomarkers. Our secondary objective was to improve understanding of
the molecular mechanisms underlying the prognostic value of RBM3
in EOC. This approach involved the integration of transcriptomic and
antibody-based proteomic data whereby gene set enrichment analysis
(GSEA) was performed in a cohort of 267 EOC cases from a publicly
available data set [12], in which we have previously demonstrated that
high RBM3 expression levels independently predict a prolonged sur-
vival [11]. The HPA was then screened to select promising EOC bio-
marker candidates identified from the aforementioned GSEA. These
biomarkers were subsequently validated in vitro and in an independent
EOC tissue microarray (TMA). This method, schematically described
in Figure 1A, highlights a novel approach to biomarker discovery
whereby transcriptomic and proteomic data can be integrated to iden-
tify new biomarkers.
Materials and Methods

Patients

Cohort 1. Cohort 1 is composed of 285 cases of serous and endo-
metrioid carcinoma of the ovary, fallopian tube, and peritoneum.
expression in EOC. (A) Flowchart illustrating a novel approach to
be integrated to identify new biomarkers. (B) GSEA demonstrated
rocesses including DNA-dependent replication P < .01, chromatin
oint P < .05, and DNA damage checkpoint P < .05.
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The cohort has been described previously [12]. Most patients under-
went laparotomy for staging and debulking and, subsequently, re-
ceived first-line platinum/taxane–based chemotherapy. In most cases,
tumor tissue was excised at the time of primary surgery, before the
administration of chemotherapy. Eighteen patients who received
neoadjuvant platinum-based chemotherapy were excluded from this
study; hence, the total number or patients examined was 267. Optimal
debulking was defined as less than 1 cm (diameter) residual disease,
and suboptimal debulking was more than 1 cm (diameter) residual
disease. Recurrence-free survival (RFS) was defined as the time interval
between the date of diagnosis and the first confirmed sign of disease
recurrence based on GCIG definitions. Overall survival (OS) was de-
fined as the time interval between the date of histological diagnosis and
the date of death from any cause. Median follow-up was 29 months
(range = 0-214 months).

RNA was extracted from tumors and hybridized to Affymetrix
U133 Plus 2 arrays as previously described [12]. Complete expres-
sion data were downloaded from GEO (www.ncbi.nlm.nih.gov/geo)
(Accession GSE9899). R package “Affy” (www.bioconductor.org)
was used to normalize the CEL files using the Robust Multichip
Average (RMA) method [13]. For RBM3 analysis, normalized gene
expression values were extracted from the data set and used without
modification. Tumor samples were classified using a previously pub-
lished method [14].

Cohort 2. This cohort is a merge of all incident cases of EOCs in
the large, population-based prospective cohort studies Malmö Diet
and Cancer Study [18] (n = 101) and Malmö Preventive Medicine
Study [19] (n = 108) until December 31, 2008, and has been de-
scribed previously [11]. Thirty-five patients participated in both stud-
ies, and archival tumor tissue could be retrieved from 154 of the total
number of 174 cases. After a median follow-up of 2.65 years (range =
0-21 years), 105 patients (68.2%) were dead and 49 (31.8%) were
alive. All tumors were reevaluated regarding histological subtype and
histological grade. Information regarding clinical stage was obtained
from the medical charts, following the standardized classification of
tumor staging of the International Federation of Gynecology and Ob-
stetrics. Information on residual disease after surgery was not available.
Standard adjuvant therapy was platinum-based chemotherapy from
the 1990s, given in combination with paclitaxel.

Ethical permission was obtained from the ethics committee at Lund
University (reference no. 447-07 and 35/08), whereby informed con-
sent was deemed not to be required other than by the opt-out method.

Human Protein Atlas TMAs
Tissue microarrays containing triplicate 1-mm cores of 48 different

types of normal tissue, duplicate 1-mm cores of 216 different cancer
tissues, and a cell microarray including 47 different cell lines and 12 pa-
tient cell samples were generated as previously described [15,16].

