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Abstract

A workflow is presented that integrates gene expression data, proteomic data, and literature-based 

manual curation to construct multicellular, tissue-specific models of human brain energy 

metabolism that recapitulate metabolic interactions between astrocytes and various neuron types. 

Three analyses are applied for gene identification, analysis of omics data, and analysis of 

physiological states. First, we identify glutamate decarboxylase as a target that may contribute to 

cell-type and regional specificity in Alzheimer’s disease. Second, the decreased metabolic rate 

seen in affected brain regions in Alzheimer’s disease is consistent with a suppression of central 

metabolic gene expression in histopathologically normal neurons. Third, we identify pathways in 

cholinergic neurons that couple mitochondrial metabolism and cytosolic acetylcholine production, 

and subsequently find that cholinergic neurotransmission accounts for ∼3% of brain 

neurotransmission. Constraint-based modeling can thus contribute to the study and analysis of 

multicellular metabolic processes in human tissues, and provide detailed mechanistic insight into 

high-throughput data analysis.
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Introduction

Constraint-based reconstruction and analysis of genome-scale microbial metabolic networks 

has matured over the past decade. This approach has a wide range of applications, such as 

providing insight into evolution, aiding in metabolic engineering, and providing a 

mechanistic bridge between genotypes and complex phenotypes1,2. Computational 

methods3 and a detailed SOP4 have been outlined for the reconstruction of high-quality 

prokaryotic metabolic networks, and many methods can be deployed for their analysis5,6. 

Constraint-based modeling of metabolism entered a new phase with the publication of the 

human metabolic network (HR1)7, based on build-35 of the human genome. Methods 

allowing tissue-specific model construction have followed8–10.

Many tissue metabolic functions rely on interactions between many cell types. Thus, 

methods are needed that integrate the metabolic activities of multiple cell types. Here, using 

HR1, we analyze and integrate omics data with information from detailed biochemical 

studies to build multicellular constraint-based models of metabolism. We demonstrate this 

process by constructing and analyzing models of human brain energy metabolism, with an 

emphasis on central metabolism and mitochondrial function in astrocytes and neurons. 

Moreover, we provide three detailed examples, demonstrating the use of models to guide 

experimental work and provide biological insight into the metabolic mechanisms underlying 

physiological and pathophysiological states in brain.

Results

Building metabolic models of multiple cell types

Omics datasets can be difficult to analyze due to their size. However, such datasets can be 

used to construct large mechanistic models for specific tissues and cell types8,9 that serve as 

a context for further analysis. The workflow for generating multicellular models, as depicted 

in Figure 1, consists of the following four steps:

• Step 1. An organism-specific metabolic network is reconstructed from genome 

annotation, lists of biomolecular components, and the literature4. Metabolic 

pathways and associated gene products are not completely known for any species. 

Thus, a reconstruction is refined through iterations of manual curation, hypothesis 

generation, experimental validation, and incorporation of new knowledge. HR1 has 

been through five iterations7.

• Step 2. Many gene products are not expressed in all cells at any given time11. 

Therefore, gene product presence from omic data is mapped to HR1 using the 

gene-protein-reaction associations to obtain a draft reconstruction for the tissue of 

interest. This process may be performed manually or algorithmically8,9.

• Step 3. Initial context-specific reconstructions are incomplete and may contain false 

positives due to proximal tissue contamination. Moreover, few high-throughput 

datasets are cell-type specific. Thus, the initial reconstruction represents the union 

of metabolic networks from various cell types. To address this problem, the 

literature is searched to verify enzyme localization and partition the model into 
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compartments representing different cell types and organelles. Upon completion, 

the reconstruction is converted into a model by specifying inputs, outputs, relevant 

parameters, and by representing the network mathematically12. See Thiele and 

Palsson4 for details of proper manual curation.

• Step 4. Once the network is accurately reconstructed and converted into an in silico 

model, it is used for simulation and analysis1,2, for hypothesis generation and to 

obtain insight into systems-level biological functions.

This workflow was used to build three different multicellular models of brain energy 

metabolism. Each model represents one canonical neuron type (i.e., glutamatergic, 

GABAergic, or cholinergic), its interactions with the surrounding astrocytes, and the 

transport of metabolites through the blood-brain barrier (Fig. 2). This reconstruction focuses 

on the core of cerebral energy metabolism, including central metabolism, mitochondrial 

metabolic pathways, and pathways relevant to anabolism and catabolism of three 

neurotransmitters: glutamate, γ-aminobutarate (GABA), and acetylcholine. Thus, the three 

models contain the high flux pathways and important reactions in neuron and astrocyte 

metabolism. These models currently represent the largest and most detailed models of brain 

energy metabolism 13–15 (see Supplementary Notes). Our models contain 1066, 1067, and 

