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ABSTRACT

Motivation: Recent advancements in high-throughput imaging
have created new large datasets with tens of thousands of
gene expression images. Methods for capturing these spatial
and/or temporal expression patterns include in situ hybridization or
fluorescent reporter constructs or tags, and results are still frequently
assessed by subjective qualitative comparisons. In order to deal
with available large datasets, fully automated analysis methods must
be developed to properly normalize and model spatial expression
patterns.
Results: We have developed image segmentation and registration
methods to identify and extract spatial gene expression patterns from
RNA in situ hybridization experiments of Drosophila embryos. These
methods allow us to normalize and extract expression information
for 78 621 images from 3724 genes across six time stages. The
similarity between gene expression patterns is computed using four
scoring metrics: mean squared error, Haar wavelet distance, mutual
information and spatial mutual information (SMI). We additionally
propose a strategy to calculate the significance of the similarity
between two expression images, by generating surrogate datasets
with similar spatial expression patterns using a Monte Carlo swap
sampler. On data from an early development time stage, we show that
SMI provides the most biologically relevant metric of comparison,
and that our significance testing generalizes metrics to achieve
similar performance. We exemplify the application of spatial metrics
on the well-known Drosophila segmentation network.
Availability: A Java webstart application to register and compare
patterns, as well as all source code, are available from:
http://tools.genome.duke.edu/generegulation/image_analysis/insitu
Contact: uwe.ohler@duke.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Advances in high-throughput microscopy have led to a rapid increase
of digital image data in biology. New methods to image biological
specimens at high resolution, and to visualize expression of genes of
interest, have lead to a high interest in imaging in developmental and
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molecular biology, including the creation of virtual embryos to map
expression profiles of important regulatory genes (Fowlkes et al.,
2008; Keller et al., 2008). In the past, these images were analyzed
in a manual fashion, e.g. comparing two expression patterns by
qualitative visual inspection. In order to deal with these datasets
more appropriately, it is necessary to develop automated methods
for extracting and analyzing images. Methods to quantitatively
describe spatial/temporal expression patterns is a relatively new
area of research that has begun to be explored in model organisms
(Megason and Fraser, 2007). In sea urchins, a comprehensive
analysis of normalization methods was used for determining and
quantifying spatial expression data (Damle et al., 2006). Recently,
large databases of images for Caenorhabditis elegans have become
available (Hunt-Newbury et al., 2007), accompanied by methods
to analyze the data (Bao et al., 2006; Murray et al., 2008). For
Arabidopsis root images, image registration techniques have been
used to quantify tissue-specific expression from green fluorescent
protein (GFP) reporter lines (Lee et al., 2006; Mace et al., 2006).

A particularly interesting and fundamental problem that arises
with the availability of image data, and which we address in this
study, is to compare two samples on the level of their expression
profiles: for instance, the same gene under different conditions
or across different species, or different genes with the goal to
cluster them akin to approaches developed for microarray data.
Several general problems arise when comparing image expression
data: (i) we need to develop methods to process the raw input
images, to eliminate noise under a typical large range of imaging
conditions (e.g. different viewpoints, different locations, multiple
specimens per image) and to perform normalizations to decouple
the variability in morphology from the variability in expression;
(ii) we need to represent the expression patterns and to specify
appropriate similarity metrics capable of assessing spatial/temporal
similarity; and (iii) we need to assess the significance of observed
similarities.

The majority of image analysis work in the context of
development of model organisms has been carried out for
Drosophila, and can be broadly grouped into two categories:
quantitative high-resolution analysis of a relatively small selected
subset of genes (Fowlkes et al., 2008; Janssens et al., 2005;
Keranen et al., 2006), and higher throughput pattern analysis of
thousands of genes (Harmon et al., 2007; Kumar et al., 2002; Peng
et al., 2007). Fine-grained high-resolution analysis often extracts
quantitative expression values from image data, e.g. for numerical
simulations of specific regulatory pathways. This study follows
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Fig. 1. Automated image registration. (A) Examples of input RNA in situ images. (B) Registration flowchart: during initialization, gradient and filtered images
are calculated, and the parameters of the registration are randomly initialized. The parameters are then iteratively evaluated and optimized for a fixed number
of iterations, using a numerical optimizer. The final parameters are used to transform the image and create the shape model as shown in (C). The optimized
shape models for the embryos in the example images are shown in red, superimposed on the normalized input images.

previous high-throughput approaches which uses large datasets to
quantitatively address expression in the context of spatial patterns:
prediction of annotation terms, or clustering/classification of genes.
We use a dataset of Drosophila embryonic expression patterns
(Tomancak et al., 2007) to illustrate how we address the three
questions outlined above.