GSEA and Selection of Interesting Genes
The microarray data set was downloaded from the GEO Web site

(http:/www.ncbi.nlm.nih.gov/geo). Data were analyzed using Biocon-
ductor 1.9 (http://bioconductor.org) running on R 2.6.0 [17]. Probe
set expression measures were calculated using the Affymetrix pack-
age’s RMA default method [18]. The function GeneSetTest from
the limma package [19] was used to assess whether each sample had
a tendency to be associated with an up-regulation or down-regulation
of RBM3. All samples were ranked on this enrichment, from the most
significant to the least significant. The top and bottom 50 samples was
extracted from the data set and given the names of “high-RBM3” and
“low-RBM3,” respectively. Differential gene expression was assessed
using the signal-to-noise ratio. Gene set enrichment was performed
using GSEA software (http://www.broadinstitute.org/gsea/index.jsp)
as previously described [20,21]. Heat maps were drawn using expres-
sion data showing the probes that mapped to the biologic processes of
DNA dependent DNA replication, chromatin remodeling, DNA rep-
lication, DNA integrity checkpoint, and DNA damage checkpoint.
Cell Lines and Reagents
The human ovarian cancer cell line A2780 (received as a gift from

Prof R. Brown, Imperial College, London) was maintained in RPMI-
1640 supplemented with glutamine, 10% fetal bovine serum, and
1% penicillin/streptomycin in a humidified incubator of 5% CO2

at 37°C.
Real-time Quantitative Polymerase Chain Reaction and
Western Blot Analysis

Total RNA isolation (RNeasy; QIAgen, Hilden, Germany), com-
plementary DNA synthesis (Reverse Transcriptase Kit; Applied Bio-
systems, Warrington, United Kingdom), and real-time quantitative
polymerase chain reaction (QPCR) analysis with SYBR Green PCR
master mix (Applied Biosystems) were performed as previously de-
scribed [22,23]. Quantification of expression levels was done using
the comparative C t method, normalization according to housekeep-
ing genes HMBS, YWHAZ, and UBC. Primer sequences are given
in Table W1. All primers were designed using Primer Express (Ap-
plied Biosystems).

For immunoblot analysis, cells were lysed in ice-cold lysis buffer
(150 mM NaCl, 50 mM Tris-HCl pH 7.5, 1% Triton X-100,
50 mM NaF, 1 mM Na3VO4, 1 mM phenylmethylsulfonyl fluoride)
and supplemented with protease inhibitor cocktail Complete Mini
(Roche, Basel, Switzerland). For Western blot analysis, 20 to 50 μg
of protein was separated on 15% SDS-PAGE gels and transferred onto
nitrocellulose membranes (Hybond ECL; Amersham Pharmacia Bio-
tech, Buckinghamshire, United Kingdom). The membranes were
probed with primary antibodies followed by horseradish peroxidase–
conjugated secondary antibodies (Amersham Life Science, Alesbury,
United Kingdom) and visualized using the enhanced chemilumines-
cence detection system (ECL) and ECL films (Amersham Pharmacia
Biotech). RBM3 was detected by the mouse monoclonal anti-RBM3
antibody (AAb030038; Atlas Antibodies AB, Stockholm, Sweden) di-
luted 1:500 in blocking solution (5% bovine serum albumin, 1× PBS,
0.1% Tween 20). Dilutions of the investigative antibodies are given
in Table W2. Membranes were stripped and reprobed with an anti–
β-actin antibody (Santa Cruz Biotechnology, Santa Cruz, CA) at a di-
lution of 1:1000, to provide a loading control.
TMA Construction
Before TMA construction, all cases were histopathologically re-

evaluated on hematoxylin and eosin–stained slides. Areas represen-
tative of cancer were then marked, and TMAs were constructed as
previously described [24]. In brief, two to four 1.0-mm cores were
taken from each tumor and mounted in a new recipient block using a
semiautomated arraying device (TMArrayer; Pathology Devices, Inc,
Westminster, MD).
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Immunohistochemistry and Analysis of Staining
For immunohistochemical analysis, 4-μm TMA sections were auto-

matically pretreated using the PT-link system (DAKO, Copenhagen,
Denmark) and then stained in a Techmate 500 (DAKO) with the
mouse monoclonal anti-RBM3 antibody (AAb030038) diluted 1:5000
and MCM3 (HPA 004789) diluted 1:1000 from Atlas Antibodies.
The following antibodies were purchased from Cell Signaling Tech-
nologies (Danvers, MA): Chk1 (mouse monoclonal, clone 2G1D5,
no. 2360) diluted 1:100, Chk2 (mouse, monoclonal, clone 1C12,
no. 3440,) diluted 1:2000, pSer345-Chk1 (rabbit monoclonal, no.
2348) diluted 1:150, and pT68-Chk2 (rabbit polyclonal no. 2661)
diluted 1:50.
Chk1, Chk2, MCM3, and phosphorylated Chk1 and Chk2 were