1070 compartment-specific reactions, transformations, and exchanges, involving 983, 983, 

and 987 metabolite/compartment combinations, for the glutamatergic, GABAergic, and 

cholinergic models, respectively, and are associated with a total of 403 genes. Lists of 

reactions, genes, citations, and parameters used to constrain the models are detailed in 

Supplementary Tables 1– 5. The validity of these models is demonstrated through various 

tests and comparisons to physiological data. Specifically, our model predicts ATP 

production rates within 8% of the average published value, and internal flux measurements 

are consistent with experimentally measured values (see Supplementary Notes). Moreover, 

three analyses using the models are detailed here. Since most of these analyses cannot be 

done on previous brain models or HR1 as published, this work provides novel insight into 

brain energy metabolism.

Identifying a potentially neuroprotective gene in AD

Alzheimer’s disease (AD) is characterized by histopathological features, including 

neurofibrillary tangles and β-amyloid plaques. Moreover, there is a strong metabolic 

component, in which metabolic rates of various brain regions decrease years before the 

onset of dementia16.

Several central metabolic enzymes exhibit altered expression or activity in AD, such as 

pyruvate dehydrogenase (PDHm), α-ketoglutarate dehydrogenase (AKGDm), and 

cytochrome c oxidase (CYOO)17–19. The activities of these enzymes are affected by the 

AD-related proteins β-amyloid and Tau kinase20,21. In silico, as the activity of these 

enzymes decreases, neurons demonstrate impaired metabolic capacity (Supplementary Fig. 

1.a–b), and deficiencies in PDHm activity leads to a decreased cholinergic 

neurotransmission capacity (Supplementary Fig. 1.c.).
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AKGDm deficiency shows the greatest impairment in post-mortem AD brain (57% decrease 

in activity)18. An in silico analysis shows that this deficiency impairs the metabolic rate in 

glutamatergic and cholinergic neurons (Fig. 3.a), since it limits oxidative phosphorylation 

(OxPhos) capacity in neurons (Fig. 3.b–c). Such impairment of OxPhos leads to neuronal 

apoptosis22. Surprisingly, however, OxPhos is not impaired in the GABAergic neuron 

model (Fig. 3.d). This model-derived result is consistent with the experimental observation 

that glutamatergic and cholinergic neurons are more affected in moderate stages of AD23, 

while most GABAergic cells are relatively unaffected until late stages24. Therefore, the 

models were further interrogated to identify a mechanism that allows GABAergic neurons to 

absorb the perturbation, thereby leading to the cell-type-specific effects.

Simulations show that GABAergic neurons absorb the AKGDm perturbation through the 

GABA shunt (Fig. 3.f), a pathway that uses 4-aminobutyrate transaminase and succinate-

semialdehyde dehydrogenase to bypass part of the TCA cycle. However, our models suggest 

that glutamatergic and cholinergic neurons cannot, despite carrying a small flux through the 

shunt enzymes (Fig. 3.e). Support for these results includes recent evidence that suggests 

that cerebellar granule neurons, which have higher levels of GABA, can absorb 

perturbations to AKGDH through this shunt25.

To identify the mechanism allowing only GABAergic neurons to use the GABA shunt to 

absorb the AKGDm perturbation, an in silico analysis was performed to identify genes that 

contribute to this (see Supplementary Notes). This analysis suggests that the two isoforms of 

glutamate decarboxylase (GAD) could provide the cell-type specific neuroprotection.

GAD allows the GABA shunt to carry a higher flux following the AKGDm perturbation in 

GABAergic neurons; however, the lack of GAD in other neuron types greatly limits the use 

of the GABA shunt in silico (Fig. 3.e). Therefore, by fueling the GABA shunt, GAD may 

play a neuroprotective function, thus contributing to the sparing of GABAergic systems in 

earlier AD24.

Certain populations of glutamatergic and cholinergic cells tend to be lost earlier in AD, but 

others survive. Interestingly, while GAD is canonically a GABAergic gene, it occasionally 

shows low expression in other neuron types, including glutamatergic and cholinergic 

cells26. Therefore, such populations of non-GABAergic, GAD-expressing neurons would 

also be protected. Thus, we follow with an analysis of the correlation of GAD expression 

and AD pathology for further validation.

If GAD has neuroprotective capacity in vivo, two properties of GAD expression are 

expected. First, brain regions with less GAD per neuron will be more affected in AD, while 

regions with abundant GAD will be spared. To test this hypothesis, we used a compendium 

of published microarrays of non-tangle-bearing neurons from six brain regions in Alzheimer 

patients and age-matched non-Alzheimer controls27. Among control patients, GAD 

expression levels among the brain regions is consistent with the extent of neuron loss found 

in AD patients; i.e., brain regions with more neuron loss in AD (e.g., the entorhinal cortex 

and hippocampus) have lower GAD expression in control patients, while relatively 
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unaffected regions in AD (e.g., superior frontal gyrus and visual cortex) show much higher 

levels of GAD expression (Fig. 3.g).

