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Abstract
trans-4-Hydroxynonenal (HNE) is a peroxidation product of ω-6 polyunsaturated fatty acids.
Michael addition of HNE to deoxyguanosine yields four diastereomeric 1,N2-dG adducts. The
adduct of (6S,8R,11S) stereochemistry forms inter-strand N2-dG:N2-dG cross-links in the 5′-
CpG-3′ sequence. It has been compared with the (6R,8S,11R) adduct, incorporated into 5′-
d(GCTAGCXAGTCC)-3′•5′-d(GGACTCGCTAGC)-3′, containing the 5′-CpG-3′ sequence (X =
HNE-dG). Both adducts rearrange in DNA to N2-dG aldehydes. These aldehydes exist in
equilibrium with diastereomeric cyclic hemiacetals, in which the latter predominate at equilibrium.
These cyclic hemiacetals mask the aldehydes, explaining why DNA cross-linking is slow
compared to related 1,N2-dG adducts formed by acrolein and crotonaldehyde. Both the (6S,8R,
11S) and (6R,8S,11R) cyclic hemiacetals are located within the minor groove. However, the (6S,
8R,11S) cyclic hemiacetal orients in the 5′-direction, while the (6R,8S,11R) cyclic hemiacetal
orients in the 3′-direction. The conformations of the diastereomeric N2-dG aldehydes, which are
the reactive species involved in DNA cross-link formation, have been calculated using molecular
mechanics methods. The (6S,8R,11S) aldehyde orients in the 5′-direction, while the (6R,8S,11R)
aldehyde orients in the 3′-direction. This suggests a kinetic basis to explain, in part, why the (6S,
8R,11S) HNE adduct forms interchain cross-links in the 5′-CpG-3′ sequence, whereas (6R,8S,11R)
HNE adduct does not. The presence of these cross-links in vivo is anticipated to interfere with
DNA replication and transcription, thereby contributing to the etiology of human disease.

trans-4-Hydroxynonenal (HNE) is produced from the metabolism of membrane lipids
[Benedetti et al., 1980]. It is the major peroxidation product of ω-6 polyunsaturated fatty
acids in vivo [Esterbauer et al., 1991, Burcham, 1998]. Several routes for the formation of
HNE from ω-6 polyunsaturated fatty acids have been described [Lee and Blair, 2000,
Schneider et al., 2001, Schneider et al., 2008]. HNE exposures modulate gene expression,
cell signaling, cell proliferation, and apoptosis [Parola et al., 1999, Poli and Schaur, 2000,
Nakashima et al., 2003, West et al., 2004, West and Marnett, 2005, 2006, Dwivedi et al.,
2007]. Human exposures are associated with oxidative stress, and HNE has been implicated
in the etiologies of Alzheimer's disease [Sayre et al., 1997], Parkinson's disease [Yoritaka et
al., 1996], arteriosclerosis [Napoli et al., 1997], and hepatic ischemia reperfusion injury
[Yamagami et al., 2000].

HNE induces the SOS response in Escherichia coli [Benamira and Marnett, 1992].
Chromosomal aberrations are observed upon exposures in a variety of mammalian cells
[Esterbauer et al., 1990, Eckl et al., 1993, Karlhuber et al., 1997, Eckl, 2003], including
human lymphocytes [Emerit et al., 1991]. HNE is mutagenic in rodent [Cajelli et al., 1987]
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and human cells [Hussain et al. 2000]. Mammalian genotoxicity depends upon glutathione,
which is chemoprotective against the formation of HNE-DNA adducts [Chung et al., 2005,
Falletti et al., 2007, Yadav et al., 2008]. Michael addition of the N2-amino group of
deoxyguanosine to HNE gives diastereomeric 1,N2-dG adducts (Chart 1) [Winter et al.,
1986, Douki et al., 2004, Kowalczyk et al., 2004], which have been detected in cellular
DNA [Yi et al., 1997, Chung et al., 2000, Wacker et al., 2000, Wacker et al., 2001, Chung
and Zhang, 2002, Liu et al., 2006b, Pan et al., 2006]. These 1,N2-dG adducts bear exocyclic
rings through the bonding of guanine N1 and N2 to the HNE moiety; Watson-Crick
hydrogen bonding is not possible.