mainly expressed in the nuclei, and both the fraction of positive cells
and staining intensity were taken into account using a semiquantitative
scoring system as described previously for the assessment of RBM3
staining [14]. Nuclear fraction (NF) was categorized into four groups,
namely 0 (0%-1%), 1 (2%-25%), 2 (26%-75%), and 3 (>75%) and
nuclear staining intensity (NI) denoted as 0 to 2, whereby 0 = nega-
tive, 1 = intermediate, and 2 = moderate to strong intensity. A com-
bined nuclear score (NS) of NF×NI, which had a range of 0 to 6, was
then constructed.

Cell Pellet Arrays
Cell lines were fixed in 4% formalin and processed in gradient al-

cohols. Cell pellets were cleared in xylene and washed multiple times
in molten paraffin. Once processed, cell lines were arrayed in dupli-
cate 1.0-mm cores using a manual tissue arrayer (Beecher, Inc, Sun
Prairie, WI), and immunohistochemistry was performed on 5-μm
sections using the same antibodies as for immunohistochemistry with
the following dilutions: RBM3, 1:1000; Chk1, 1:100; Chk2 and
MCM3, 1:2000; pSer345-Chk1 and pT68-Chk2, 1:50.

Small Interfering RNA-Mediated Knockdown of
RBM3 Gene Expression
Transfection with small Interfering RNA (siRNA) against RBM3

(Applied Biosystems, Carlsbad, CA) or control siRNA (Applied Biosys-
tems) was performed with Lipofectamine 2000 (Invitrogen, Carlsbad,
CA) with a final concentration of 50 nM siRNA. All siRNA experi-
ments were performed using three independent RNA oligonucleotides
(nos. 58, 59, and 60) targeting RBM3.

Statistics
Spearman ρ tests were used for comparison of Chk1, Chk2, and

MCM3 expression with RBM3 expression and relevant clinicopatho-
logical characteristics. Kaplan-Meier analysis, using mean expression
value to dichotomize data, and log-rank test were used to illustrate dif-
ferences in RFS and overall survival (OS) according to CHK1, CHK2,
and MCM3 gene expression and OS according to Chk1, Chk2, and
MCM3 protein level. Cox regression proportional hazards models
were used to estimate the impact of RBM3 expression on RFS and
OS in both univariate and multivariate analyses, adjusted for stage
and differentiation grade (both cohorts) and volume of residual tu-
mor (0 vs >0) in cohort 1. Patients who had received neoadjuvant
chemotherapy in cohort 1 (n = 18) were excluded from the survival
analyses. All calculations were performed using SPSS version 15.0
(SPSS, Inc, Chicago, IL). All statistical tests were two-sided, and P <
.05 was considered statistically significant. Experimental data are ex-
pressed as mean ± SEM of at least three independent experiments.
Statistical significance of differences between means was determined
by Student’s t test.
Results

Identification of Cellular Processes Associated with RBM3
Expression in EOC

In an attempt to profile the effect of RBM3 expression in EOC, we
used gene expression data from a previously described cohort [12] to
compare the gene profiles of treatment-naive tumors with high RBM3
mRNA levels to those tumors showing no or low RBM3 expression.
Comparison of the 50 tumors expressing the highest levels of RBM3
mRNA to the 50 tumors expressing the lowest levels of RBM3 mRNA
using GSEA demonstrated that increased RBM3 expression was asso-
ciated with a number of processes including DNA-dependent replica-
tion, DNA replication, chromatin remodeling, and DNA integrity
checkpoint (Figure 1B). Low RBM3 mRNA expression was associated
with a variety of different processes including cAMP G protein signal-
ing, transcription factor activity, and the protein kinase cascade.

