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Abstract

Interstitial lung disease (ILD) events have been reported in Japanese non-small-cell lung cancer (NSCLC) patients receiving
EGFR tyrosine kinase inhibitors. We investigated proteomic biomarkers for mechanistic insights and improved prediction of
ILD. Blood plasma was collected from 43 gefitinib-treated NSCLC patients developing acute ILD (confirmed by blinded
diagnostic review) and 123 randomly selected controls in a nested case-control study within a pharmacoepidemiological
cohort study in Japan. We generated ,7 million tandem mass spectrometry (MS/MS) measurements with extensive quality
control and validation, producing one of the largest proteomic lung cancer datasets to date, incorporating rigorous study
design, phenotype definition, and evaluation of sample processing. After alignment, scaling, and measurement batch
adjustment, we identified 41 peptide peaks representing 29 proteins best predicting ILD. Multivariate peptide, protein, and
pathway modeling achieved ILD prediction comparable to previously identified clinical variables; combining the two
provided some improvement. The acute phase response pathway was strongly represented (17 of 29 proteins,
p = 1.0610225), suggesting a key role with potential utility as a marker for increased risk of acute ILD events. Validation by
Western blotting showed correlation for identified proteins, confirming that robust results can be generated from an MS/MS
platform implementing strict quality control.
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Introduction

Interstitial lung disease (ILD) affects the pulmonary parenchyma

or alveolar region [1]. When associated with drug treatment, it can

present precipitously as acute diffuse alveolar damage (DAD),

sometimes with a fatal outcome [2]. Patients often have severe

breathlessness and chest radiology shows ‘ground glass’ appear-

ance. No specific treatment is available, but supportive therapy

includes oxygen, corticosteroids, or assisted ventilation. Acute ILD

events may develop de novo, but an existing chronic ILD condition

increases the risk considerably [3], as observed in recent studies of

patients with idiopathic pulmonary fibrosis (IPF), the most

common chronic form [4].

ILD, especially IPF, is a known co-morbidity in patients with

non-small-cell lung cancer (NSCLC) [5]. Acute ILD events have

been reported with many lung cancer therapies at rates up to

,10% [6–11]. ILD is recognized as more common in Japan than

elsewhere, both in the population and among patients with

NSCLC [5,6,12,13], although it is unclear why.

EGFR tyrosine kinase inhibitors (TKIs) are an established

treatment for advanced NSCLC. Unlike much chemotherapy,

they are typically well tolerated and without cytotoxic side effects.
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The EGFR TKI gefitinib (IRESSA) was approved in 2002 in

Japan for treatment of advanced NSCLC. Although some ILD-

type events were observed in clinical trials and compassionate

clinical use, only after approval did an increasing number of

spontaneous reports for ILD appear in Japan as the drug became

more widely available.

At that point, better understanding of ILD was urgently needed:

baseline incidence on different treatments, risk factors, and the

potential association of gefitinib with ILD risk. An independent

academic team together with AstraZeneca scientists therefore

designed and conducted a cohort and nested case-control

pharmacoepidemiological study of ILD in Japanese NSCLC

patients treated with either gefitinib or chemotherapy, with clinical

results reported previously [3]. As one exploratory sub-study

component, patients receiving gefitinib (both subsequent ILD

cases and control patients) were sampled for plasma proteomics,

with two main objectives: 1) to identify proteomic predictors of

ILD that might ultimately be developed into a personalized

medicine diagnostic to identify patients at greater risk of ILD; 2) to

increase understanding of the mechanisms underlying the

development of acute ILD events.

Using a multiple biomarker approach such as proteomics (the

simultaneous study of large parts of the human proteome to give a

global view of differential expression of proteins in blood or tissue),

rather than simply a conventional single biomarker, potentially

increases predictive power both through increased robustness

deriving from multiple measurements and the opportunity to

combine information from multiple biological processes. To

support high-quality generation of such information, we combined

in a novel way several key study components: robust study design,

well-defined phenotypic definitions, careful sample collection

procedures, stable advanced liquid chromatography (LC)-tandem

mass spectrometry (MS/MS)-based peptide separation and

detection methods, statistical analysis incorporating proteomic

and clinical information, stringent methods for database protein

annotation of detected peptide peaks, and biological interpretation

using literature mining software, plus extensive quality control and

validation, reported below.

Results

Characteristics of the study population
The non-randomized cohort included 3,166 Japanese patients

with advanced/recurrent NSCLC who were followed for 12 weeks

after initiating gefitinib (n = 1,872 treatment periods) or chemo-

therapy (n = 2,551). From the gefitinib-treated sub-cohort, 103

suspected ILD cases (79 subsequently confirmed and 24 rejected

by the Case Review Board [CRB]), as well as 252 controls, were

registered into the case-control study. Proteomics samples for this

sub-study were available from 43 confirmed ILD cases, 123

control subjects, and 15 CRB-rejected initially diagnosed ILD

cases (Table 1). Clinical characteristics of the cases and controls

are described in Table S1.

Exploratory analysis of LC-MS/MS data generated under
quality controlled conditions reveals large batch
variation that needs to be controlled in subsequent
statistical analyses

Quality assessment of sample processing and data

generation. After immunoaffinity depletion, remaining serum

albumin was ,8% for all 181 baseline samples (Table S2). The

subsequent tryptic hydrolysis resulted in a remaining undigested

protein portion ranging from 3.0% to 32.3% (mean 15.3%) (Table

S2). The variation in these processing steps was independent of

case/control status (data not shown).

LC-MS/MS measurements for the 181 individual baseline

samples were performed in 11 batches, with 19 and 20 samples

from batches 1 and 3 repeated in batches 10 and 11, respectively

(Table 1), resulting in 220 discrete proteomics measurements. Four

of the 11 batches initially failed the quality control criteria

(coefficient of variation [CoV] .20% for any one of the six control

Table 1. Composition of the LC-MS/MS measurement batches for 181 blood plasma samples from Japanese patients with NSCLC.