Our work distinguishes itself from previous work on this
Drosophila data by three main contributions. First, robust and
fully automated image analysis techniques are used to process
and register the raw images. Through the use of statistical
shape models and partial mapping methods, these techniques are
capable of handling sources of phenotypic and imaging variability
that limited previous approaches. Second, we comprehensively
compare different similarity metrics, implement similarity measures
that incorporate spatial dependencies to distinguish complex
spatial patterns, and validate the different measures against visual
annotation terms provided by experts. Third, we develop a new
significance testing framework for spatial similarity scores through
constrained realization Monte Carlo simulations and demonstrate
how it can generalize similarity measures to achieve similar
performance to spatial metrics. Finally, we illustrate this method
of significance testing on known biological examples, emphasizing
the importance for fully automated image registration/comparison
models in the context of regulatory interactions. While we use
a fly embryo dataset as an example, the general registration and
comparison approach is adaptable and thus of interest to the study
of spatial expression patterns in a wide range of model organisms.

2 APPROACH

2.1 Image registration
Prior to any quantitative analysis of expression image data, it is
necessary to normalize and register the images to a common frame
of reference. By first mapping different specimens such as fly

embryos to a common reference, we can subsequently apply a large
variety of methods for univariate and multivariate data analysis for
cross-subject comparisons (between replicates, genes, time stages
or different strains or species).

We have developed a fully automated registration method based
on statistical shape models and improved numerical optimizers. This
approach estimates both the average shape of an embryo, as well
as the main components of variation of embryo shape, including
orientation, from labeled data. It then uses this model to segment new
images into foreground (a single complete embryo) and background
(Fig. 1). We applied this registration method to the complete set of
78 621 images in the latest release of the Berkeley Drosophila in situ
database. Overall, the model-based registration addresses problems
that limited the successful application of previous methods on the
whole database, highlighting its ability of extracting embryos under
a large variety of imaging conditions: multiple embryos or impeding
boundaries, changes in lighting/microscope settings, and out of focus
boundary regions.

To formally analyze registration accuracy, we uniformly sampled
200 images from 200 uniformly sampled genes from the dataset
for quantitative assessment. Each image was manually segmented,
registered and compared with the automated segmentation and
registration. We found that the most common inconsistencies in
registration resulted from incorrectly orienting the axis, and were
observed in 20 cases (10%) for the anterior/posterior axis, and in 6
cases (3%) for the dorsal/ventral axis. While our anterior/posterior
axis alignment of 90% is consistent with an 85% accuracy
reported earlier (Gargesha et al., 2005), our approach differs from
Gargesha’s approach as we encapsulate the alignment problem
into the registration process by allowing the axis-corrected shape
model to more properly fit to the embryos in the image. The total
registration accuracy was assessed using a test point error (TPE)
measure (Zitova and Flusser, 2003) between the manually and
automatically registered images. The average TPE was 0.94, with
190 images (95%) having a TPE within a reasonable accuracy rate of
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>0.90, as compared with the leading reported registration accuracy
(78%; Pan et al., 2006).

After normalization and registration of the images, expression
patterns or features useful for classification can be extracted. Here,
we are interested in comparing the global 2D expression pattern, and
a choice of representation of the patterns has to be made: instead of
working with the complete pixel-based 2D patterns, it is common
to map them to a smaller set of features representing expression
in small subregions of the specimen. As the registration maintains
morphological variabilities (size and stretch), it prevents a one-to-
one mapping on the pixel level. To be able to evaluate the effect
of different metrics in a simple scenario, we therefore chose to
project the staining intensities along the anterior/posterior x-axis and
dorsal/ventral y-axis as described in Section 3.3. Projections have
been used used in a variety of recent applications in Drosophila
(Janssens et al., 2005; Segal et al., 2008)—as well as Mouse brain
images (Liu et al., 2007)—and are particularly suited for the analysis
of early embryonic expression as discussed below.

2.2 Correspondence of expression similarities to expert
annotations

Using the extracted expression patterns, we assess the importance
of using spatial metrics [Haar wavelets (HWs) and spatial mutual
information (SMI)] by comparing their performance with two
previously used non-spatial metrics [mean squared error (MSE)
and mutual information (MI)]. We determined how the similarity
values computed by each metric corresponded to manually annotated
expression terms in the in situ database. For this purpose, we focused
on the subset of 27 157 images covering 3127 genes acquired during
the time window of developmental stages 4–6. Images in this stage
window have been annotated with information on the view from
which the images were taken (lateral or dorsal/ventral), and this
crucial information is not yet provided for later stages. Furthermore,
the images at this stage balance the frequency of spatially diverse
expression patterns with the resolution and coverage in the database,
and are not subject to the additional complexity that expression
in later stages is conditional on earlier expression, which is also
reflected in the annotation terms.

Genes in the selected window were annotated with 38 unique
terms describing the spatial expression patterns. We removed all
genes that had annotation terms which indicated the lack of spatial
variability (e.g. ubiquitous, maternal) and non-lateral views, leaving
us with 209 genes, 1231 images and 29 annotation terms. For
each scoring metric, we calculated an enrichment significance for
each annotation term describing how often genes annotated with
a particular ontology term show the strongest similarity to genes
annotated with the same term. Using a P-value cutoff of 0.05,
SMI performed the best, with 22 of the 29 annotation terms being
significantly enriched, while MI led to the second best result with 21.
Both MSE and HWs led to 19 and 18 enriched terms, respectively
(Table 1).