For the second property, neurons with low GAD expression should be lost in AD; therefore, 

GAD expression per neuron should increase in histopathologically affected regions. 

Consistent with the hypothesis, there is a significant increase in the expression of the brain-

specific GAD2 in the entorhinal cortex and hippocampus in AD (p=0.0050 and 0.018, 

respectively) (Fig. 3.h). As a control, all other neuron-specific genes tested failed to show a 

correlation with AD pathology (Supplementary Fig. 2), except the Dlx genes, which induce 

GAD expression in the brain (Fig. 3.h and Supplementary Fig. 3)28. Therefore, these results 

lend additional support to the possibility that GAD may be providing a neuroprotective 

effect, and that this effect is correlated with the regional specificity of AD. Moreover, the 

model was able to guide the identification of a gene and the mechanism for its role in AD, 

while the subsequent microarray analysis provides experimental support for the model 

prediction.

Microarray analysis shows pathway suppression in AD

Atrophy alone cannot explain the extent of impaired metabolism in AD in many brain 

regions29. Therefore, in such regions, there must be metabolic pathway suppression within 

surviving cells. To test this, we used PathWave30, a method that identifies differentially 

expressed pathways in omic data based on intra-pathway connectivity in a user-provided 

metabolic network (see Methods and Supplementary Notes for details).

In this analysis, each brain region demonstrates different amounts of changed metabolic 

pathways (Supplementary Table 6). The visual cortex and superior frontal gyrus lack any 

differentially expressed pathways, consistent with previous work that shows little change in 

metabolic rate in AD in these regions27. However, the posterior cingulate cortex (PC) and 

middle temporal gyrus (MTG) have the largest numbers of significantly differentially 

expressed pathways (23 and 18 pathways, respectively). These two regions show 

significantly decreased metabolic rates in AD, but show fewer histopathological effects27. 

Both the entorhinal cortex (EC) and hippocampus (HIP) also show decreases in expression 

of nine metabolic pathways, though the number of suppressed pathways may be lower since 

these regions suffer a high amount of neuron loss, and only histopathologically healthy 

neurons were expression profiled. Therefore, more affected neurons may already have been 

lost or not profiled.

In the PathWave analysis, the four brain regions that show significantly low metabolic rates 

in AD (PC, MTG, HIP and EC)29 all show a significant suppression of glycolysis and the 

TCA cycle (Fig. 4). In addition, the HIP, MTG and PCC show a suppression of the malate-

aspartate shuttle and OxPhos. Individual regions also show a suppression of other pathways, 

such as heme biosynthesis (MTG, PC), ethanol metabolism (EC, PC), and several amino 

acid metabolism pathways. Thus, using PathWave with our models, we find that the 

decreased metabolic rate in specific regions in AD is associated with the down-regulation of 

central metabolic gene expression in histopathologically normal neurons (see Supplementary 

Notes for further details).
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Models detail properties of cholinergic metabolic coupling

Studies have demonstrated that the use of cytosolic acetyl-CoA for the synthesis of the 

neurotransmitter acetylcholine comes from the acetyl-CoA formed in the mitochondria. This 

tight coupling of acetylcholine to mitochondrial metabolism allows treatments that increase 

glucose uptake in the brain to improve cognitive functions in rats31 and humans with severe 

cholinergic cognitive pathologies, such as Alzheimer’s Disease and Trisomy-2132. 

Pathways that transport acetyl-CoA carbon to the cytosol have been suggested; however, the 

mechanism is still not clear33.

Constraint-based modeling was used to aid in the identification of two pathways that could 

indirectly transport acetyl-CoA into the cytosol, and provide insight into needed 

complementary pathways. To identify possible pathways, reaction sets were identified by 

randomly removing reactions from HR1 until a minimum set was determined that couples 

the mitochondrial and cytosolic acetyl-CoA pools. This was repeated until more than 21,000 

unique minimal reaction sets were identified. Singular value decomposition was then used to 

identify dominant pathway features that frequently co-occur.

The first singular vector is dominated by reactions that occur most frequently in the reaction 

sets (e.g., water transport across the cell membrane). However, the second and third singular 

vectors are dominated by reaction sets that usually co-occur or never co-occur (Fig. 5). 