Batch number

Number of study
samples not analyzed
in previous batches

Number of analyzed
samplesa Type of study subject

ILD case Control Rejected caseb

1 20 20 3 15 2

2 20 20 5 13 2

3 20 20 6 12 2

4 20 20 3 15 2

5 20 20 6 12 2

6 20 20 5 14 1

7 20 20 6 13 1

8 20 20 3 16 1

9 20 20 6 12 2

10c 1c 20c 3 15 2

11c 0d 20d 6 12 2

Total 181 220 52 (43e) 149 (123e) 19 (15e)

aEach batch also contained 3 experimental control samples in positions 1, 12, and 23 of total batch size of 23.
bCase Review Board (see Materials and Methods) did not confirm clinical ILD diagnosis after blinded diagnostic review.
c19 samples from batch 1 repeated, 1 new control analyzed.
dAll 20 samples from batch 3 repeated.
eNumber of unique study subjects.
doi:10.1371/journal.pone.0022062.t001
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peptides among the three within-batch control samples) on the first

measurement run, but passed the criteria on repeated measure-

ment. A quality control summary of acceptable batch runs is given

in Figure 1A.

Figure 1B shows a plot of partial correlations between the

duplicate samples in batches 1 and 10, 3 and 11, after allowing for

any batch effect, against the average normalized intensity over the

complete sample set for each signal. Peptides with higher average

intensities show higher reproducibility between batches as

evidenced by generally high partial correlations.

Exploratory data analysis of MS signal intensities. We

then used a principal component analysis (PCA) to explore the

data in order to identify the largest sources of variation. Figure 2A

shows a plot of this analysis, with each sample colored according to

batch. Measurements from the same batch tend to cluster

together, separate from other batches, implying that the largest

differences between samples arise from the batch-wise processing.

Figure 2B shows the results of PCA on the pairs of repeated

batches (1 and 10, 3 and 11), with duplicate samples joined by a

line, plotted against the first two principal components. The lines

are generally horizontal and parallel, again suggesting that the

largest source of variability or the greatest overall differences in

profiles between samples (first principal component) relates to

inter-batch variability, and that the ordering of samples on the

second principal component, i.e. in the next largest source of

variability or overall differences between samples, is in strong

agreement between the repeated batches. After allowing for

consistent differences between batches, these results thus confirm

that inter-sample differences are reproducible with the method

used.

Whereas Figure 2B compares results summarized over all

measured peptides, Figure 2C shows the repeated run results for

an example peptide. Although there are large between-batch

differences, within each batch there is high correlation between the

intensities for the same subject on replicate runs. Of the 41

differentially expressed peptide peaks used to identify the proteins

listed in Table 2, 25 (61%) show a partial correlation after

removing the batch effect greater than 0.8 and all show a partial

correlation in excess of 0.35.

Clear differences in peptide and protein patterns
between ILD cases and controls

The subsequent analyses aimed to identify peptides and proteins

that effectively discriminated between cases and controls, so rejected

cases were now excluded. Repeated samples in batches 10 and 11

were excluded, and given the large between-batch differences

identified in the exploratory analyses, the control subject measured

in batch 10 was also excluded, leaving 43 confirmed ILD cases and

122 controls with one sample measurement each.

Identification of discriminating peptides and proteins.

Figure 3 shows the results of the univariate (individual peptide)

analyses using analysis of covariance (ANCOVA), displayed as

histograms of the p-values for the comparison between cases and

controls. Allowing for batch as an analysis covariate, to remove

inter-batch variation, substantially increases the power of the

analysis, identifying approximately twice as many peptides

showing statistically significant differential expression at the 5%

level. Figures S1 and S2 explore and explain this relationship in

more detail. Further accounting for the within-batch order only

slightly decreases the number of significant peptides, suggesting

that any within-batch order effect is marginal and attempts to

model it will not increase power.

On the other hand, allowing for key clinical variables (WHO

performance status [PS], smoking history, extent of normal lung

Figure 1. Quality control: reproducibility of control samples and sample duplicates. (A) Reproducibility of 6 control peaks for the 3
standard quality control samples, plotted as ‘+’, in each analysis batch (peak intensity, left axis). The coefficients of variation (%, right axis) between
the 3 control samples in each batch are plotted as points joined by a line. (B) Reproducibility of peptide intensities for 39 samples with duplicate
analyses in different analysis batches. Partial correlation, after removing between batch differences, plotted against the average normalized intensity
for each peptide. Higher intensity peptides show high reproducibility in their intensities between repeated batches.
doi:10.1371/journal.pone.0022062.g001
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coverage on CT scan, and severity of pre-existing ILD) in the

analysis consistently reduced the number of peptides being

detected as differentially expressed, reflecting that much of the

information carried in the most significant peptides is duplicating

information carried by the clinical variables (Figure 3). Figure S3

shows an example of this, where higher levels of the peptide,

higher performance status score and case status are all associated

with each other, and much of the increased peptide intensity of the

cases compared with the controls can be explained by their

association with higher performance status score, so the peptide

intensity is adding much less information when considered in

combination with this clinical variable.

Based on the p-value, the top 100 peaks from both the analyses

including and excluding clinical variables were identified. These

peaks were subsequently restricted to 41 according to the following

criteria: 1) normalized LC retention time between 5 and 75 min,

and 2) full scan m/z value of the precursor ion between 450 and

1,500. Next, peptide identifications included in the 41 peptide

peaks were selected using the following criteria: 1) a Mascot ion

score more than the identity threshold value given to the

individual amino acid sequence of the peptide; and 2) .3 samples

with the corresponding peptide identification. This resulted in 45

valid peptide identifications from 28 of the 41 peaks, including two

peptides from the spiked lysozyme (Table S3). The plasma-derived

43 peptides represented 27 distinct identifications with 2 dual

identifications of closely related proteins, for a total of 29 proteins.

These are listed in Table 2, with more detail concerning their

identification given in Table S3.

Acute phase response identified as an important
pathway likely to be involved in acute ILD events

This set of proteins was then used in the biological

interpretation analyses, using the Ingenuity Pathway Analysis

(IPA) system. The most significant pathway found when overlaying

the proteins onto Ingenuity-curated canonical pathways was the

acute phase response signaling pathway, with which 17 of the 29

proteins could be associated (p = 1.0610225). Other pathways

showing a high overlap with the list of proteins included the

complement and coagulation pathways, but p-values were less

significant due to the smaller number of proteins involved

(Figure 4).