While SMI and HWs are capable of incorporating the spatial
structure of expression pattern, they do not fully incorporate the
significance of the spatial pattern: genes with complex spatial
patterning (e.g. even-skipped) will be scored similarly to genes
with simpler spatial patterning (e.g. bicoid). To better account
for this, and to provide actual significance values between
expression patterns, we have developed methods that account for

the complexity of the spatial patterning. The significance values
are computed by comparing the observed similarity value with a
null distribution that preserves spatial dependencies between the
two gene expression patterns, as described in Section 3.5.1 and
shown in Figure 2. To accommodate for low signal/strong lighting
effects, the significance values were converted into reweighted
significance scores (RSS) as described in Section 3.6. The
enrichment significance calculation was repeated for the RSS values
and are shown in Table 1. By incorporating the spatial structure
using RSS for each score, the scoring metrics performed similarly,
with all the metrics resulting in 19–22 enriched significance
scores.

While consistent differences between metrics are observed, and
the significance estimates produce more stable results across metrics,
the overall performance is not dramatically different. The advantage
of using appropriate similarity metrics and significance estimates
becomes more apparent in noisier scenarios, or when fewer features
are used. Many, but not all, terms exhibit distinct patterns along the
AP axis; however, when using projections onto the AP axis only,
MSE results in only 15 terms compared with the 18 terms for both
axis. In comparison, MI, SMI and the RSS scores remain largely
consistent regardless of whether the DV axis is incorporated into
the score. The full results analogous to Table 1 are given in the
Supplementary Material.

2.3 Expression similarity of known co-regulated genes
As application of the registration and expression comparison
pipeline, we use SMI and significance tests to validate known
biological interactions, suggesting their usefulness for inference
on biological data. Gene regulation and spatial patterning are a
tightly coupled process: transcription factors acting as activators
for a gene are often co-expressed in similar spatial regions, while
repressors are often expressed inversely to the targeted gene. We
address how such regulatory relationships are reflected in spatial
expression profiles in the context of the segmentation network, using
a set of the gap, pair rule and segmentation genes adapted from
Schroeder et al. (2004). This network consists of a set of genes
with many direct regulatory interactions and shared functional roles;
in many cases, similarities in function/interaction are reflected in
noticeable similarities of spatial expression patterns. Since the subset
we are using does not contain the irregularities/noise of the full
dataset, we here calculated the unweighted significance scores of
the anterior/posterior projections described in Section 3.5.1.

The significance values for the similarity scores from all
pairwise comparisons are shown in Figure 2. Many of the genes
which share functional roles are identified as being significant;
for instance, pdm2 and nubbin (also known as pdm1) are
paralogs with highly similar functional roles and interactions
(Yeo et al., 1995). Significant similarity scores can also reflect
regulatory relationships between genes with overlapping expression
domains in the transcriptional network: ocelliless (also known
as orthodenticle) is positively regulated by bicoid (Finklstein
and Perrimon, 1990); Ubx indirectly regulates dichaete through
the intermediate activation of dpp (Capovilla et al., 1994;
Sanchez-Soriano and Russell, 2000). In addition to activators, we
observe significant similarities for repressors, a property of MI
which scores correlation and anti-correlation equally: hunchback
represses the expression of nubbin, pdm2 (Kambadur et al., 1998)
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Table 1. Enrichment of annotation terms for all genes within the second time window (stages 4–6) for all four similarity values: MSE, Haar,
MI and SMI, given as actual similarity scores and RSS