These reactions cluster into three distinct pathways, providing hypotheses to aid in the 

reconstruction process. The omic data used in the reconstruction process, and a thorough 

literature search eliminated the pathway using cytosolic acetyl-CoA sythetase (Fig. 5.a), and 

validated the other two, involving the transport and metabolism of acetyl-CoA-derived 

citrate or acetoacetate, using ATP-citrate lyase (ACITL) or cytosolic acetyl-CoA C-

acetyltransferase (ACACT1r), respectively (Fig. 5.b–c; see Supplementary Notes for 

details).

Our model contains these two pathways and shows a correlation between the flux through 

mitochondrial pyruvate dehydrogenase and choline acetyltransferase (r = 0.45, p = 

3×10−247), consistent with the experimental observation of a tight coupling between 

mitochondrial metabolism and acetylcholine production. ACITL and ACACT1r also 

correlate with choline acetyltransferase flux (p < 3 × 10−90). Moreover, it has been reported 

that the inhibition of ACITL reduces the acetylcholine production rate by 30%33. The in 

silico inhibition of ACITL reduces acetylcholine production by 7.3%. The in silico decrease 

is smaller because the model can immediately adapt to the perturbation, while in vivo 

regulatory responses would take time to adapt. Therefore, it is expected that the model 

change is smaller. Interestingly, the inhibition of ACACT1r reduces acetylcholine 

production by 39%. Thus, it seems that cholinergic neurotransmission depends on redundant 

pathways, and that acetoacetate may play a more dominant role in transporting 

mitochondrial acetyl-CoA to the cytosol.

The coupling of mitochondrial metabolism to acetylcholine synthesis aids in the treatment of 

cholinergic disorders. However, knowledge of the abundance of cholinergic 

neurotransmission also aids in this purpose. It is difficult to identify cholinergic neurons, 

based solely on cell morphology, since cholinesterases and immunohistochemical markers 
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for cholinergic neurons are also found in non-cholinergic neurons and other tissues34. 

Therefore, it is unknown what percentage of all neurotransmission is cholinergic.

Using our cholinergic model, we compute the percent contribution of cholinergic 

neurotransmission based on published data35. The data used for this purpose were obtained 

from rat brain minces, incubated in solutions containing [1-14C]pyruvate or [2-14C]pyruvate. 

Both acetylcholine and radiolabeled CO2 were measured at various titrations of several 

different pyruvate dehydrogenase inhibitors.

The cholinergic model was subjected to similar levels of pyruvate dehydrogenase inhibition. 

The simulations successfully reproduced the experimentally-witnessed linear relationship 

between acetylcholine production and metabolic rate, and acetylcholine production was 

correlated with CO2 release (r = 0.68).

The fraction of cholinergic neurotransmission for the brain was computed by randomly 

choosing points from both the distributions of experimental data and distributions predicted 

by the simulations. A scaling factor was subsequently found that reconciles the two. This 

was repeated for 14 different combinations of pyruvate labeling and pyruvate dehydrogenase 

inhibitors35, yielding a median predicted cholinergic portion of total brain 

neurotransmission of 3.3% (Fig. 6.a). After adding this new parameter to the model, the 

predictions corresponded well with the experimental data sets (Fig. 6.b), including six 

datasets representing three pyruvate dehydrogenase inhibitors withheld from the previous 

computations (Fig. 6.c–d). Thus, the model was used in conjunction with experimental data 

to gain insight into physiological observations and derive important physiological 

parameters dependent on systems-level activity.

Discussion and Conclusions

In this study we presented a workflow for generating tissue-specific, multicellular metabolic 

models. Through the analysis and integration of omic data, followed by manual curation, we 

used this workflow to build a first-draft manually-curated multicellular metabolic 

reconstruction of brain energy metabolism. Three models were generated from this 

reconstruction, representing different types of neurons coupled to astrocytes. We employed 

these models in three distinct analyses, in which we made predictions and gained systems-

level insights into Alzheimer’s disease and cholinergic neurotransmission.

As experimental methods and data resolution improve, the accuracy of these models and 

their predictions should also improve. Improvements in neuroimaging and metabolomics 

will allow for more precise quantification of metabolite flow through the blood-brain-

barrier, which is of interest since dysfunction of this system accompanies many neurological 

disorders and injuries36. In addition, improvements in transcriptomics and proteomics will 

provide higher-resolution quantification of cell- and organelle-specific genes and proteins. 

This data will allow models to account for neuron groups in specific brain regions, 

subcellular heterogeneity within cells, and the inclusion of less abundant glial cells. For 

example, higher-resolution models may provide insight into metabolic changes that occur in 
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specific cell populations, such as the structures closely related to the olfactory system, which 

are affected in the early stages of Alzheimer’s disease37.