Entering the 29 proteins into IPA, 5 networks were formed. The

most significant network contains 24 of the 29 proteins (Figure 5).

Proteins added to the network by the tool to connect the marker

proteins include IL1 and NF-kB, suggesting that these proteins

could also be involved in generating the observed pattern.

Combining the two networks with the highest scores further adds

IL1-beta, HNF1A, HNF4A, HNF6 (ONECUT1), and CEBPB as

central components (Figure S4).

Validation of the MS/MS data shows good reproducibility
and reasonable agreement with Western blot

Within the MS/MS platform there was strong agreement

between replicate runs of the same samples after allowing for batch

effects, as described above (Figure 2C).

Validating with another method, Table 2 shows the correlation

in intensities derived from the MS/MS and Western blotting (WB)

for a selection of 9 proteins. Considering that WB targets the intact

protein, whereas the present MS/MS can detect peptides derived

from the intact proteins, these 9 proteins show quite a strong level

of agreement between the technologies, with 6 of the 9 proteins

Table 2. List of 29 proteins representing 27 protein
identifications from the 41 selected peaks, with pathway
assignments according to ingenuity analysis and the
validation of ms/ms results using western blots on 12 subjects
(6 ILD cases and 6 controls).

Protein name

Acute Phase
Response
pathway

Correlation
between
expression levels
using MS/MS and
Western blot

alpha-1-acid glycoprotein 1 YES 0.717

alpha-1-antitrypsin YES 0.512

alpha-1B-glycoprotein

Leucine-rich alpha-2-glycoprotein

alpha-1-antichymotrypsin YES 0.744

Antithrombin-III

Apolipoprotein A-I YES 0.468

Apolipoprotein B-100

Apolipoprotein C-III

Armadillo repeat-containing protein 2

Complement C3 YES 0.242

Complement C4-A, Complement C4-Ba,b YES 0.768

Complement component C9 YES

Plasma kallikrein YES

alpha-2-HS-glycoprotein YES 0.808

Gelsolin 0.873

Hemoglobin alpha

Hemoglobin beta, Hemoglobin deltab

Haptoglobin YES 0.859

Haptoglobin-related protein

Histidine-rich glycoprotein YES

Inter-alpha-trypsin inhibitor heavy chain
H4

YES

Retinol binding protein 4 YES

Serum amyloid P-component YES

Serotransferrin YES

Transthyretin YES

Ig kappa chain V-III region Ti

aC4 beta chain (common to C4A and C4B).
bDual identification of 2 closely related proteins from the same protein family.
doi:10.1371/journal.pone.0022062.t002

Figure 2. Exploratory data analysis of MS signal intensities using PCA. (A) Plot of first two principal components from PCA analysis of the
full proteomic data from all 11 analysis batches (numbered 1–11 in time sequence). Each sample is represented by a single point, with the range of
points within each batch being shown by a polygon joining the extreme points in that batch. (B) Plots of the first two principal components for the
repeated batches of samples (1 and 10, 3 and 11). Individual samples are represented by a line, connecting the two replicates in different batches. (C)
Reproducibility of an example differentially expressed peptide between two duplicate batch runs of proteomic analysis. The intensities of the first
and second runs for each replicated sample are plotted against each other. Samples colored by batch (batch 1 repeated as batch 10 – blue; batch 3,
repeated as batch 11 – red). Allowing for between-sequence differences there is a good correlation between replicate runs.
doi:10.1371/journal.pone.0022062.g002
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exhibiting a correlation in excess of 0.7. Scatterplots comparing

the MS/MS and WB protein intensities are shown in Figure S5

and the WB images in Figure S6.

Prediction of ILD using proteins and clinical data
Modeling phenotype based on multiple peptide

markers. Figure 6A shows the predictive power based on

leave-one-out cross-validation for models built using a range of

different numbers of peptides in combination. Substantial

improvements on random prediction were obtained from just a

few peptides, and increasing the number of peptides further did

not substantially improve the model predictions. The predictive

power of the model even decreased when using very many

peptides.

For robustness, alternative multivariate modeling approaches

were compared. Using random forests instead of partial least

squares discriminant analysis (PLS-DA) and logistic regression

within the modeling framework yielded approximately the same

predictive level as evidenced by the area under the curve (details

not shown).

A subgroup analysis restricting the set of cases to those with the

DAD acute ILD pattern (20 of the 43 cases) was hampered by

small sample size and was unable to improve the overall predictive

power.

Modeling phenotype based on multiple peptide markers

and clinical data. Figure 6B compares the predictive power,

based on leave-one-out cross validation, for models built on

clinical/radiological data alone using a logistic regression, peptide

data alone, and a combination. Both data types alone provided

similar prediction. Some improvement was obtained by combining

the two data types, but it was far less than additive. This is

consistent with the results from the analysis of individual peptides,

suggesting that the discriminating peptides partly carry

information also available from the clinical/radiological variables.

Modeling phenotypes based on proteins and clinical

data. Figure 7 shows the p-values for distinguishing cases and

controls obtained from the proteins (i.e. combined constituent

peptide score), all their constituent peptides, and the combined

acute phase pathway intensity measure (i.e. the combined score of

the 16 included constituent proteins). For most proteins, the

estimated protein intensity is more significant than most of the

measured peptide intensities associated with that protein, but only

improves on the significance of the best peptide for a few proteins.

As these results were obtained within the same dataset that was

used to identify and select the constituent peptides, some over-

fitting may be occurring, and the protein expression intensity

incorporating information from many peptides may be a more

robust measure to apply in a wider context. The combined acute

phase pathway intensity measure shows a more significant

response than any of the constituent proteins. A similar picture

is obtained when we consider the additional information provided

by the peptide, protein and pathway measures on top of the known

clinical variables in predicting ILD status (Figure S7).