Annotation term Genes Actual RSS

MSE Haar MI SMI MSE Haar MI SMI

Amnioserosa anlage in statu nascendi 19 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Anlage in statu nascendi 30 0.207 0.268 0.039 0.015 0.159 0.152 0.014 0.012
Anterior endoderm anlage in statu nascendi 30 0.015 0.033 0.001 0.004 0.006 0.026 0.001 0.001
Cellular blastoderm 27 0.126 0.142 0.312 0.368 0.265 0.193 0.463 0.355
Clypeolabrum anlage in statu nascendi 10 0.004 0.001 0.006 0.006 0.005 0.001 0.002 0.003
Dorsal ectoderm anlage 15 0.008 0.009 0.002 0.010 0.010 0.006 0.003 0.007
Dorsal ectoderm anlage in statu nascendi 72 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Ectoderm anlage in statu nascendi 13 0.017 0.030 0.017 0.029 0.017 0.035 0.015 0.010
Endoderm anlage in statu nascendi 9 0.216 0.166 0.014 0.023 0.147 0.093 0.011 0.015
Foregut anlage in statu nascendi 25 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001
Gap 27 0.101 0.053 0.020 0.027 0.046 0.049 0.036 0.030
Head epidermis anlage in statu nascendi 4 0.005 0.009 0.005 0.006 0.004 0.005 0.004 0.004
Head epidermis dorsal anlage in statu nascendi 10 0.007 0.003 0.001 0.001 0.018 0.004 0.002 0.002
Head mesoderm anlage 5 0.207 0.181 0.303 0.322 0.154 0.167 0.232 0.215
Head mesoderm anlage in statu nascendi 15 0.075 0.169 0.095 0.029 0.075 0.135 0.112 0.118
hindgut anlage in statu nascendi 20 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Mesectoderm anlage in statu nascendi 12 0.007 0.021 0.032 0.008 0.007 0.012 0.025 0.016
Mesoderm anlage in statu nascendi 18 0.180 0.166 0.161 0.097 0.219 0.101 0.196 0.189
Pair rule 5 0.141 0.071 0.097 0.067 0.137 0.044 0.046 0.047
Pole cell 13 0.971 0.968 0.963 0.984 0.952 0.969 0.968 0.976
Posterior endoderm anlage in statu nascendi 38 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Procephalic ectoderm anlage in statu nascendi 67 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Segmentally repeated 9 0.001 0.001 0.002 0.003 0.001 0.001 0.003 0.002
Trunk mesoderm anlage 5 0.030 0.236 0.006 0.002 0.012 0.160 0.010 0.013
Trunk mesoderm anlage in statu nascendi 17 0.017 0.045 0.162 0.086 0.008 0.066 0.269 0.208
Ventral ectoderm anlage 11 0.008 0.047 0.004 0.004 0.023 0.043 0.003 0.001
Ventral ectoderm anlage in statu nascendi 69 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Visual anlage in statu nascendi 17 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Yolk nuclei 35 0.419 0.485 0.823 0.818 0.639 0.592 0.841 0.805

Each row represents an annotation term, light gray shading represents 0.05 significance, while dark gray represents 0.01 significance values.

and Ubx (Pirrotta et al., 1995); giant and Krueppel mutually repress
each other (Kraut and Levine, 1991). Additional significant spatial
localization can be a result of conditions in which genes act either
in concert, or independently, to regulate other downstream genes.
Nubbin shows significance with dichaete, and double knockout
studies have shown that these two genes are essential for the proper
formation of even-skipped stripes 1, 4, 5 and 6 (Ma et al., 1998).

Not all known interactions are detected as significant, nor is this
to be expected given the data. Often, a spatial expression pattern
of a gene is the result of complex interactions between many genes
across several time stages. For example, the proper development
of all even-skipped stripes requires the interaction of many genes;
the stripes are encoded by distinct cis-regulatory regions; and some
factors function to control only a subset of the stripes. In such cases,
assessing similarity on the level of global gene expression pattern,
as pursued here as illustrative example, may therefore be modified
to deal with parts of patterns, such as disjoint expression domains
or even the boundary of expression domains. We anticipate that the
integration of quantitative spatial expression information with other
‘traditional’ high-throughput data (e.g. binding, expression), will be
useful to infer complex interactions in the regulatory networks of
multicellular eukaryotic organisms (Fowlkes et al., 2008).

3 METHODS

3.1 Berkeley Drosophila in situ database
The Berkeley Drosophila in situ database consists of 78 621 images of 3724
genes expressed in Drosophila embryos across six time windows (covering
the developmental stages 1–3, 4–6, 7–8, 9–10, 11–12, 13–15). An established
RNA in situ hybridization staining protocol was used to visualize spatial
expression patterns as described in Tomancak et al. (2002). Annotations are
based on an ontology describing embryonic expression patterns, consisting
of 314 terms, and were obtained from the latest release of the database
(Tomancak et al., 2007). The annotation set was curated by the BDGP
group by manually inspecting the in situ images and providing ontology
terms for each gene at every time stage. Additionally, information on the
orientation of the embryos (i.e. the viewpoint) was manually curated for the
stage window 4–6.

3.2 Image registration
The approach for segmenting and registering images is based on statistical
shape models using signed distance maps to describe object contours
(Leventon et al., 2000). Signed distance maps are a representation of contours
which contain the distance from the contour of the object for every point
in the image: negative distance values depict regions that are inside the
object, positive distances are outside and the magnitude represents the
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Fig. 2. Generation of background datasets and pairwise significance tests for 2D expression patterns. Upper right panel: computation of significance values,
as exemplified on in situ images for the genes nubbin (A) and dichaete (C). The extracted expression vectors [bottom of (A, C)] of nubbin and dichaete are
used to calculate the background distribution specific for the comparison of these two expression patterns. For each gene, a set of random realizations with
constraints on the correlation between spatially adjacent expression values is created as described in Section 3.5 (B, D). The constrained realizations are used
to compute a background distribution of similarity values [histogram in (E)]. The observed similarity on the expression patterns is indicated with an orange
line, and is used to calculate an empirical P-value for each comparison. Lower left panel: a set of previously described gap, pair rule and segmentation genes
(Schroeder et al., 2004) was used to evaluate the significance testing. Images for each gene were registered, and their respective column expression vectors
were calculated. Using the constrained realizations (histograms) and observed similarity values (orange lines), significance values were calculated for each
similarity score. The color of the histogram represents the significance of the pairwise score (blue: >0.1, green: (0.1,0.05], yellow: (0.05,0.01], red: <0.01).
The results in this example explore anterior/posterior patterning and are based on the x-axis projections of the expression patterns; for the comparisons in
Table 1, projections to both x- and y-axes were used.