As seen in this work, novel insight into mammalian tissue-specific metabolism may be 

gained as more multicellular models are constructed. Our models demonstrate metabolic 

coupling and synergistic activities that more coarse-grained models miss, since the three 

analyses presented here were not possible using HR1 or the previous models of brain 

metabolism. The compartmentalization of metabolic processes within cells38, between 

cells39, and in host-pathogen interactions has an important role in normal physiology. 

Therefore, such models may provide greater insight and more accurately predict true cellular 

functions.

Lastly, while this work stands as an example of how one may construct such models, it also 

demonstrates a few types of analyses that can be done with these models. Scores of 

additional methods have been developed for genome-scale reconstructions ranging from 

constraint-based analyses5 to topological studies40.

In a broad sense, this study serves as an example of how mechanistic genotype-phenotype 

relationships can be built. From the genotype one can begin to reconstruct the network for 

an organism. The integration of high-throughput data and careful manual curation can add 

context-specific mechanistic network structure to genomic information. Thus, this network 

becomes a representation of the complex genetic interactions and biochemical mechanisms 

underlying observed phenotypes. This complex, but mechanistic, relationship between the 

genotype and phenotype can be used as a foundational structure upon which additional high-

throughput data can be analyzed and predictive simulations can be conducted, thus leading 

to improved understanding, testable hypotheses, and increased knowledge1,2,40.

Methods

Reconstruction of iNL403

This work focuses on the core of cerebral energy metabolism and the pathways that play a 

critical role in cell-type specific functions in the brain. The pathways included in this work 

include mitochondrial metabolic pathways, central metabolic pathways closely tied to 

mitochondrial function, and additional pathways that are needed for modeling neuron and 

astrocyte functions. To reconstruct these pathways, a list of known human mitochondrial, 

glycolytic, and transport reactions were extracted from the manually-curated human 

metabolic reconstruction (HR1)7. From this list, reactions were directly added to the brain 

reconstruction if brain-localized protein or gene expression was suggested by the Human 

Protein Reference Database (release 5) (HPRD)41 or H-inv (version 4.3) (HINV)42, both of 

which provide tissue expression presence calls for each gene. Proteomic data from live 

human brain, acquired for the HUPO brain proteome project (BPP) (www.ebi.ac.uk/

pride)43, were also used (See Supplementary Table 7 for accession numbers). Additional 

reactions were added as dictated by biochemical data from the literature (Supplementary 

Table 1). This reconstruction is designated iNL403, since it contains 403 genes. Reactions 

and pathways were manually curated to verify presence in the human brain and to determine 

cell-type localization, thus yielding a first-draft metabolic reconstruction of the brain 
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metabolic network. Reactions unique to the different neuron types were determined from the 

literature (see notes in Supplementary Table 1), and consist largely of the reactions needed 

to make and metabolize their associated neurotransmitters. A list of all reactions, supporting 

data, citations, and a comparison with previous brain metabolism models can be found in 

Supplementary Tables 1– 4 and 8. Models in SBML format and model updates can be 

obtained from http://systemsbiology.ucsd.edu/In_Silico_Organisms/Brain.

Constraint-based modeling

Constraint-based modeling and analysis of metabolic networks has been previously 

described5, 12. Briefly, all of the reactions are described mathematically by a stoichiometric 

matrix, S, of size m x n, where m is the number of metabolites and n is the number of 

reactions, and each element is the stoichiometric coefficient of the metabolite in the 

corresponding reaction. The mass balance equations at steady state are represented as

where v is the flux vector12. Maximum and minimum fluxes and reaction reversibility, 

when known, are placed on each reaction, further constraining the system as follows:

At this point the model can then be used with many constraint-based methods5 to study 

network characteristics.

The S matrix was constructed with the mass and charge balanced reactions from the 

reconstruction. Select metabolites, known to cross the blood-brain barrier, were added as 

exchange reactions, allowing those metabolites to leave or enter the extracellular space in 

the model. A few metabolites from network gaps were allowed to enter or leave the system 

from the cytosol or mitochondria. This was only used when transporter mechanisms or 

subsequent pathway steps where not known, and when their entrance or removal from the 

system was necessary for model function. When available, cerebral metabolic rates were 

used from published data to constrain the upper and lower bounds of the exchange 

reactions44, 45. All parameters are detailed in Supplementary Tables 1 and 5.

Monte Carlo sampling

Monte Carlo sampling was used to generate a set of feasible flux distributions (points). The 

method is based on the artificially centered hit and run algorithm with slight modifications. 

Initially, a set of non-uniform pseudo-random points, called warm-up points, is generated. In 

a series of iterations, each point is randomly moved, always remaining within the feasible 

flux space. This is done by 1) choosing a random direction, 2) computing the limits of how 

far one can travel in that direction, and 3) choosing a new random point along this line. After 

many iterations, the set of points is mixed and approach a uniform sample of the solution 

space, thus providing a distribution for each reaction that represents the range and 

probability of the flux for each reaction, given the network topology and model constraints. 