Figure 8A shows the acute phase response pathway intensity

plotted against a combined clinical variable score measuring the

likelihood of a subject being a case calculated from a logistic

regression of case-control status against the clinical variables

WHO PS, smoking history, extent of normal lung coverage on CT

scan, and severity of pre-existing ILD. This shows both sources of

information contributing to predicting ILD outcome, although

these two measures are fairly strongly correlated, so that much of

the information is duplicated. Figure 8B considers the implications

Figure 3. Distribution of significance tests of differential expression between cases and controls for individual peptides. The figure
shows the effect on the distribution of p-values for differential expression of including analysis processing information and clinical variables.
doi:10.1371/journal.pone.0022062.g003
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for predicting ILD by showing the receiver operating character-

istics (ROC) curves for the clinical variables, the acute phase

pathway intensity, and the combination of the two sources of

information. This shows comparable levels of predictive power

from the clinical variables and acute phase pathway intensities,

and some potential benefit from combining them together which,

however, is limited, reflecting their correlation.

Discussion

We present here results from a proteomic analysis applied to a

large-scale pharmacoepidemiological study and demonstrate that

with considerable attention to study design and experimental

procedures throughout the entire process required to generate

high-quality data, it is possible to derive valuable knowledge from

both a scientific and a diagnostic perspective. However, there are

numerous potential sources of data variation and bias in this

process. The integrity of all of the steps of the process is critical to

generating useful data and failure to ensure high quality in any one

of them may compromise the validity and value of the entire study.

Methodological aspects
Study design and sample preparation. We applied careful

phenotyping with blinded diagnostic review to ensure an accurate

ILD diagnosis, and incorporated measures to ensure that all cases

of ILD occurring in the source cohort would be captured. Controls

were selected from the actual population generating the cases,

ensuring comparability between cases and controls so that

contrasts seen may be attributed to case status. Participation

rates were high (.90%) and similar for cases and controls [3],

making selection bias unlikely. Proteomics samples were obtained

after separate informed consent from approximately half of all

gefitinib-treated cases and controls. Steps to ensure high-quality

proteomic data for our large-scale epidemiological investigation

included randomization of the processed samples, careful quality

assessment of sample preparations and optimized preparation

protocols to ensure stability in all procedures for a large number of

samples. We have previously described the general strategy that

we decided to use in the study based on a number of experimental

pilot phase rounds [14].

Experimental measurement batch effects. Two-

dimensional polyacrylamide gel electrophoresis is one common

conventional technology used for protein analysis in serum/

plasma [15,16]. Currently, LC-MS/MS has become widely

accepted for high-resolution proteome-wide profiling from a

complex peptide mixture [17]. Recent advances in this

methodology including improved stability of peptide separation

and detection has enabled comparison of ion intensity between

LC-MS/MS profiles [18]. Our proteomics analysis system applied

LC-MS/MS after immunoaffinity depletion of the most abundant

constituent proteins in blood plasma, and proteolytic enzyme

treatment of the depleted plasma sample.

We identified that the LC-MS/MS measuring process has

systematic measurement errors, as one might expect, which we

took measures to eliminate by introducing batch processing with

quality control, designing the order of sample processing to

Figure 4. Significant associated pathways with ILD status. The most significant pathways from an analysis linking the identified 29 proteins
from the study to curated pathways in the Ingenuity Pathway Analysis system are shown, ordered according to the ratio between the number of
protein markers that can be associated with the pathway and the number of proteins in the pathway.
doi:10.1371/journal.pone.0022062.g004
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Figure 5. Highest scoring Ingenuity Pathway Analysis network. Highest scoring network generated from entering the identified 29 proteins
into the Ingenuity Pathway Analysis system, with proteins identified in the study shaded grey and connecting proteins identified by Ingenuity
Pathway Analysis non-shaded. Dark blue shapes and lines = proteins identified as predictors in this study and interactions between them. Grey
shapes and lines = proteins identified by Ingenuity to generate the network and interactions between them. Light blue lines = interactions between
proteins identified by Ingenuity to generate the network and the proteins identified in the study. Figure S4A shows this figure with the interaction
relationships labeled. Proteins identified in the study and included in the network: SERPINA1 = alpha-1-antitrypsin; SERPINA3 = alpha-1-
antichymotrypsin; SERPINC1 = antithrombin-III; APOA1 = apolipoprotein A-I; APOB = apolipoprotein B-100; APOC3 = apolipoprotein C-III; C3 =
complement C3; C4A, C4B = complement C4-A; complement C4-B; C9 = complement component C9; GSN = gelsolin; HBA2 = hemoglobin alpha;
HBB, HBD = hemoglobin beta/delta; HP = haptoglobin; HPR = haptoglobin-related protein; HRG = histidine-rich glycoprotein; KLKB1 = plasma
kallikrein; IGKC = Ig kappa chain V-III region Ti; RBP4, Rbp = retinol binding protein 4; APCS = serum amyloid P-component; TF = serotransferrin;
TTR = transthyretin. Proteins identified in the study and not included in the network: ORM1 = alpha-1-acid glycoprotein 1; A1BG = alpha-1B-
glycoprotein; LRG1 = leucine-rich alpha-2-glycoprotein; ARMC2 = armadillo repeat-containing protein 2; AHSG = alpha-2-HS-glycoprotein; ITIH4 =
inter-alpha-trypsin inhibitor heavy chain H4.
doi:10.1371/journal.pone.0022062.g005
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minimize the effects of any systematic errors, and then eliminating

batch effects in the statistical analysis. The consideration of batch

effects in the statistical analysis appeared to improve the process of

detecting discriminating peaks, and we therefore based our final

protein identification step on this analysis approach.

Alignment algorithms – internal standard-guided

Optimal Profile ALignment (i-OPAL). In order to allow

comparative quantification between samples, the sample

measurements have to be aligned – i.e. the correspondence of

ion signals must be identified. Various methods have been

proposed for this, e.g. based on stable isotope labeling [19–21],

utilizing comparative identification [22,23], or with direct

comparison of the respective peptide ion signals [18]. The i-

OPAL method belongs to the last category. In spite of the

relatively low accuracy and mass resolution of m/z measurement,

the MS instrument of ion-trap type allows a long-term stable

measurement without any calibration operation [24,25].

Consequently, the m/z values are directly comparable in a large

set of samples without further transformations.

Biological findings and implications
Potential biological mechanisms underlying acute ILD

events. In our IPA mapping to canonical biological pathways,

acute phase proteins came out as the strongest signal, followed by

the complement and coagulation pathways. Activation of acute

phase response with connection to the complement and

coagulation systems have been suggested as key processes in

acute ILD events following blood transfusions (transfusion related

acute lung injury; TRALI) [26] and in patients with idiopathic

thrombocytopenic purpura (ITP) [27]. Acute phase responses can

be induced by bronchoscopy with bronchoalveolar lavage [28].