Synthesis of Stereospecific HNE-Derived 1,N2-dG Adducts
The stereochemical designations of the 1,N2-dG addition products (2-5) have been
established unambiguously through chemical synthesis [Wang and Rizzo, 2001]; the four
stereoisomers have been incorporated individually into 5′-d(GCTAGCXAGTCC)-3′•5′-
d(GGACTCGCTAGC)-3′, containing the 5′-CpG-3′ sequence, in which X denotes the HNE-
dG adduct (Chart 2). The approach involves condensation of stereospecific 4-amino-5-
hydroxy-1,2-decane-diols with the corresponding oligodeoxynucleotides containing O6-[(2-
trimethylsilyl)-ethyl]-2-fluorohypoxanthine, followed by deprotection and oxidation [Wang
et al., 2003].

Stereospecific Formation of DNA Cross-links
Interest in the cross-linking abilities of the stereoisomers of the HNE-derived 1,N2-dG
Michael addition products (2-5) arose from studies of the corresponding 1,N2-dG adducts of
acrolein and crotonaldehyde, which formed reversible inter-strand cross-links in this 5′-
CpG-3′ sequence, comprised of carbinolamine-type linkages in equilibrium with trace
amounts of imines [Stone et al., 2008]. For the crotonaldehyde-derived adduct, the 6R
stereoisomer forms cross-links more efficiently than does the 6S stereoisomer [Kozekov et
al., 2003]. Of the four HNE-dG adducts (2-5), only stereoisomer 3 possessing (6S,8R,11S)
stereochemistry results in inter-strand cross-link formation [Wang et al., 2003]. The (6S,8R,
11S) isomer of HNE possesses the same relative stereochemistry as the crotonaldehyde-
derived 6R adduct [Kozekov et al., 2003, Stone et al., 2008] (the R vs. S designation at C6 is
reversed for the HNE adducts as compared to the crotonaldehyde adducts). The formation of
these enal-mediated cross-links is intrinsically slow in vitro, on the order of days for the
acrolein-derived adduct and weeks for the crotonaldehyde-derived adduct [Kozekov et al.,
2001, Kozekov et al., 2003]. For HNE, cross-link formation requires several months to reach
equilibrium at 37 °C, in vitro [Wang et al., 2003]. Nevertheless, as compared to the acrolein-
and crotonaldehyde-derived cross-links [Kozekov et al., 2003, Stone et al., 2008], adduct 3
forms high levels of cross-links, suggesting that once formed, the cross-links are stable
[Wang et al., 2003].

Ring-Opening to N2-dG Aldehyde Adducts
Exocyclic adducts 2 or 3 epimerize at the C8 position; in nucleosides and single-stranded
DNA equilibrium favors the ring-closed configuration with the trans arrangement of the C8
hydroxyl group and the C6 alkyl side chain. When either adduct 2 or 3 is placed opposite
cytosine in DNA, re-arrangement to aldehydes 6 and 10 is favored (Chart 3) [Huang et al.,
2008a]. The observation of the 1H NMR resonance at ∼9.7 ppm indicates the presence of the
aldehyde species. Presumably, the ring-opened structures facilitate Watson-Crick hydrogen
bonding.
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Rearrangement to Cyclic Hemiacetals
In contrast to the acrolein- [de los Santos et al., 2001] and crotonaldehyde-induced [Cho et
al., 2006b] 1,N2-dG adducts, at equilibrium in DNA the predominant forms of the ring-
opened species arising from HNE-derived adducts 2 or 3 are not the aldehydes 6, 10 or
aldehydrols. 1H NMR indicates the presence of only trace amounts of aldehydes 6 and 10.
Instead, the NMR and mass spectrometry data indicate that cyclic hemiacetals 8 and 9, or 12
and 13, arising from adducts 2 or 3, respectively (Chart 3) [Huang et al., 2008a]. Starting
from adduct 2, 1H NOE studies reveal that cyclic hemiacetal stereoisomer 9 (6R,8S,11R) is
the predominant species at equilibrium, and stereoisomer 8 (6R,8R,11R) is the minor
species. Likewise, starting from adduct 3, cyclic hemiacetal stereoisomer 13 (6S,8R,11S) is
the major species, and stereoisomer 12 (6S,8S,11S) is the minor species. The favored
stereochemistry of the cyclic hemiacetal presumably avoids steric repulsion from the large
substituents [Huang et al., 2008a]. The formation of cyclic hemiacetals 12 and 13 (Chart 3)
[Huang et al., 2008a] provides a plausible explanation as to the slow rate of cross-link
formation by adduct 3 in the 5′-CpG-3′ sequence [Wang et al., 2003]. The cyclic hemiacetals
12 and 13 would mask the aldehyde 10 necessary for formation of the 5′-CpG-3′ cross-link.