Validation of Selected Candidates by Western Blot Analysis
and Real-time QPCR in siRBM3-Treated A2780
Ovarian Cancer Cells

The HPA platform was then used to select the most promising bio-
markers identified from the GSEA for further validation. As increased
RBM3 was associated with an improved prognosis and cisplatin sen-
sitivity, we concentrated on cellular processes associated with high
RBM3 mRNA expression. From the list of differentially expressed
genes associated with DNA-dependent replication, DNA replication,
chromatin remodeling, and DNA integrity checkpoint, we selected
corresponding proteins with a differential expression pattern in EOC
in the HPA, with available validated antibodies. In total, 28 genes
were selected for an initial validation in the human ovarian cancer cell
line A2780 (Table W2). Of these 28 genes, 3 were chosen for further
validation; the DNA damage checkpoint kinases (CHK1 and CHK2)
and minichromosome maintenance protein 3 (MCM3). These mark-
ers were chosen because they play a role in DNA integrity, and we
have previously shown that RBM3 sensitizes A2780 cells to the DNA-
damaging agent cisplatin.

To demonstrate an association between RBM3 and the selected
candidates, A2780 cells were transfected with RBM3-specific siRNA
followed by Western blot analysis. siRNA-mediated knockdown of
RBM3 resulted in an increase in Chk1, Chk2, and MCM3 protein
expression (Figure 2A). Real-time QPCR demonstrated that siRNA-
mediated knockdown of RBM3 did not alter transcription of the
CHK1, CHK2, and MCM3 genes, suggesting that RBM3 may silence
translation of these proteins (Figure 2B). Evaluation of Chk1, Chk2,
and MCM3 protein expression in EOC tumor tissue demonstrated
nuclear expression of all three proteins, with Chk1 also expressed oc-
casionally in the cytoplasm (Figure 2C).

Survival Analysis of RBM3-Regulated Biomarkers in EOC
Cohort 1 (n = 267) was used to examine the prognostic value of

CHK1, CHK2, and MCM3 at the mRNA level, and immunohisto-
chemistry was performed on a TMA consisting of 154 prospectively
collected EOC cases (cohort 2) using antibodies against the correspond-
ing proteins. As visualized in Table 1, the relationship between RBM3
and the candidate biomarkers demonstrated a negative correlation



Figure 2. Downregulation of RBM3 affects the expression of MCM3, Chk1, and Chk2. The expression of MCM3, Chk1, Chk2, and RBM3
were examined by (A) Western blot analysis and (B) reverse transcription–PCR in A2780 cells 48 hours after transfection of cells with
three different siRNAs targeting RBM3 (nos. 58, 59, and 60). Data shown are mean ± SEM of four, for siRBM3 nos. 58 and 59, and three
for siRBM3 no. 60, independent experiments performed in triplicate. (C) Immunohistochemical staining of Chk1, Chk2, and MCM3 in
EOC tumors denoted as negative, intermediate, and strong.
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between RBM3 and MCM3, CHK1, and CHK2 at the mRNA level
in cohort 1 but not at the protein level in cohort 2. MCM3, CHK1,
and CHK2 correlated significantly with each other and with a lower
differentiation grade in both cohorts. MCM3 expression was associ-
ated with a more advanced clinical stage in both cohorts, and the same
was seen for CHK1 in cohort 1, whereas CHK2mRNA or protein lev-
els were not significantly associated with clinical stage.

Kaplan-Meier analysis demonstrated an association between high
MCM3 mRNA and protein expression and a significantly reduced
RFS, but not OS, in cohort 1 and a reduced OS in cohort 2 (Fig-
ure 3A). Cox univariate analysis confirmed the association between in-
creased MCM3 mRNA expression and decreased RFS (hazard ratio
[HR] = 1.98, 95% confidence interval [CI] = 1.18-3.31, P = .010)
in cohort 1 and increased MCM3 protein expression (NS > 3) and
poor OS in cohort 2 (HR = 1.82, 95% CI = 1.09-3.04, P = .022).
However, multivariate Cox regression analysis did not confirmMCM3
as an independent prognostic marker in either cohort (Table 2).