Available evidence strongly suggests that balance between injury

and repair is fundamental for regulating injury repair and

protecting the lung [29]. In our study, clinical findings suggested

that patients had increased risk of acute ILD events early after lung

cancer diagnosis, if they had pre-existing chronic ILD, and if their

remaining normal lung coverage as assessed on CT scan was low

[3], suggesting that factors associated with active or extensive

disease processes and/or cancer diagnostic procedures were

important. Interestingly, another key protein signal (outside the

acute phase pathway) for ILD risk in our study was gelsolin.

Gelsolin was recently highlighted by comparative expression

profiling and animal experiments as necessary for the

development of modeled pulmonary inflammation and fibrosis,

and caspase-3 mediated gelsolin fragmentation was shown to be an

apoptotic effector mechanism and a marker of lung injury, again

emphasizing the balance between injury and repair [30].

Interesting protein connections were also revealed by the IPA-

generated networks. For example, CEBPB (NFIL6) is a principal

effector of cyclin D1 activity in human cancer and an enhancer of

e.g. IL-6 transcription, which plays an important role in the acute

phase response [31,32]. It is important to clarify that IPA-

generated networks are not the same as canonical biological

pathways, but rather connect different proteins and genes based

upon a wide range of interactions reported in the scientific

literature.

Biomarker validation. Within this study we have validated

our conclusions on several different levels. Technical validation by

repeating the analysis of the same samples has confirmed the

ability of the technology to reproducibly measure the levels of the

peptides within the samples. This has been strengthened by the use

of alternative technologies to confirm the intensities of key

proteins. Together, these two sets of validation data show that

the protein intensities derived from this MS/MS analysis are both

reproducible and in agreement with those found from other

technologies. In combination, they provide strong evidence of the

Figure 6. Receiver operating characteristics curve of cross-validated predictions. (A) from peptides, for different number of peptides
included in the proteomic prediction model, and (B) from clinical data, proteomic data, and a combination of both clinical and proteomic data.
doi:10.1371/journal.pone.0022062.g006
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reliability of these data, giving confidence in further interpretation

of the results. Biological validation has examined peptides from the

same proteins and identified strong levels of correlation,

strengthening and helping to confirm our hypotheses. Internally,

cross-validation was used as an efficient method for avoiding over-

fitting of a multivariate dataset and estimating an error rate of the

modeling process whilst still maximizing the use of a limited

number of samples. A final level of validation, which has yet to be

addressed in this work, would be to validate our conclusions in a

completely independently collected set of samples. Given the

relative rarity of ILD and the difficult diagnosis, such a dataset

remains to be assembled.

Biomarker properties. The true practical utility of any

molecular diagnostic is not only its ability to make a prediction of

outcome, but also its ability to add additional, alternative, and

more timely information to assist the physician in treating the

patient, at a reasonable cost and effort. With ILD, using clinical

and radiological information which may often be easily available,

a physician is able to make some assessment of the risk of a patient

developing ILD, although this evaluation at present is inexact and

difficult to apply consistently. While a patient’s proteomic profile

appears to provide similar prediction using an alternative method,

and may even improve the accuracy of risk assessment when

added to clinical/radiological information, that improvement is

limited. However, the more objective and possibly more

reproducible character of a proteomic measurement might

provide advantages over a purely clinical assessment. It may also

be noted that the additional value of any component of a risk score

as assessed by ROC change is often very small, as has been

demonstrated for well-known clinical lab tests such as HDL,

HbA1C, and hsCRP in the context of clinically validated

Reynolds Risk Score for cardiovascular disease [33], but that the

individual components contributing to a score or data compilation

used for a clinical decision may nevertheless all contribute to

elevating the combined information above the threshold of clinical

utility. Nevertheless, from both a medical and a commercial

perspective and considering that further validation in independent

sets of patients is still required, as well as development of a

practical, cost-efficient, timely, and clinically available assay, it is

not obvious at this point whether the possible added value justifies

further development of the technology as a potential diagnostic.

Conclusion
This study has identified proteomic markers (peptides) that show

a reasonable predictive power for ILD. However, as might be

expected, the information they carry appears to overlap partly

Figure 7. Significance levels from the proteins, constituent peptides, and acute phase pathway intensities. p-values for the proteins are
shown by red stars, p-values for individual peptides are shown by points, and the distribution of these for each protein is shown by a boxplot. In each
boxplot, the upper and lower sides of the box represent the higher and lower quartile values (Q3 and Q1), respectively. The black bar in each box
represents the median value. The p-value for the acute phase pathway is represented by the dashed line; boxplots for proteins in the acute phase
response pathway are shaded. A1AG1 = alpha-1-acid glycoprotein 1; A1AT = alpha-1-antitrypsin; A1BG = alpha-1B-glycoprotein; A2GL = leucine-
rich alpha-2-glycoprotein; AACT = alpha-1-antichymotrypsin; ANT3 = antithrombin-III; APOA1 = apolipoprotein A-I; APOB = apolipoprotein B-100;
APOC3 = apolipoprotein C-III; ARMC2 = armadillo repeat-containing protein 2; CO3 = complement C3; CO4 = complement C4-A; complement C4-
B; CO9 = complement component C9; FETUA = alpha-2-HS-glycoprotein; GELS = gelsolin; HBA = hemoglobin alpha; HBB, HBD = hemoglobin
beta/delta; HPT = haptoglobin; HPTR = haptoglobin-related protein; HRG = histidine-rich glycoprotein; ITIH4 = inter-alpha-trypsin inhibitor heavy
chain H4; KLKB1 = plasma kallikrein; KV3 = Ig kappa chain V-III region Ti; RETBP = retinol binding protein 4; SAMP = serum amyloid P-component;
TRFE = serotransferrin; TTHY = transthyretin.
doi:10.1371/journal.pone.0022062.g007
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with that from clinical/radiological data previously shown to