Stereochemistry Modulates Cross-link Formation in the 5′-CpG-3′ Sequence
The inability of adduct 2 to form cross-links in the 5′-CpG-3′ sequence [Wang et al., 2003],
despite the fact that it also undergoes ring-opening when placed opposite dC in DNA
[Huang et al., 2008a], involves stereospecific differences in the orientations of cyclic
hemiacetals 9 and 13 within the minor groove, which control the orientations of aldehyde 6
as compared to aldehyde 10. NMR studies indicate that the sequential NOE connectivity of
both duplexes is complete for both the modified and complementary strands [Huang et al.,
2008b]. NOE studies indicate that the tetrahydrofuran ring of stereoisomer 9 is directed in
the 3′-direction, while the tetrahydrofuran ring of stereoisomer 13 is directed in the 5′-
direction. The aliphatic chain of stereoisomer 9 exhibits NOEs with protons in the 5′-
direction and the tetrahydrofuran subunit exhibits NOEs with protons in the 3′-direction. In
contrast, the aliphatic chain of stereoisomer 13 exhibits NOEs with protons in the 3′-
direction and the tetrahydrofuran subunit exhibits NOEs with protons in the 5′-direction. The
presence of the aliphatic chain within the minor groove suggests that the rotation of the
HNE-derived cyclic hemiacetals around the X7 N5-X7 C6 bond is restrained. Consequently,
to the extent that the cyclic hemiacetals 9 and 13 open to unmask the aldehydes 6 and 10, the
latter are anticipated to adopt similar orientations as the respective cyclic hemiacetals. In
summary, the (6S,8R,11S) stereoisomer of the 1,N2-dG adduct 3 that exists predominantly as
cyclic hemiacetal 13 is positioned to facilitate cross-linking in the 5′-CpG-3′ sequence. In
contrast, the (6R,8S,11R) stereoisomer of the 1,N2-dG adduct 2 that exists predominantly as
cyclic hemiacetal 9 is not positioned to facilitate cross-link formation. Molecular modeling
of the respective aldehydes, 6 and 10, is consistent with this conclusion. Aldehyde 6 orients
in the 3′-direction, whereas aldehyde 10 orients in the 5′-direction. Thus, aldehyde 10,
arising from 1,N2-dG adduct 3, is predicted to be proximate to C6•G19 base pair, facilitating
formation of the cross-link in the 5′-CpG-3′ sequence.