Kaplan-Meier analysis revealed an association between high CHK1
mRNA levels and a reduced RFS in cohort 1 (Figure 3B), which was
further confirmed by Cox univariate analysis (HR = 2.05, 95% CI =
1.33-3.15, P = .001) (Table 2). Cox multivariate analysis demon-
strated that CHK1 was not an independent predictor of RFS (HR =
1.37, 95% CI = 0.84-2.24, P = .203) in cohort 1 (Table 2), and
CHK1 mRNA expression was not associated with OS (Figure 3B).
In cohort 2, Chk1 protein expression (NS > 0) was associated with a
Table 1. Associations between Chk1, Chk2, and MCM3 and Patient and Tumor Characteristics
in Cohorts 1 and 2.
Cohort
 1
 2
Variable
 CHK1
 CHK2
 MCM3
 Chk1
 Chk2
 MCM3
Age

R
 0.102
 0.069
 0.168
 −0.009
 0.038
 0.126

P
 .1
 .265
 .006
 .914
 .652
 .139

n
 263
 263
 263
 141
 145
 140
Differentiation grade

R
 0.329
 0.186
 0.323
 0.328
 0.270
 0.286

P
 <.001
 .003
 <.001
 <.001
 .001
 .001

n
 263
 260
 260
 141
 145
 140
Clinical stage

R
 0.13
 0.108
 0.141
 0.129
 0.116
 0.181

P
 .035
 .080
 .022
 .141
 .185
 .04

n
 263
 263
 263
 131
 133
 130
RBM3

R
 −0.247
 −0.192
 −0.253
 0.126
 0.074
 0.074

P
 <.001
 .002
 <.001
 .138
 .38
 .386

n
 263
 263
 263
 140
 143
 140
CHK1/Chk1

R
 0.440
 0.599
 0.451
 0.462

P
 <.001
 <.001
 <.001
 <.001

n
 263
 263
 139
 137
CHK2/Chk2

R
 0.440
 0.412
 0.451
 0.509

P
 <.001
 <.001
 <.001
 <.001

n
 263
 263
 139
 139
n indicates number of tumor samples; R, Spearman correlations coefficient.
P < .005 in bold.
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reduced OS (Figure 3B) confirmed by Cox univariate analysis (HR =
1.70, 95% CI = 1.08-2.68, P = .023). However, multivariate anal-
ysis did not confirm Chk1 protein expression as an independent pre-
dictor of OS in cohort 2 (HR = 1.23, 95% CI = 0.71-2.10, P = .47)
(Table 2).
High levels of Chk2, both mRNA and protein levels, were associ-

ated with an impaired survival in EOC (Figure 3C ). Cox univariate
analysis confirmed the association between increased CHK2 mRNA
expression and RFS in cohort 1 (HR = 1.61, 95% CI = 1.19-2.19, P =
.002) and Chk2 protein expression (NS > 0) and OS in cohort 2
(HR = 1.59, 95% CI = 1.03-2.47, P = .036). Multivariate Cox re-
gression analysis confirmed the association between high CHK2
mRNA expression and poor outcome in cohort 1 (HR = 1.52, 95%
CI = 1.08-2.13, P = .015); however, this was not replicated at the pro-
tein level in cohort 2 (HR = 1.21, 95% CI = 9.74-1.97, P = .448)
(Table 2).
Figure 3. Increased mRNA (cohort 1) and protein expression (coho
survival. Kaplan-Meier analysis of RFS and OS according to (A) MCM
analysis of OS according to immunohistochemical (A) MCM3, (B) C
Down-regulation of RBM3 Generates an Increase in
Phosphorylation of Chk1

The protein kinases Chk1 and Chk2 are crucial checkpoint pro-
teins activated in response to DNA damage by signals from ATM
and ATR leading to cell cycle arrest and DNA repair through acti-
vation of a complex signaling network [25–27]. Taken in the con-
text of a previous study by Sureban et al. [28], who demonstrated
that down-regulation of RBM3 in the human colon adenocarcinoma
cell line HCT116 resulted in activation of DNA damage response
by phosphorylation of the checkpoint proteins Chk1 and Chk2 [28],
we hypothesized that RBM3 activates Chk1 and Chk2 in EOC. To
address this issue, we examined the phosphorylation of Chk1 at
Ser-345 and Chk2 at Thr-68 by Western blot analysis in A2780 cells
transfected with siRNA targeting RBM3. A slightly higher level of
pSer345-Chk1, but not pThr68-Chk2, was observed in the siRBM3
transfected A2780 cells (Figure 4A), indicating activation of the
rt 2) of MCM3, Chk1, and Chk2 are associated with an impaired
3, (B) CHK1, and (C) CHK2 mRNA levels in cohort 1. Kaplan-Meier
hk1, and (C) Chk2 staining in cohort 2.
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checkpoint proteins by down-regulation of RBM3 in the absence of
DNA damage. This suggests that RBM3 may restrain a checkpoint
response in the absence of DNA damage by regulating the protein
levels of Chk1 and Chk2 to maintain a relative low cellular level of
the phosphorylated and total proteins in absence of a DNA dam-
age stimulus.