actual distance. Signed distance maps are an attractive choice for shape
modeling as they provide a continuous representation of a discrete space
which is easily interchangeable (the signed distance map can be directly
converted from the contour, and the contour can be determined from the
signed distance map by calculating the zero crossing of the distance map).

A Drosophila shape model was automatically created from a manually
curated set of 120 embryo images (Fig. 3). First, the contours of the embryo
were manually segmented and transformed into signed distances maps.
The objects were then automatically normalized in size by minimizing the
distance of each individual signed distance map to the mean signed distance
map. The resulting normalized maps were analyzed using a hierarchical
principal component analysis (PCA) decomposition (Westerhuis et al., 1998).
Let X be the set of all training images, and Xb⊂X be the subset of
training images that belong to time stage b, where b∈B,B=[1,6], and
Xi X̂j =∅ | i,j ∈B,i �= j. In standard PCA, a new set of bases wt ∈W is
selected such that wt = arg max var

{
wtx̂t−1

}
where x̂t−1 is the deflated

matrix from the previous iteration. Each vector wt is then converted into
a 2D signed distance principal component image. Hierarchical PCA extends
upon PCA by normalizing the contribution of each basis to each individual
block.

In addition to providing characteristic priors on the shape through
hierarchical PCA, we also model the filtered intensity values around the
contour of the embryos. We create a set of histograms of the intensity values
by binning observed intensity values by their respective signed distance.

We concentrate on the intensity values close to the contour, i.e. we bin the
intensities observed in distances from −25 to 25 in 1 U increments, while
remaining bins are not included.

The task of image registration is to find the optimal set of parameters, θ,
such that the images are accurately aligned to a common frame of reference.
The parameters we optimize over can be separated into two categories:
rigid transformation parameters of the image θr and the principle shape
components of our shape prior θs. The principle component parameters
provide a non-rigid component to the registration, allowing the underlying
shape model to take on a variety of possible shapes which are defined by
the signed distance maps. The rigid transformation parameters are used to
rotate, translate, scale and flip (horizontally and vertically) each image so
that it maps onto the evolving shape model. These two sets of parameters
are simultaneously optimized using an in-house implementation of a particle
swarm optimizer (Kennedy and Eberhart, 1995).

By using the shape parameters as well as the empirical histogram values,
we assess how well the image is registered with the following metric:

f
(
θr ,θs

)=α1g(s,g)+α2h(s,i) (1)

s= θsW is the signed distance map created from the linear combination of

signed distance principal component images. g(s,g)=∑n
j=1

(
1

1+s2
j

(
sj−gj

))
is an extension to Leventon’s original scoring function, and h(s,i)=
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A B C D

Fig. 3. Shape model. (A) Example image showing the creation of the training set. Prior image datasets are split and annotated in two components: the filtered
pixel valued images, and the manually segmented contour of the object. The signed distance map is calculated directly from the external contour. Areas in
red denote increasingly negative values (internal), while blue depicts increasingly positive values. (B) A subset of the 120 images used for the training of the
shape model. The external contour is overlayed on the original image. (C) The training set is normalized in size. (D) The resulting contours are converted
into signed distance maps and processed using a hierarchical PCA. Four of the principal shapes of the embryo are shown. These images depict 2 standard
deviations of the principal component from the mean of the signed distance map.

∑
j p(sj,ij) is the empirical probability of observing a pixel value of ij at

the signed distance location sj over all sj ∈ (−25,25).
To summarize, our method differs from Leventon’s method by three main

distinctions. First, the effect of the intensity distribution is limited to the area
around the zero crossing of the evolving shape. This is necessary to limit
the contribution of internal staining and multiple/impeding embryos to the
score. It also allows for a narrow band approach to be used with minimal
effect on the overall score which increases the runtime performance. Second,
the variability in size of the objects is normalized prior to creating the shape
model. This is required to provide accurate representations of the actual
differences in the shape of the Drosophila embryo which are not simply
related to size. The size of the embryo then becomes an additional parameter
in our optimization step. Lastly, we provide an additional term that is based
on the direct values of the filtered image. This term is not decomposed into
individual components, but rather describes the distribution of the filtered
image in relation to the signed distance location. This allows the registration
to accurately detect and align the shape model to the correct position of the
image.