Comparison to Crotonaldehyde-Derived DNA Cross-links
The 6R-configuration of the crotonaldehyde-derived 1,N2-dG adduct produces more DNA
cross-links than does the 6S-configuration [Kozekov et al., 2003]. The 6R stereochemistry of
the crotonaldehyde-derived adduct corresponds to the (6S,8R,11S) stereochemistry of HNE-
derived adduct 3. Thus, the cyclic hemiacetal arising from adduct 3 facilitates inter-strand
cross-linking for the same reason that the 6R-crotonaldehyde-derived adduct does [Cho et
al., 2006b]: it places the requisite aldehyde in the minor groove proximal to the cross-linking
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target in the 5′-CpG-3′ sequence. Similarly, for the 6S crotonaldehyde-derived 1,N2-dG
adduct, the aldehyde orients towards the A8•T17 base pair, distal to the targeted C•G base
pair [Cho et al., 2006a]. In contrast to HNE, crotonaldehyde is small with regard to the
width of the minor groove, which allows the aldehydic form of the crotonaldehyde-derived
6S adduct re-orient toward the cross-linking target C6•G19 base pair. This probably explains
why <5% cross-link has been observed for the crotonaldehyde-derived 6S adduct [Kozekov
et al., 2003]. However, the reduced form of the 6S-crotonaldehyde-derived cross-link is less
stable compared to the 6R-crotonaldehyde-derived cross-link [Cho et al., 2007], consistent
with modeling studies [Cho et al., 2006b]. Therefore, small amounts of cross-links formed
upon reorientation of cyclic hemiacetal 9 would be anticipated to induce a greater
destabilization of the DNA, as compared to the crotonaldehyde-derived 6S adduct. Further
structural analyses of the cross-link arising from the (6S,8R,11S) HNE-derived adducts 3,
currently in progress, are of considerable interest.

Biological Implications
Since (6S,8R,11S) adduct 3 forms inter-strand cross-links in 5′-CpG-3′ DNA sequences in
vitro [Wang et al., 2003], it is anticipated that it will also form these cross-links in vivo.
Since they occur specifically at 5′-CpG-3′ sequences, only for (6S,8R,11S) HNE adduct 3,
and are reversible, they are anticipated to be present at low levels in vivo, challenging the
limits of detection by mass spectrometry [Ruan et al., 2006, Stout et al., 2006, Zhang et al.,
2006, Goodenough et al., 2007, Zayas et al., 2007].

The genotoxic consequences arising from low levels of these cross-links may be of
considerable significance. Human inter-strand cross-link repair seems to require the
cooperation of multiple proteins belonging to different pathways, including nucleotide
excision repair (NER), homologous recombination (HR), trans-lesion synthesis (TLS),
double-strand break (DSB) repair, and the Fanconi anemia (FA) pathway [Kennedy and
D'Andrea, 2005, Niedernhofer et al., 2005, Nojima et al., 2005, Mirchandani and D'Andrea,
2006, Noll et al., 2006, Patel and Joenje, 2007]. One HR-independent model for inter-strand
cross-link repair utilizes endonucleases for strand incision surrounding the cross-link on one
of the two DNA strands and trans-lesion polymerases for gap-filling replication past the
cross-link site on the other strand [Wang et al., 2001, Zheng et al., 2003, Richards et al.,
2005, Liu et al., 2006a, Sarkar et al., 2006, Shen et al., 2006]. In this repair model, the dually
incised strand possesses sufficient mobility that a bypass DNA polymerase can strand
displace the nucleotide patch that is 5′ to the lesion, then replicate past the ICL site to
complete the repair gap-filling synthesis.

Because enal-mediated inter-strand cross-links are reversible, most studies to date have
utilized saturated inter-strand N2-dG•N2-dG propano cross-links as models to address
molecular mechanisms of repair. The saturated cross-link has been used to investigate
processing by the XPF/ERCC1 heterodimer; the results suggest a role for XPF/ERCC1 in
the processing of a double-strand break that could be created when the cross-link encounters
the replication fork [Mu et al., 2000]. In E. coli, a mechanism has been proposed in which
repair is initiated by NER followed by trans-lesion DNA synthesis (TLS) and completed
through another round of NER [Kumari et al., 2008]. Thus, pol IV catalyzes TLS when the
nucleotides that are 5′ to the cross-link are removed. The efficiency of TLS is further
increased when the nucleotides 3′ to the cross-linked site are also removed. Moriya and co-
workers have examined the repair of crotonaldehyde-derived N2-dG•N2-dG inter-strand
cross-links following replication of site-specifically modified vectors in E. coli and
mammalian cells [Liu et al., 2006a]. Their results suggest that the native cross-link partially
reverts, but are consistent with earlier reports that NER is essential for inter-strand cross-link
repair in E. coli [Cole, 1973, Berardini et al., 1997]. In human XPA cells, the reduced cross-
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link is removed, suggesting a repair pathway unique to higher eukaryotes that does not
require damage recognition by NER [Liu et al., 2006a]. Minko et al. [Minko et al., 2008]
have reported that a vector containing a model of the incised product following dual incision
around the saturated N2-dG•N2-dG propano cross-link is replicated in mammalian cells.
Human polymerase κ catalyzes accurate incorporation opposite this cross-link and also
replicates beyond the lesion. The reversibility of these HNE-derived inter-strand cross-links,
as noted by Liu et al. [Liu et al., 2006a] might reduce their ability to block DNA processing,
in vivo. Cross-link reversion would be anticipated to target removal of the resulting bulky
N2-dG adducts by nucleotide excision repair [Chung et al., 2003, Feng et al., 2003,
Choudhury et al., 2004].