Phosphorylated Chk2 on Thr-68 Is Associated with an
Impaired Survival

Having demonstrated that RBM3 regulates Chk1 and Chk2 pro-
tein expression in vitro and that both Chk1 and Chk2 are associated
with an impaired survival in EOC, we next sought to examine the
relationship between phosphorylated Chk1 and Chk2 and prognosis.
pSer345-Chk1 and pThr68-Chk2 were thus assessed using immuno-
histochemistry in cohort 2 (Figure 4B).

RBM3 protein expression did not correlate with phosphorylated
Chk1 or Chk2; however, there was a significant correlation between
pSer345-Chk1 and pThr68-Chk2 (R = 0.298, P < .001). Neither
pSer345-Chk1 nor pThr68-Chk2 was associated with any clinico-
pathological parameters (data not shown). Kaplan-Meier analysis
demonstrated no prognostic significance of pSer345-Chk1; however,
pThr68-Chk2 positivity (NS > 0) was associated with a reduced OS
(P = .047; Figure 4C ). Cox univariate analysis confirmed the asso-
ciation between pThr68-Chk2 and a reduced OS (HR = 1.62, 95%
CI = 1.00-2.63, P = .049); however, this did not remain significant
in multivariate analysis.
Discussion
We previously reported an association between RBM3 and a pro-
longed survival in breast cancer and EOC [10,11]. In the present
study, we identified differentially expressed genes in EOC tumors with
high versus low RBM3 expression, aiming to discover novel prognostic
EOC biomarkers and to gain a deeper understanding of the function
of RBM3. GSEA revealed an association between RBM3 expression
and a number of cellular processes involved in the maintenance of
DNA integrity including regulation of DNA replication, DNA repli-
cation, chromatin remodeling, and DNA integrity checkpoint. In the
light of previous findings demonstrating a relationship between RBM3
and cisplatin sensitivity [11], these results suggest that RBM3 may be
involved in the cellular response to DNA damage. Further investiga-
tions are, however, required to prove this hypothesis and to determine
the exact function of RBM3 in this context.

The unearthing of RBM3 as a putative prognostic tissue biomarker
in EOC was the result of an antibody-based approach, using the HPA
as a discovery tool [9], followed by further validation in clinically well-
annotated tumor samples from two independent EOC cohorts [11].
In this study, we used an integrated transcriptomic and proteomic ap-
proach, based on tumor samples from the same clinical cohorts, to
identify novel putative EOC biomarkers among RBM3-associated
genes and their corresponding proteins. Our results provide, to our
knowledge, the first description of an association between high expres-
sion of Chk1, Chk2, andMCM3 and poor prognosis in EOC patients.

Chk1 has previously been associated with tumor grade and cell pro-
liferation in breast cancer [29], and CHK2 mutations have been fre-
quently studied in the context of hereditary breast cancer [30]. The
negative correlation demonstrated between RBM3 and DNA damage
checkpoint proteins Chk1 and Chk2 in vitro suggests that RBM3
might be involved in DNA damage response. These serine/threonine
protein kinases play crucial roles in maintaining genomic stability by
mediating the signaling cascade initiated by the checkpoint proteins
ATM and ATR in response to DNA damage leading to DNA repair,
cell cycle arrest, or apoptosis [27]. Chk1 and Chk2 are phosphorylated
by ATM and ATR in response to DNA damage, and once activated,
they can phosphorylate downstream targets and control cell cycle pro-
gression by regulating the activities of Cdc25 phosphatases [31–33],
p53 [34], and DNA repair factors [35]. Traditionally, the signaling
network has been divided into two major protein kinase pathways:
ATM activating Chk2 in response to double-stranded breaks and
ATR operating together with Chk1 in response to single-stranded
breaks and stalled replication forks during the S phase. The negative
correlation between RBM3 and Chk1/Chk2 further emphasizes that
RBM3 expression may predict response to platinum-based chemother-
apy by silencing these important regulators of cellular DNA damage
response. Inhibition of Chk1 and ATR was recently shown to generate
the greatest impact on cisplatin response in ovarian cancer cell lines
as illustrated in an RNAi screen [36], which might, in part, explain
the cisplatin-sensitizing effect of RBM3 that we have previously de-
scribed [11]. Inhibition of Chk1 has been reported to sensitize tumor
cells to chemotherapy in various cell lines [37–39], and several Chk1
inhibitors have been developed and evaluated in clinical trials [40].