For more detail, see the Supplementary Notes.
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Simulating enzyme deficiencies

Enzyme deficiencies were obtained from the literature18. To simulate each deficiency, the 

distribution for all candidate flux states was determined using Monte Carlo sampling. From 

this distribution, the most probable flux was found and reduced by the fraction reported in 

the literature. All candidate states were then recomputed and compared with normal 

candidate flux states.

Alzheimer’s disease microarray analysis

Microarrays were obtained from the Gene Expression Omnibus (GSE5281). Arrays consist 

of 161 Affymetrix Human Genome U133 Plus 2.0 Arrays that profile the gene expression 

from laser-capture microdissected histopathologically normal neurons from six different 

brain regions of Alzheimer’s disease patients and age-matched controls. These arrays were 

not used in model construction.

Arrays were gcrma normalized using the bioconductor package for R. Pearson’s correlation 

coefficients were computed for all array pairs, and arrays with r < 0.8 were discarded (i.e., 

GSM119643, GSM119661, GSM119666, and GSM119676).

Different arrays had different levels of glial contamination. Therefore, to assess the amount 

of GAD (neuron-specific), the GAD1 and GAD2 levels on each array were normalized as 

follows. For each array, the relative amount of neuron material was determined by 

computing a ratio for four neuron-specific genes to the median level across all arrays. 

Neuron-specific genes were chosen to represent different neuron parts, including the soma, 

axon, and synaptic bouton (TUBB346, NeuN47, SYN148, and ACTL6B49). These were 

summed to compute a relative amount of neuron material (NM) for each array, j,

for each neuron marker gene gi. Since GAD genes are neuron-specific in the central nervous 

system, these were normalized for each array by the associated relative amount of neuron 

material, thus termed GADNMN for neuron-marker normalized GAD. It is assumed in this 

study that the neuron markers used here do not change their expression level per neuron 

between Alzheimer’s patients and age-matched control, since no published studies have 

demonstrated that these genes change expression in healthy cells through the progression of 

Alzheimer’s disease. It is possible that there is down-regulation of some neuron markers 

among neurons bearing neurofibrillary tangles, since synapse loss is a hallmark of 

Alzheimer’s disease23. However, the arrays used in this study profile histopathologically 

normal neurons and the surrounding glial cells. Therefore, it is not expected that there will 

be significant changes in the expression of these key neuronal genes in the data used here. 

Lastly, the inclusion of multiple genes from different cell regions helps to minimize the 

effects from expression changes not attributable to glial cell contamination. The results 

presented in this work are robust to the removal of each neuron marker gene (Supplementary 

Fig. 4).
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PathWave analysis

PathWave allows for the elucidation of pathways that significantly change together. Its 

advantage over other methods, such as Gene Set Enrichment Analysis, is that it takes 

metabolic network connectivity into account in order to identify changes in pathways.

PathWave was used as published previously30. The reactions in each model were 

subdivided into biologically relevant functional pathways. Reactions that were involved in 

multiple pathways were added to each associated pathway. Reactions and their pathways are 

shown in Supplementary Table 9.

Since PathWave analyzes microarray data based on closely connected reactions, pathways 

were simplified by removing all metabolites with connectivity greater than eight in the 

metabolic network. Exceptions are listed in Supplementary Table 10.

For each of these simplified metabolic pathways, reactions were laid into a 2-dimensional, 

regular square lattice grid. To optimally preserve neighborhood relations of the reactions, 

adjacent nodes of the network were placed onto the grid as close to each other as possible. 

We mapped each expression data set, obtained from the Gene Expression Omnibus 

(GSE5281), onto the corresponding reactions of the transcribed enzymes. If a reaction was 

catalyzed by a complex of proteins, the average expression was taken. The resulting 

expression values of each reaction were z-transformed. Haar wavelet transforms on the 

optimized grid representation of each pathway were performed to explore every possible 

expression pattern of neighboring reactions and to define groups of reactions within a 

pathway that showed significant differences between samples of different conditions.

To obtain significance values, the sample labels were permutated (n = 10,000) and scores 

were calculated for each wavelet and permutation. The scores represent the absolute value of 

the logarithm of the p-value for each wavelet feature, calculated by t-tests. For the best hit 

(highest score of the non-permutated wavelet features) a p-value was obtained from the 

reference distributions and represented the significance for the corresponding pathway. The 

p-value for each pathway was corrected for multiple testing (FDR = 0.05)50. Only pathways 

with more than three significantly differentially regulated reactions were further considered 

(FDR = 0.05). To obtain local patterns in the pathways, all wavelet features were statistically 

tested applying t-tests and corrected for multiple testing. Statistically significant features 

contained those sub-graphs of the metabolic network that showed differentially regulated 

patterns. Reconstructing these sub-graphs allowed us to directly detect the regions of interest 

in the metabolic network (Supplementary Table 11).