Site-specific mutagenesis in the mammalian COS-7 system shows that stereoisomers 2 and 3
of the HNE-derived 1,N2-dG adduct induce low levels of G→T transversions and G→A
transitions, whereas stereoisomers 4 and 5 are inactive [Fernandes et al., 2003]. The re-
arrangement of these adducts into the cyclic hemiacetals 8 and 9, and 12 and 13,
respectively, provides a potential explanation for the low levels of mutations induced by
adducts 2 and 3 in the COS-7 system. The cyclic hemiacetals are anticipated to facilitate
Watson-Crick hydrogen bonding during replication bypass [Fernandes et al., 2003]. Similar
explanations have been advanced to explain low levels of mutations induced by acrolein-
[VanderVeen et al., 2001, Yang et al., 2001] and crotonaldehyde-induced 1,N2-dG adducts
[Fernandes et al., 2005]. While modestly higher levels of mutations are observed for the
crotonaldehyde-derived adducts [Stein et al., 2006], these probably correlate with modestly
higher levels of the intact 1,N2-dG products in DNA [Cho et al., 2006b]. This correlates with
the observation that significantly higher levels of G→T mutations are associated with the
ring-closed 1,N2-dG adducts [Xing et al., 2007]. The chemically stable 1,N2-propano-dG
(PdG) adduct exhibits significant mutagenicity [Moriya et al., 1994, Moriya et al., 1999].
Incorporation of PdG into DNA precludes Watson-Crick hydrogen bonding and results in
structural [Kouchakdjian et al., 1989, Kouchakdjian et al., 1990, Singh et al., 1993,
Weisenseel et al., 2002] and thermodynamic [Plum et al., 1992] perturbations.

Consistent with these observations, HNE causes G→T transversions at codon 249 of p53 in
lymphoblastoid cells [Hussain et al., 2000], and HNE adducts preferentially form with dG in
codon 249 in the p53 gene [Hu et al., 2002]. The mutational spectrum induced by HNE-dG
adducts in the supF gene of shuttle vector pSP189 replicated in human cells also shows
primarily G→T transversions, accompanied by G→A transitions [Feng et al., 2003]. On the
other hand, the mutational spectrum induced by HNE in the lacZ gene of the single-stranded
M13 phage transfected into wild type Escherichia coli reveals recombination events, C→T
transitions, and lesser amounts of G→C and A→C transversions, and frameshift mutations
[Kowalczyk et al., 2004].