MCM proteins are key components of the DNA replication licens-
ing system essential for maintenance of precise chromosome duplica-
tion [41,42]. Disruption of genetic stability has been reported to be a
consequence of deregulation of the MCM complexes in yeast, and
abnormal expression of MCM proteins has been observed in human
cancers. A high expression of MCM3 protein has been reported to be
associated with an impaired survival in malignant glioma [43], medul-
loblastoma [44], and malignant melanoma [45].

The negative association between RBM3 and CHK1, CHK2, and
MCM3 genes seen in cohort 1 was not replicated at the protein level in
cohort 2, which could potentially be explained by the smaller number
of patients in the latter. However, in vitro experiments showed a clear
inverse association between RBM3 and Chk1, Chk2 and MCM3 at
Table 2. Cox Univariate and Multivariate Analyses of RFS of Chk1, Chk2, and MCM3 According
to mRNA Expression (Cohort 1) and Protein Expression (Cohort 2).
Cohort 1 (mRNA)
 Cohort 2 (Protein)
HR (95% CI)
 P
 HR (95% CI)
 P
MCM3
 MCM3

Univariate
 Univariate

Low
 1.00
 Low
 1.00

High
 1.98 (1.18-3.31)
 .01
 High
 1.82 (1.09-3.04)
 .022
Multivariate
 Multivariate

Low
 1.00
 Low
 1.00

High
 2.39 (1.30-0.72)
 .383
 High
 1.05 (0.60-1.83)
 .871
Chk1
 Chk1

Univariate
 Univariate

Low
 1.00
 Low
 1.00

High
 2.05 (1.33-3.15)
 .001
 High
 1.70 (1.08-2.68)
 .023
Multivariate
 Multivariate

Low
 1.00
 Low
 1.00

High
 1.37 (0.84-2.24)
 .203
 High
 1.22 (0.71-2.10
 .47
Chk2
 Chk2

Univariate
 Univariate

Low
 1.00
 Low
 1.00

High
 1.61 (1.19-2.19)
 .002
 High
 1.59 (1.03-2.46)
 .036
Multivariate
 Multivariate

Low
 1.00
 Low
 1.00

High
 1.52 (1.08-2.13)
 .015
 High
 1.21 (0.74-1.97)
 .448
Multivariate analysis included adjustment for age (continuous), stage (I-II vs III-IV), grade (1-2 vs
3), and residual disease (none vs any, only available for cohort 1).



Figure 4. The impact of RBM3 on phosphorylation of Chk1 and Chk2 and the association of pSer345-Chk1 and pT68-Chk2 with OS in
EOC. The impact of RBM3 on checkpoint response was examined in siRBM3-transfected cells by Western blot analysis using antibodies
against (A) pSer345-Chk1 and pT68-Chk2. (B) Immunohistochemical staining of pSer345-Chk1 and pT68-Chk2 in EOC tumors. (C) Kaplan
Meier analysis of OS according to immunohistochemical staining of pS345-Chk1 and pT68-Chk2 in cohort 2 in strata defined as high
versus low expression.
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the protein level, whereby siRNA-mediated down-regulation of RBM3
in A2780 cells resulted in an obvious increase in Chk1, Chk2, and
MCM3 48 hours after transfection, in contrast to a nonsignificant al-
teration at the mRNA level. Considering the fact that RBM3 is a
RNA-binding protein [46], it could be speculated that RBM3 binds
and destabilizes the transcripts of CHK1, CHK2, and MCM3 in
RBM3 high tumors, hence the inverse relationship observed in vivo.
In addition, a reason to why we did not detect a significant increase in
the mRNA levels of Chk1, Chk2, and MCM3 in response to a down-
regulation of RBM3 in vitromight be that RBM3 primarily acts at the
translational rather than the transcriptional level. RBM3 has indeed
been reported to be involved in translation contributing to an en-
hanced rather than suppressed global translation [47–49]. Another hy-
pothesis is that RBM3 indirectly contributes to low levels of some
checkpoint proteins by enhanced translation of proteins involved in
the turnover of these proteins. Additional, more detailed investigations
are required to gain further mechanistic insight into how RBM3 af-
fects the levels of Chk1, Chk2, and MCM3. A limitation to this study
is that the in vitro experiments have been performed on only one cell
line, and future studies should include additional cell models.