predict ILD, including WHO performance status score, smoking

history, lung coverage on CT scan, and severity of pre-existing

ILD. When combining the two, some gain in predictive power is

obtained, although this is limited based on evaluation by ROC

curves. Basing the predictive model upon the proteins/pathways

identified as interesting shows potential for greater predictive

power. In particular, the data suggest that activated acute phase

response could be a marker for increased risk of acute ILD events

following drug exposure. Whether this is a general mechanism that

may be true also for acute ILD exacerbations in other settings, as

some recent reports would suggest, is an important question for

further research. In any case, our findings again highlight the

potential importance of the balance between destruction and

repair mechanisms for maintaining a functioning lung. If the

results regarding the acute phase pathway can be confirmed, this

may lead to a better mechanistic understanding of the basis for

ILD events occurring, which would have potentially great future

clinical utility as ILD events are an important consideration in the

development of many potent new drugs, particularly in the areas

of respiratory disease and oncology. In addition, such understand-

ing would allow a more targeted approach to identifying and

defining proteomic biomarkers with higher predictive value and

clinical utility than was possible in this exploratory study.

Materials and Methods

Study design – patients and data collection
This non-randomized cohort study with a nested case-control

component was conducted in November 2003 to February 2006 in

50 centers across Japan. Patients with advanced or recurring

NSCLC with at least one previous chemotherapy regimen were

eligible. Patients and their physicians selected a treatment (gefitinib

250 mg or chemotherapy), and follow-up was extended for up to

12 weeks after treatment initiation. Study design has been

described in more detail previously [3]. This proteomics sub-study

was performed only with gefitinib-treated patients from the case-

control study component.

Patients who developed acute ILD during follow-up were

registered to the case-control study nested within the cohort, as

clinically diagnosed potential cases. For each potential case, four

controls were randomly selected from patients then registered to

the cohort who had not developed ILD.

To ensure valid and sensitive ILD diagnosis, the study included

1) an information card describing the symptoms of ILD distributed

to all cohort patients; 2) internationally agreed criteria for ILD

diagnosis and a diagnostic algorithm developed from an

international consensus statement [1]; and 3) an independent

CRB of radiologists and clinicians for blinded diagnostic review of

all clinically diagnosed potential ILD.

For cases and controls, detailed patient data were collected

covering NSCLC treatment, demography, cancer histology,

clinical staging, WHO PS, smoking, previous cancer treatments,

past and current medical history, surgical history, and concomitant

medication and therapy. For gefitinib-treated cohort members

consenting to the proteomics sub-study, one baseline 6-mL

sodium-heparinized blood sample was drawn immediately (1–

3 h) after the first gefitinib dose at registration into the cohort.

Samples were spun for 10 min at 3,000 rpm and the plasma was

stored at –80uC.

Figure 8. Plots illustrating the relationship between acute phase response pathway intensity score and clinical variable score. (A)
Plot of the acute phase response intensity against the combined clinical variable score measuring the likelihood of a subject being a case calculated
from a model predicting case-control status based only on the clinical variables WHO PS, smoking history, extent of normal lung coverage on CT scan,
and severity of pre-existing ILD, with boxplots comparing the distribution of these measures in cases and controls. In each boxplot, the upper/right
and lower/left sides of the box represent the higher and lower quartile values (Q3 and Q1), respectively. The black bar in each box represents the
median value. (B) Receiver operating characteristics curve of cross-validated predictions from clinical data, the acute phase response intensity and a
combination of the clinical data and acute phase response intensity.
doi:10.1371/journal.pone.0022062.g008

Gefitinib and Proteomic Biomarkers for Acute ILD

PLoS ONE | www.plosone.org 11 July 2011 | Volume 6 | Issue 7 | e22062



Subjects were recruited from 50 centers in Japan, and the

Institutional Review Board of each site approved the study and

informed consent forms. Written informed consent was required

for registration to the study cohort, and separately for registration

to the case-control study and for participation in the proteomics

study.

Sample and data processing
The study was performed with quality control procedures at

each sample processing, data generation, and data processing step,

as described below.

Immunoaffinity depletion of serum albumin and IgG

from the blood plasma and tryptic hydrolysis of plasma

proteins. Depletion of the blood plasma samples was carried

out using a dual Albumin and IgG Removal Kit (GE Healthcare

UK Ltd, Amersham Place, Buckinghamshire, UK) according to

the manufacturer’s instructions, with some modifications. An

affinity resin of a single production lot was used for the depletion

process throughout this investigation. The depletion procedure for

the 181 baseline samples was carried out in 18 batches (Table S1).

As an experimental control, pooled human plasma (Sigma-Aldrich

Inc., St. Louis, MO, USA) was simultaneously subjected to the

same experimental procedures. Prior to the depletion the small

debris part of the biofluid was removed by filtration. Aliquots

(70 mL) of the plasma solution were diluted with 4.0 mL of the

suspended gel slurry containing slurry beads with immobilized

protein G binding polyclonal antibodies against both human

serum albumin and IgG [34]. The sample was incubated on a

rotator (5 rpm, 30 min, room temperature) to keep the gel slurry

in suspension. Subsequently, the serum albumin/IgG-binding

slurry beads were removed from the sample solution by

centrifugation (7,0006 g, 5 min) using a Vivaspin 6 column with

polyethersulfone membrane (pore size 0.2 mm; Sartorius AG,

Goettingen, Germany). The recovered liquid fraction

(approximately 3.3 mL), containing unbound plasma proteins,

was subjected to a buffer-exchanging process as follows: the

fraction was condensed on a 3,000 molecular weight cutoff

membrane of polyethersulfone in a diafiltration vessel (Vivaspin 2

column, Sartorius AG, Goettingen), followed by dilution with

excess volume (2 mL) of 50 mM ammonium bicarbonate. This

cycle was repeated three times. Finally the resulting solution was

condensed to less than 100 mL on the same membrane and

adjusted to 200 mL with 50 mM ammonium bicarbonate. The

total protein concentration of the depleted solution was measured

according to Lowry et al [35], using a DC protein assay kit (Bio-

Rad Laboratories Inc., Hercules, CA, USA) with bovine serum

albumin as the calibration standard. To confirm the depletion

treatment, the concentration of the human serum albumin

remaining in the depleted protein solution was measured as

follows: An aliquot of the depleted solution was subjected to

sodium dodecylsulfate (SDS) polyacrylamide gel electrophoresis

(PAGE) [36]. Protein bands on the polyacrylamide gel were

stained with a SYPRO Ruby fluorescence dye (Invitrogen Co.,

Carlsbad, CA, USA), followed by scanning of the gel slab on a

LAS-3000 imaging system (FUJIFILM Co., Tokyo, Japan). Finally

the fluorescence intensity ratio of the serum albumin band to the

all protein bands detected on the gel lane was calculated using a

Multi Gauge image analyzing software (FUJIFILM). The samples

were then stored at –80uC until use.