Identifying pathways for acetylcholine synthesis

An FBA-derived approach was employed to identify all possible pathways coupling the 

mitochondrial and cytosolic acetyl-CoA pools using known reactions in human metabolism. 

First, the potential pathways were identified using HR17. A reaction that supplies 

mitochondrial acetyl-CoA was added to the model. A second reaction was added to remove 

cytosolic acetyl-CoA from the model. Lastly, all other metabolite uptake and secretion 

constraints were opened. Reactions were randomly removed until a minimum pathway was 

identified, capable of carrying flux between mitochondrial and cytosolic acetyl-CoA. This 
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was repeated until more than 21,000 unique sets of reactions were identified. An r x p binary 

matrix was then built with the p unique reaction sets consisting of r reactions. Each element 

(i,j) of this matrix was 0 if reaction i was absent from pathway j or 1 if reaction i was in 

pathway j. Rows for all reactions that were never necessary were subsequently removed 

from the matrix. Singular value decomposition was then used, followed by varimax factor 

rotation of the first five singular vectors. Singular vector loadings demonstrated the 

dominant sets of reactions, and their major dependencies that could be used to couple 

mitochondrial acetyl-CoA metabolism and cytosolic acetylcholine metabolism.

Predicting cholinergic neurotransmission

The percentage cholinergic neurotransmission was computed based on published data35. 

The previously published data were obtained from rat brain minces that were incubated in 

solutions containing [1-14C]pyruvate or [2-14C]pyruvate. Both acetylcholine and 

radiolabeled CO2 were measured at various titrations of several different inhibitors of 

pyruvate dehydrogenase (PDHm) (see Supplementary Notes for all inhibitors).

Simulations were conducted using the cholinergic model. The models were allowed to take 

up the same substrates provided experimentally35, at rates consistent with the data (see 

Supplementary Table 5). Monte Carlo sampling was used to identify all feasible flux states. 

This was done for various levels of PDHm inhibition, ranging from 0 to 90% inhibition. The 

percentage cholinergic neurotransmission was computed by randomly selecting a feasible 

flux state from each level of PDHm inhibition and computing the slope of the sum of labeled 

CO2-producing fluxes and choline acetyltransferase for the different simulations. A similar 

slope was computed from randomly sampled points from the reported experimental 

distributions. The ratio of these slopes represents a feasible percentage cholinergic 

neurotransmission. This was repeated 1000 times and the median value was reported. 

Comparisons with the experimental data were done by suppressing the in silico pryruvate 

dehydrogenase flux until the measured CO2 release rate was obtained. At this level of 

suppression, the resulting predicted acetylcholine production rate was compared with the 

experimentally measured rates. See Supplementary Notes for more detailed methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A workflow for bridging the genotype-phenotype gap with the use of high-throughput 
data and manual curation for the construction of multicellular models of metabolism
Metabolic models of multicellular tissues can be constructed to gain insight into biology and 

make testable hypotheses. First, a species-specific reconstruction is built based on genome 

annotation, experimental data, and knowledge obtained from the literature. Second, high-

thoughput data can be mapped to the reconstruction in order to find a context-specific 

network (e.g., representing a tissue). Third, multicellular models are constructed as the 

context-specific network is organized into compartments representing different cell types, 

based on cell-specific knowledge and data. These networks are linked together with the 

transport of shared metabolites, and then formulated into a model. Fourth, the models are 

utilized for simulation and analysis to gain insight and generate testable hypotheses. For 

example, the models can be used to a) predict disease-associated genes, such as glutamate 

decarboxylase in this work. b) High-thoughput data can be analyzed in the network context 

to identify sets of genes that change together and affect specific pathways, such as the brain-

region-specific suppression of central metabolism in Alzheimer’s disease patients. c) 

Physiological data can be analyzed in the context of the model, therefore allowing, for 

example, the calculation of the percentage of the brain that is cholinergic.
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Figure 2. General structure of the models
Three models were built from the brain reconstruction. Each model consists of various 

compartments: 1) the endothelium/blood, 2) astrocytes, 3) astrocytic mitochondria, 4) 

neurons, 5) neuronal mitochondria, and 6) an interstitial space between the cell types. Each 

neuron metabolic network was tailored to represent a specific neuron type, containing genes 

and reactions generally accepted to be unique to the neuron type. Mito = mitochondrion, Int 