Although the functional role of RBM3 in DNA damage requires
further investigation, our data indicate a possible suppressive role of
RBM3 on the checkpoint response in the absence of DNA dam-
age, illustrated by the observed increased phosphorylation of Chk1
on silencing of RBM3 in the A2780 cells. In line with this observa-
tion, down-regulation of RBM3 in colorectal cancer cell lines led to
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activation of both Chk1 and Chk2 [28]. Immunohistochemical anal-
ysis revealed a negative prognostic value for pT68-Chk2 but not for
pS345-Chk1 in cohort 2. The negative prognostic value observed for
pT68-Chk2–expressing tumors could be because these tumors have
an activated checkpoint response and are thus undergoing pressure
for selection of a mutated, more aggressive, phenotype [50,51].
Along this line, it could be speculated that an attenuated DNA dam-
age response imposed by RBM3 could explain the association with a
good prognosis observed in RBM3 high breast cancers, irrespective of
adjuvant chemotherapy [10].

In conclusion, we have, for the first time, revealed a link between
RBM3 in DNA damage response. In addition, three novel potential
biomarkers in EOC have been identified: MCM3, Chk1, and Chk2.
The negative correlation between RBM3 and Chk1 and Chk2 pro-
tein levels in vitro might, in part, explain the positive effect of RBM3
on cisplatin response observed in ovarian cancer cell lines. Further in-
vestigations are required to understand the mechanisms behind the ob-
served findings and to explain the function of RBM3, particularly its
association with a good prognosis in EOC and other cancer forms.
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Table W1. Sequences of Primers Used in Real-time QPCRs.
Gene
 Forward (5′–3′)
 Reverse (5′–3′)
HMBS
 GGC AAT GCG GCT GCA A
 GGG TAC CCA CGC GAA TCA C

YWHAZ
 TGG GAA CAA GAG GGC ATC TG
 CCA CCA CTG CAT CAA ATT CAT G

UBC
 ATT TGG GTC GCG GTT CTT G
 TGC CTT GAC ATT CTC GAT GGT

RBM3
 CTT CAG CAG TTT CGG ACC TA
 ACC ATC CAG AGA CTC TCC GT

CHK1
 CAACTTGCTGTGAATAGAGTAACTGAAGA
 ACAGTCTACGGCACGCTTCAT

CHK2
 GTGTGAATGACAACTACTGGTTTGG
 TTCTTTTCAGCAGTGGTTCATC

MCM3
 ACCAGGGAATTTATCAGAGCAAAG
 CAGGTCATTCACATTGACAATCAG
Table W2. Selected Genes from the HPA for Further Validation by Western Blot in A2780 Cells.
Gene Name
 Ab ID
 Dilutions
BNIP3
 ABCAM 28506
 1:600

HELLS/LSH
 SC-46665
 1:500

RSF1
 Upstate 05-727
 N/A

SMARCC1
 HPA024352
 1:3000

NASP
 HPA028136
 1:250

NBN
 HPA001429
 1:250

NF2
 HPA003097
 1:250

ATR
 SC-1887
 1:1000

WRNIP1
 HPA031752
 1:100

CDK2
 BD
 1:500

RAD1
 HPA006692
 1:500

NEK11
 HPA016908
 1:1000

HUS1
 HPA026787
 1:100

CCNA2
 SC-751
 1:500

CHK2
 Cell Signaling no. 3440
 1:1000

TERF2IP
 HPA006719
 1:100

POLA1
 HPA002947
 1:250

DKC1
 HPA001022
 1:500

MCM5
 SEROTEC MCA1860
 N/A

TERF2
 HPA001907
 N/A

UPF1
 HPA019587
 N/A

ORC2L
 Abnova H00004999-M01
 N/A

MSH6
 HPA028376
 1:300

MSH2
 BD
 1:500

MCM3
 HPA004789
 1:300

RFC4
 SC-28301
 1:500

CHK1
 Cell Signaling, no. 2360
 1:1000
N/A indicates not analyzed.