3.3 Representation of expression patterns
After registration, the transformed image T and shape model S are used
to calculate column and row vectors of expression data. To allow a dyadic
decomposition for the HWs, 64 columns and 32 rows element vectors are
used. The row and column vectors are created by dividing the bounded
shape image into equally spaced rows and columns, and computing the mean
pixel intensity value of the second channel of the masked image for each
column and row entry ri and ci. Where ci=1/nci

∑nci
j toci (j), and oci (j) is a

mapping for column region ci of all pixels within the shape model (sci =1)
and nci =

∑
sci . The same representation is used for the rows, resulting in

two vectors of expression denoted as c and r.

3.4 Metrics and evaluation measures
Four metrics were evaluated to determine the similarity between expression
patterns: MSE, MI, HWs and SMI. MSE and MI are two frequently used
measures for comparing vectors of data. However, both assume that the
samples within each vector are independent, which is not the case for
spatial and time series data. Interaction terms between individual elements

of a sample are capable of describing higher order structures, such as
the formation of gradients, or the alternating striped pattern of odd- and
even skipped. These dependencies are relevant not only in terms of kinetics
and molecular diffusion, but also regarding interactions between genes. It is
for this reason that similarity metrics that account for spatial dependency can
be expected to provide more biologically relevant measures for comparing
images. We implement two such measures, HWs and SMI, which are the
spatial counterparts of MSE and MI, respectively. For all scoring metrics,
we compute similarities independently on row and column vectors, and then
combine them in a sum weighted by the vector size (i.e. in our case, with
1/3 and 2/3, respectively).

3.4.1 Mean squared error MSE scoring metrics have been previously
used to compare gene expression patterns a and b (e.g. in Liu et al., 2007,
on RNA in situ brain images). For each row and column, we sum up the
difference between the elements as defined:

dMSE
ab =

1

n

n∑
j

(
Ca

j −Cb
j

)2
(2)

3.4.2 Mutual information We use the standard MI, e.g. as defined in
Steuer et al. (2002):

dMI
ab =H(A)+H(B)−H(A,B), (3)

where H(A) and H(B) define the entropy of each variable (or in this case,
the column and row vectors for each gene) defined as:

H(A)=−
MA∑
i=1

p
(
ai
)
log p

(
ai
)

(4)

And H(A,B) is the joint entropy:

H(A,B)=−
MA∑
i=1

MB∑
j=1

p
(
ai,bj

)
log p

(
ai,bj

)
(5)

3.4.3 Haar wavelets Wavelet analysis allows one to simultaneously
examine the frequency and resolution components of a signal. This is
accomplished by iteratively decomposing the signal with high and low
bandpass filters. The low-frequency filter serves the purpose of downscaling
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the image into progressively smoother dyadic scales. Let s∈ (1,6) denote
the dyadic scaling factor of the low-frequency filter. For the HWs, this

low pass filter can then be written as: Ls
i =0.5∗

(
Ls+1

2i−1+Ls+1
2i

)
, where i

represents a specific spatial location. The high pass filter is responsible for
creating the coefficients of the wavelet which will be ultimately used to
represent the similarity between patterns. The high pass filter is written as:

Hs
i =0.5∗

(
Ls+1

2i−1−Ls+1
2i

)
. The Haar distance can then be calculated using

the MSE: dHW
ab =

∑
s

∑
i∈s

(
Hs

a,i−Hs
b,i

)
.

3.4.4 Spatial mutual information SMI is an extension of MI to include
neighboring dependencies and has been used in different image analysis
applications (e.g. Rodriguez-Carranza and Loew, 1998). Instead of defining
the entropy as the 1D probability of observing an event (or in this case, an
expression value), we instead define it as the joint probability of observing
a value i while its neighboring expression value is j. The entropy values for
each variable (gene) then become a 2D entropy.

H(A,Â)=−
MA∑
i=1

|Ni |∑
j∈Ni

p
(
ai,âj

)
log p

(
ai,âj

)

where Ni are the neighbors of i. and âj=|ai−aj| is the difference between
neighboring elements.

We chose to use neighboring elements of distance 2. This value was
selected as it preserves biological significant spatial patterns (local gradients;
patterns such as pair rule or gap), while still being computationally tractable.

The cross-image comparison then becomes a 4D joint entropy:

H(A,Â,B,B̂)=−
MA∑
i=1

|Ni |∑
j∈Ni

MB∑
k=1

|Nk |∑
l∈Nk

p
(

ai,âj,bk,b̂l

)
log p

(
ai,âj,bk,b̂l

)
with the SMI being:

dSMI
ab =H(A,Â)+H(B,B̂)−H(A,Â,B,B̂)

3.4.5 Parzen window kernel density estimate To provide smoother
calculations with (spatial) MI, we used a Parzen window kernel density
estimate.

p (x )= 1

N

1

h
√

2π

N∑
i=1

exp

(
−
(
x−xi

)2
2h2

)
, (6)

where h is the bandwidth parameter and controls the smoothness of the
estimate. This window allows us to provide a smoother and more robust MI
calculation when dealing with sparse data.