Tryptic hydrolysis of the plasma proteins. The hydrolysis

procedures were carried out in a single batch (Table S1). An

aliquot containing 200 mg of the depleted plasma sample was

spiked with 250 pmol of egg white lysozyme (Sigma-Aldrich Inc.,

St Louis, MO, USA) used as a source of exogenous internal

standard peptides. Next the samples were denatured by incubating

by gentle agitation in 200 mL of 100 mM ammonium bicarbonate

containing 25% (v/v) acetonitrile at 37uC for 60 min. The

resulting solution was immediately subjected to reductive S-

carboxyamidomethylation of the sulfhydryl groups of the cysteine

residues: incubation by gentle agitation at 37uC for 45 min with

addition of 1 mmol of Tris(2-carboxyethyl)phosphine (TCEP)

(20 mL of 50 mM solution), followed by the addition of 5 mmol

of iodoacetamide (20 mL of 250 mM solution) at room

temperature for 60 min in the dark. The Cys-modified proteins

were further subjected to tryptic hydrolysis by the addition of 4 mg

of porcine trypsin (20 mL of 0.2 mg/mL solution) (Promega Co.,

Madison, WI, USA) and incubation at 37uC for 16 h. The

resulting peptide mixture was stored at –80uC until use.

To measure the degree of hydrolysis, aliquots of the sample

solutions before and after the hydrolysis treatment were subjected

to SDS PAGE [36], followed by obtaining a fluorescence gel

image as described in the previous section. The total fluorescence

intensities of the protein bands were compared between both

solutions to calculate the protein portion remaining due to

incompleteness of the hydrolysis.

LC-MS/MS measurement procedures. The peptide

mixture was then dissolved in 1.0% v/v trifluoroacetic acid

(TFA) aqueous solution with the final peptide concentration of

0.1 mg/mL, and analyzed using an LC-MS/MS system with a

Finnigan LTQ linear ion trap mass spectrometer (Thermo Fisher

Scientific Inc., Waltham, MA, USA) [25] in a fully automated

manner. Briefly, peptide separation was performed with a

Paradigm MS4 LC instrument (Michrom BioResources Inc.,

Auburn, CA, USA) containing a MAGIC C18 capillary LC

column (0.2 mm id, 50 mm length, 3 mm particle size, and 200 Å

pore size; Michrom BioResources). The mobile phase consisted of

formic acid, acetonitrile, and water at a volume ratio of 0.1:2:98

for mobile phase A, and 0.1:90:10 for mobile phase B. The initial

flow of 100 mL/min was reduced by a flow splitter to

approximately 1 mL/min. 10 mL of the peptide solution,

containing 1 mg peptide, was applied using an HTS PAL

autoinjector (CTC Analytics AG, Zwingen, Switzerland) onto a

Peptide CapTrap column (0.5 mm id, 2.0 mm length, bed volume

0.5 mL; Michrom BioResources) equilibrated with a solution of

TFA, acetonitrile, and water at a volume ratio of 0.1:2:98. The

peptides concentrated and purified on the trap column were

injected onto the C18 capillary LC column by valve switching. The

peptides were continuously eluted at a rate of 1 mL/min on a

gradient mode: The initial ratio of 5% of mobile phase B was

increased linearly to 40% B during 70 min, followed by the

increase to 95% B during the next 5 min. After washing with a

non-gradient flow at 95% B, the column was equilibrated again

with the solvent of 5% B for the next separation. The total analysis

time was 90 min. For gasification of the protonated peptides, the

LC effluent was interfaced with an electrospray ionization (ESI)

source in a positive ion mode, on a Finnigan LTQ linear ion trap

mass spectrometer (Thermo Fisher Scientific) [25]. The ESI used a

FortisTip spray emitter (20 mm id, top Teflon-coated; AMR Inc.,

Tokyo, Japan) directly connected with the outlet of the LC

column. The set parameters included a spray voltage of 2.0 kV

and a capillary temperature of 200uC. No sheath gas was supplied

during the ESI. The other parameters on the ion separation and

detection were optimized according to an Autotune function in the

mass spectrometer instrument. For MS/MS, protonated peptides

in a gas phase were sequentially analyzed by data-dependent

scanning mode of a full scan at an m/z range of 450 to 2,000 and

subsequent product ion scans of the three most intense precursor

ions. The data acquisitions were made in a Centroid mode for
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both scans. The product ion scan was performed under conditions

including an intensity threshold of 16103, 30% normalized

collision energy, 2.0 Da isolation m/z width, and dynamic

exclusion for 30 sec. The ESI-MS/MS operation and data

acquisition were carried out on an Xcalibur Revision 1.4 SR1

system controller (Thermo Fisher Scientific).

The LC-MS/MS measurement was continuously performed

with alternate injection of the sample solutions and blank solutions

for system washing. A single continuous LC-MS/MS measure-

ment batch comprised 23 samples; 20 peptide solutions from

patients and 3 experimental control samples of pooled plasma at

the initial, middle, and final positions. The analysis order of

patient samples was randomized across and within batches, whilst

ensuring reasonable balance between batches in case/control

status (Table 1).

Measurement variability of the ion intensity within each analysis

batch was assessed as the CoV between the three control samples

for the relative ion signal area of each of 6 selected common

peptides, i.e. the ratio of the total signal area of the differently

charged ions shown in Table 3, to the signal area of the most

stably detected internal standard peptide (IS1) derived from the

spiked lysozyme (Table 3).