= interstitial space, CMR = cerebral metabolic rate.
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Figure 3. Decrease in α-ketoglutarate dehydrogenase (AKGDm) activity, associated with 
Alzheimer’s disease (AD), shows cell-type and regional effects in silico consistent with 
experimental data
Kernel density plots show the distribution of feasible fluxes for various reactions (a–e). An 

in silico reduction of AKGDm flux from normal activity (a–e, solid lines) to AD brain 

activity (a–e, dashed) decreases (a) the oxidative metabolic rate for glutamateric and 

cholinergic neurons, but not GABAergic neurons. This results from a decrease in the 

feasible fluxes for oxidative phosphorylation (e.g., cytochrome c oxidase) for both (b) 

glutamatergic and (c) cholinergic neurons, but not (d) GABAergic cells. This cell-type-

specific protection from the AKGDm deficiency results from (e) an increased flux through 

the GABA shunt in GABAergic cells, by bypassing the damaged AKGDm (f). GABAergic 

cells maintain a higher GABA shunt flux because of the expression of glutamate 

decarboxylase (GAD). Neuroprotective properties of GAD are supported by gene 

expression. (g) Severely damaged brain regions in AD patients have lower GADNMN 

expression in control brain, while high GADNMN regions (SFG and VCX) show little 

damage. In AD brain, (h) severely affected regions (HIP and EC) show an increase in 

GADNMN and the GAD-inducing DLX family, suggesting that non-GAD expressing 
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neurons may be lost in AD. EC = entorhinal cortex, HIP = hippocampus, MTG = middle 

temporal gyrus, PC = posterior cingulate cortex, SFG = superior frontal gyrus, VCX = visual 

cortex, NMN = neuron marker normalized, inhib = inhibited. All reaction and metabolite 

abbreviations are defined in Supplementary Tables 1– 2.
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Figure 4. Metabolically affected brain regions in AD show significant suppression of central 
metabolic pathways
In certain AD brain regions, the metabolic rate of glucose decreases more than can be 

explained by brain atrophy. PathWave analysis demonstrates that histopathogically normal 

cells from the metabolically affected brain regions (EC, HIP, MTG, and PC) demonstrate a 

significant suppression of central metabolic pathways, such as (a) glycolysis and (b) the 

TCA cycle and surrounding reactions. Metabolically less affected regions (SFG and VCX) 

show no significant suppression. Reaction suppression shown here is a composite expression 

of the reaction associated genes and the genes of closely connected reactions. Only 

significantly changed reactions are shown (FDR = 0.05). EC = entorhinal cortex, HIP = 

hippocampus, MTG = middle temporal gyrus, PC = posterior cingulate cortex, SFG = 

superior frontal gyrus, VCX = visual cortex. All reaction and metabolite abbreviations are 

defined in Supplementary Tables 1– 2.
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Figure 5. Singular Value Decomposition (SVD) of feasible pathways elucidates potential 
pathways that allow for coupling of mitochondria acetyl-CoA metabolism and cytosolic 
acetylcholine production
21,000 unique feasible reaction sets were computed, each showing transport of 

mitochondrial acetyl-CoA carbon to the cytosol in human metabolism. SVD of a matrix of 

all 21,000 pathways yielded 3 primary pathways that allow this coupling of mitochondrial 

metabolism to acetylcholine production, by carrying the acetyl-CoA carbon on (a) N-acetyl-

L-apartate, (b) citrate, or (c) acetoacetate. As shown by the second singular vector, reactions 

in the pathway with citrate tend to be missing from pathways when the reactions for the 

acetoacetate pathway are included. The third singular vector shows a similar relationship of 

the N-acetyl-L-aspartate pathway. The omic data and known enzyme localization only 

support the usage of citrate and acetoacetate as potential carriers in neurons.
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Figure 6. Model-aided prediction of cholinergic contribution is consistent with experimental 
acetylcholine production
Percent brain cholinergic neurotransmission was predicted based on 14 sets of experimental 

data in which brain minces were fed [1-14C]-pyruvate or [2-14C]-pyruvate, followed by 

measurement of 14C-labeled CO2 and acetylcholine. (a) For each experiment, the feasible 

amount of the brain that can generate the experimental response was computed, centering at 

3.3%. (b) This parameter was employed in the analysis, and the updated model predictions 

were consistent with experimental data, such as seen in the case of treating the brain minces 

with [1-14C]-pyruvate and increasing levels of the pyruvate-dehydrogenase inhibitor 

bromopyruvate. Moreover, the updated model predictions were consistent with 

measured 14C-labeled CO2 and acetylcholine production for brain minces that were treated 

with three PDHm inhibitors withheld from previous computations for both supplementation 

with (c) [1-14C]-pyruvate and (d) [2-14C]-pyruvate. Error bars on the simulation results 

represent 25th and 75th percentiles. ChAT = choline acetyltransferase.
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