3.4.6 Ontology annotation term assessment The fly embryo database
frequently contains more than one image per gene. A pairwise blocked
matrix was created to represent the similarities between genes where ds,t

i,j
represents the distance from the s-th image of the i-th gene to the t-th image
of the j-th gene. Let Dij represent the distance between genes i and j where
Dij=min(ds,t

i,j ) for the MSE and Haar metrics and Di,j=max(ds,t
i,j ) for MI

and SMI. For each gene i and each annotation term k present for that gene
ai,k=1, we perform a Mann–Whitney–Wilcoxon test. To accommodate for
multiple disjoint annotations, we performed the rank test on all genes j with
the same annotation aj,k=1, or genes with different annotations, but did
not share any additional annotations of the original gene aj,l=0 if ai,l=1.
Let Uk

i represent the Wilcoxon signed rank value for gene i and annotation
term k. The significance for each annotation term, k, was calculated by
taking the expectation of the U statistic E(Uk)= 1

n

∑n
i Uk

i , and calculating its
resulting z-score zk=(E(Uk

i

)−mUk

)
/σUk . The P-value for each annotation

is calculated directly from the z-scores.

3.5 Biological significance testing
The significance of a scoring metric can be computed based on a series
of surrogate datasets used for hypothesis testing. We create appropriate
surrogate data by drawing constrained realizations (Theiler and Prichard,
1996) which account for both the marginal distributions of the intensity
values as well as the joint spatial dependencies between neighboring
variables. This strategy is based on surrogate data whose spatial complexity
is representative of the underlying spatial processes; genes with high spatial
dependencies (e.g. smooth gradients) will result in a surrogate dataset with
similar gradient patterns, whereas those having low spatial dependencies
(e.g. hard gradients) will have dissimilar patterns. This approach requires
the use of a sampler capable of drawing values from both the marginal as
well as the spatial dependencies.

To meet these requirements, we sampled as follows: for each column
vector, we initialize every element by drawing a sample from the marginal
distribution. This initialization provides us with column vectors that have
no spatial dependency. To account for the spatial dependencies, an iterative
swap sampler is used on this random initialization. Let p1

(
ai,aj

)
, p2

(
ai,ak

)
,

p3
(
ai,al

)
be the probability of observing an intensity ai while its first,

second and third neighbor elements are aj,ak and al , respectively, where
j∈N1

i ,k∈N2
i ,l∈N3

i are neighborhood association sets. To account for
edge effects, neighbor relationships are considered on a torus. Let p

(
ai,.

)
be the cumulative probability of observing ai. For each iteration, four
random locations are chosen: K=kc,kd ,ke,kf with observed values L=
o(kc),o(kd ),o(ke),o(kf ). Let h : K←K be a permutation of the locations with
h=h1,...,hn being the set of all permutations of K with hi(kc,kd ,ke,kf )=
Hi= k̂c,k̂d ,k̂e,k̂f being the permuted locations with observed values Mi=
ˆo(kc), ˆo(kd ), ˆo(ke), ˆo(kf ). The probability of a swap is calculated for all

permutations (including the identity permutation) and the most probable
swap is chosen. By iteratively resampling from this distribution, surrogate
datasets are created that account for both the marginal as well as the spatial
dependency structure.

3.5.1 Significance testing For each gene, 40 constrained realizations are
created. The background similarity value is constructed by calculating all
1600 pairwise similarity values between the constrained realizations for
each gene denoted by bs

i,j for s∈ (1,1600). The empirical P-value of the
expression between genes i and j, pi,j , is calculated by counting the number
of background scores greater than the observed score |bs

i,j >di,j|, and dividing

it by the number of elements pi,j=|bs
i,j >dSMI

i,j |/1600.

3.6 Reweighted significance scores
To account for low-staining and highlighting variability commonly observed
in the data, we compute a RSS between images i,j: RSSi,j=pi,j+(1−pi,j)/X,
where X=exp(

√
var(i)∗var(j)). The RSS score is a smooth alternative to

thresholding: as the variability in the images increases (stronger signal), the
RSS score approaches its actual P-value. Images with low variability (weak
signal/stain), have their scores reweighted closer to 1.

4 DISCUSSION
To address questions that arise with the analysis of spatial gene
expression patterns, we have implemented a complete pipeline for
2D Drosophila RNA in situ staining images that is fully automated
and highly robust to variable conditions in the input data. In
addition to accurate methods for the registration of images to
extract expression patterns, we implemented similarity metrics and
significance scores that are appropriate for spatial patterns. Such
methods are critical for a proper interpretation of spatial expression
similarity with dependencies among neighboring areas. We have also
demonstrated how our significance tests can be used to generalize
metrics that do not include spatial structure directly, we implied
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their general use for biological inference by validating biologically
known relationships. We focused on genes from the developmental
stages 4–6, as the database contained viewpoint information for this
stage window only. The comparatively simple expression patterns
observed at this stage furthermore allowed us to represent them
as projections to the x- and y-axes. While this approach worked
well in this scenario, a 2D-grid representation is likely to be more
appropriate to analyze more complex patterns later in development,
once viewpoint information is available. To this end, the similarity
scores and significance estimates can be extended to work with a
larger neighborhood (e.g. four neighbors rather than two), albeit at
larger computational cost.