The acrolein-derived 1,N2-dG adduct provides a block to replicative mammalian DNA
polymerases, pol δ and pol ε [Kanuri et al., 2002]. Consequently, it seems that replicative
polymerases will also be blocked by the larger HNE-derived 1,N2-dG adducts. In contrast,
the sequential action of human pols ι and κ, Y-family polymerases facilitates error-free
bypass of the (6S,8R,11R) and (6S,8R,11S) diastereomers of the 1,N2-dG HNE adduct
[Wolfle et al., 2006]. In this case, pol ι inserts dCTP and to a lesser extent dTTP opposite the
HNE adduct but is unable to further elongate the primer. Further extension is observed in the
presence of pol κ, which elongates from a primer terminus C opposite the 1,N2-dG HNE
adducts more efficiently than when T is opposite the adducts [Wolfle et al., 2006].
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Summary
The (6R,8S,11R) and (6S,8R,11S) HNE-derived 1,N2-dG adducts 2 and 3 have been
examined in an oligodeoxynucleotide containing the 5′-CpG-3′ sequence in which adduct 3,
but not adduct 2, forms inter-strand cross-links. At equilibrium the predominant forms of the
ring-opened species arising from adducts 2 or 3 are cyclic hemiacetals 8 and 9, or 12 and 13
(Chart 3) [Huang et al., 2008a]. Starting from adduct 2, cyclic hemiacetal stereoisomer 9
(6R,8S,11R) is the major species. Starting from adduct 3, cyclic hemiacetal stereoisomer 13
(6S,8R,11S) is the major species. The orientations of the cyclic hemiacetal groups within the
minor groove differ. The tetrahydrofuran ring of cyclic hemiacetal 13, arising from adduct 3,
orients in the 5′-direction toward base pair C6•G19, while the tetrahydrofuran ring of cyclic
hemiacetal 9, arising from adduct 2 with (6R,8S,11R) stereochemistry, orients in the 3′-
direction toward base pair A8•T17. Thus, adduct 3 with (6S,8R,11S) stereochemistry
facilitates formation of inter-strand cross-links, whereas adduct 2 with (6R,8S,11R)
stereochemistry, does not form inter-strand cross-links. Detailed structural studies of the
cross-links are currently in progress.
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Figure 1.
The adducted regions of the oligodeoxynucleotide duplexes containing the 5′-CpX-3′
sequence, viewed from the minor grooves. A. Average refined structure emergent from rMD
calculations of the duplex containing cyclic hemiacetal 8. B. Predicted structure, obtained by
molecular mechanics calculations, of the duplex containing aldehyde 6. The dashed arrows
indicate the spatial relationship between the reactive aldehyde carbon and the exocyclic
amino nitrogen of cross-linking target G19 (7.1 Å). C. Average refined structure emergent
from rMD calculations of the duplex containing cyclic hemiacetal 10. D. Predicted structure,
obtained by molecular mechanics calculations, of the duplex containing aldehyde 7. The
cyan sticks represent nucleotides. The blue sticks represent the two amino nitrogens of X7

and G19. The white, green, and red sticks represent hydrogens, carbons, and oxygens of the
HNE moiety. The dashed arrows indicate the spatial relationship between the reactive
aldehyde carbon and the exocyclic amino nitrogen of cross-linking target G19 (4.4 Å).
Adopted with permission from Huang et al., Biochemistry 2008 47: 11457-11472.
Copyright 2008 American Chemical Society.
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Figure 2.
Base stacking of the adduct region for oligodeoxynucleotide duplexes containing the 5′-
CpX-3′ sequence. A. The duplex containing cyclic hemiacetal 8. Stacking of base pair
C6•G19 above base pair X7•C18. B. The duplex containing cyclic hemiacetal 8. Stacking of
base pair X7•C18 above base pair A8•T17. C. The duplex containing cyclic hemiacetal 10.
Stacking of base pair C6•G19 above base pair X7•C18. D. The duplex containing cyclic
hemiacetal 10. Stacking of base pair X7•C18 above base pair A8•T17. For both duplexes
containing either cyclic hemiacetals 8 or 10, base pairs C6•G19, X7•C18, and A8•T17 adopt
Watson-Crick pairing.
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Chart 1.
Formation of exocyclic 1,N2-dG adducts 2-5 by HNE.
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Chart 2.
A. Numbering scheme of the 5′-CpG-3′ duplexes containing stereospecific HNE-dG adducts
(X denotes the HNE-derived 1,N2-dG adducts). B. Numbering scheme of the HNE-dG
adducts.
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Chart 3.
Ring-opening chemistry of the HNE-derived exocyclic 1,N2-dG adducts 2 and 3 when
placed opposite dC in duplex DNA.
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Chart 4. Formation of the inter-strand cross-link by HNE derived (6S,8R,11S) 1,N2-dG adduct
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