Imaging in situ hybridizations under bright field microscopy often
introduces undesired variability and artifacts. This creates problems
for quantitative comparisons: depending on probe affinity, staining
protocol, the overall position, lighting conditions and focal plane of
the image, genes with near identical spatial expression patterns may
exhibit low similarity values. Many of these quantification issues
can be addressed by prospective experimental planning, including
standardization of microscopy settings, number of replicates, time
stages/conditions and staining protocols. Unfortunately, this type of
planning is not available in a retrospective study as this; as a result,
quantification will be affected by these issues until this information
is provided and methods are developed to adequately model these
sources of noise. Another critical limitation is the frequent lack of
biological replicates, which reduces the ability to filter input noise
and model the actual variance of expression patterns.

The goal of our current work was to extract information from
large-scale image data, which can then be used as, or combined
with, other data on gene expression. For instance, it provides metrics
to cluster expression profiles [a task which is currently based on
qualitative descriptors obtained by manual annotation (Tomancak
et al., 2007)], or to complement other high-throughput data such as
obtained from ChIP-chip or microarray experiments (Costa et al.,
2007). Our work is certainly not the first computational study based
on Drosophila digital microscopy images. Some other fly datasets
(Fowlkes et al., 2008; Janssens et al., 2005; Keranen et al., 2006) are
obtained with the purpose to study the expression of few genes but
at much higher quality in terms of resolution and quantification of
expression. Each registration method on these complex images is in
general tailored to a specific scenario, often with well-controlled
imaging protocols/environments (e.g. single embryos, consistent
staining/lighting) and small datasets (<500 images).

Some recent studies have also addressed Drosophila 2D RNA
in situ images, on the same or similar data that we used here
(Kumar et al., 2002; Peng et al., 2007). Our goal was to compare
and identify pairwise spatial expression patterns, with an example
in gene regulatory interactions, and is thus most similar to the
work of (Kumar et al., 2002), a system for database retrieval of
RNA in situ images based on the global expression pattern. Other
studies focused on classifying or clustering patterns, e.g. with the
purpose of classifying images into Gene Ontology annotation terms
(Ye et al., 2008; Zhou and Peng, 2007). These different goals show
the breadth of possible applications on this new type of high-
throughput data; however, this also means that direct comparative
assessments between them are difficult, even for shared subtasks
such as image registration. Our shape-based registration method
is fully automated and applied on all 78 621 images in the
current release of the expression pattern database. In contrast, other

approaches typically selected small application-oriented subsets, or
used a registration process that was manually curated, and these sets
do not show enough overlap to create a common gold standard set
at this point. We did however compare the performance of several
distance metrics used within other systems [MSE (Liu et al., 2007),
MI (Peng and Myers, 2004) and wavelets (Peng et al., 2007)],
with the result that the proposed SMI is more adequate, and that
many of the previous metrics can achieve similar performance by
incorporating the spatial structure in a significance score.

While our method for the automated registration of images is
more robust and complete than many previous approaches, it cannot
be an off-the-shelf solution for all image registration problems.
Differences in sample preparation and imaging technology, as well
as differences in the morphology of specimens which are imaged,
pose restrictions on the possible choices of analysis methods. For
instance, our previous work on Arabidopsis root images (Mace
et al., 2006) deals with confocal images of GFP reporter constructs.
In addition to the different morphology, the fly dataset poses
additional challenges of dealing with multiple objects, and a high
variability in imaging conditions; conversely, we needed to apply
non-rigid registration for the plant roots. Further, while our method
for significance testing and surrogate dataset generation are well
suited to the syncytium formation of the Drosophila embryo, this
is generally not applicable across all organisms. For example, in
C.elegans, gene expression is heavily influenced by cell lineage,
and a more appropriate representation for neighboring dependencies
would be between neighboring lineage elements, and not direct
spatial location. Additionally, different sampling methods may need
to be applied to deal with differences in the structure of the
organism. While general platforms for cell-based image analysis
have been published (Carpenter et al., 2006), a universal framework
for complete multicellular organs or organisms has to be placed at
a higher level and poses a challenge for the automated analysis of
image expression datasets pertaining to developmental biology.

5 CONCLUSIONS
As images are increasingly becoming a source of high-throughput
genomics data, theoretically sound approaches to evaluate them
become necessary. Whatever the specific context, appropriate
quantitative methods along the lines proposed in this study will allow
us to move image expression data from qualitative descriptions to
the quantification of gene expression, and to its use as phenotype for
which we can assess the significance of changes under perturbations
of the genotype or the environment.
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