Signal normalization, signal alignment, and peak

detection in the LC-MS data. Two-dimensional profile data

consisting of LC retention time and full MS scan (LC-MS data)

were extracted from all 220 LC-MS/MS measurements (Table 1)

and processed using the i-OPAL algorithm (Patent # WO/2004/

09526 AI).

i-OPAL is a dynamic programming algorithm that maximizes

the alignment between LC-MS profiles through shrinking or

extending the retention time axis to maximize the similarity in

peak shapes within the chromatograms, and the similarity of the

mass spectra, using a wider range of criteria than alternative data

processing methods including dynamic time warping (DTW) [37]

or correlation optimized warping (COW) [37,38].

An important feature of the i-OPAL algorithm is its utilization

of internal standards, which are forced to be aligned. This reduces

the linear programming problem from the whole range of

retention time to a series of small time sections, increasing the

accuracy of alignment and reducing the computational time.

The i-OPAL program thus consists of 3 parts: 1) signal intensity

normalization using one or more internal standards; 2) alignment

of LC-MS data using internal standard signal sets and a dynamic

programming algorithm; and 3) peak detection. First, the intensity

of the whole signal was normalized across all samples using IS1.

Second, alignment of the three internal standard signal sets

(Table 3) was forced across the LC-MS data. Alignment of the

remaining regions was carried out based on the dynamic

programming algorithm. Following signal alignment, peak detec-

tion was performed using an iterative process.

A clear benefit of i-OPAL relative to other signal alignment

approaches [39] is that peak detection is carried out after

alignment rather than before. Most peak detection algorithms

utilize the shape of peaks, making the integration of weak signals

difficult. Aligning prior to peak detection increases the likelihood

of detection of a peak across the range of samples, which can

increase the numbers of peaks confidently detected.

Statistical analysis and modeling of peptide data
First, Variance Scaling Normalization [40] was applied to the

peaks to scale the signal intensities from each sample to a common

level and also remove any dependency between the mean and

variance of the intensities. PCA [41] of the scaled data was used

for exploratory data analysis to identify the main sources of

variation within the proteomic data.

The analysis to identify single peptide markers associated with

case status then proceeded using ANCOVA, testing significance

using type III sums of squares for each peptide separately, with

normalized peptide intensity as the response and case/control

status as the explanatory variable, with adjustment for some or all

Table 3. Peptides used as internal standards and for assessment of the ion intensity variations across the LC-MS/MS measurement
batches.

Amino acid sequence (From – To)a Protein name
Retention
time, minb Ion m/z valuec (charge)

Swiss-Protd

accession
number

Peptides for assessment of the ion intensity variations

EGTCePEAPTDECeKPVK (347–362) Transferrin 10.8–16.6 910.0 (2+), 607.0 (3+) P02787

LRTEGDGVYTLNNEK (117–131) Haptoglobin 19.8–25.2 1,709.9 (1+), 855.4 (2+), 570.6 (3+) P00738

AVGDKLPECeEADDGCePKPPEIAHGYVEHSVR (78–108) Haptoglobin 27.7–32.5 1,717.9 (2+), 1145.6 (3+), 859.5 (4+) P00738

DYVSQFEGSALGK (52–64) Apolipoprotein A–I 38.0–45.0 1,401.5 (1+), 701.3 (2+) P02647

HSTIFENLANKADRDQYELLCeLDNTR (226–251) Transferrin 47.8–53.7 1,569.7 (2+), 1046.8 (3+), 785.4 (4+) P02787

TSESGELHGLTTEEEFVEGIYKVEIDTK (69–96) Transthyretin 58.7–66.0 1,571.7 (2+), 1048.1 (3+), 786.4 (4+) P02766

Internal standard (IS) peptides, two exogenous and one endogenous

IS1 FESNFNTQATNR (52–63) Lysozyme 19.562.0 714.862.4 (2+) P00698

IS2 NTDGSTDYGILQINSR (64–79) Lysozyme 36.262.0 877.462.4 (2+) P00698

IS3 ITPNLAEFAFSLYR (50–63) alpha-1-Antitrypsin 67.962.0 821.562.4 (2+) P01009

aResidue numbers in the unprocessed precursor.
bMaximum range for all the analysis batches.
cTolerance of 60.5 m/z unit for the peak area calculation.
d(http://expasy.org/sprot/).
eS-Carboxyamidomethyl cysteine residue.
doi:10.1371/journal.pone.0022062.t003
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of the following covariates: analysis batch number and order

within batch (both identified in the PCA), and the statistically

significant clinical and radiological variables most predictive of

ILD identified from the main study, i.e. WHO PS, smoking

history, extent of normal lung coverage on CT scan and severity of

pre-existing ILD [3]. Peptides were then ranked by the significance

of the case-control status term.

To identify and evaluate the best set of peptide predictors,

predictive multivariate modeling was then performed in two steps.

First the n most significant peptides were selected and a PLS-DA

[42] was performed to identify linear combinations of peptides

correlating best with case-control status. This was followed by

logistic regression modeling with case-control status as the

response using the m first PLS components (linear combinations

identified) as predictors. To explore the modeling space, the

number of peptides, n, and the number of PLS components, m,

utilized in the model were varied.

The performance of the statistical analysis and predictive

multivariate modeling was assessed using a leave-one-out cross-

validation approach to estimate sensitivity, specificity, and overall

error rate of the modeling process [43], as follows:

N For each subject in turn, remove this subject as the test set,

considering the remaining subjects as the training set.

N Perform the three steps of statistical analysis (ANCOVA and

multivariate modeling by PLS-DA and logistic regression) as

described above on the training set.

N Use the logistic regression model in the third step to predict the

case-control status of the left-out subject based on the other

data.

N Repeat, omitting each subject in turn from the training set and

predicting the left-out subject and then combining the results

to generate a vector of leave-one-out predictions, one for each

subject, which can be used to give an estimate of the sensitivity

and specificity as well as the overall error rate of the modeling

process.

As a robustness check, Random Forests [44] were also used as

an alternative to the combination of PLS-DA and logistic

regression.

To allow a visualization of the potential choices for the

appropriate levels of sensitivity and specificity, the cross-validated

results are presented as ROC by varying the probability threshold

used for predicting each subject as a case or a control.

Peptide and protein identification
Product ion spectra with at least 10 product ions were converted

into peak lists, which were searched with the Mascot algorithm

[45] against a Swiss-Prot amino acid sequence database. First mass

chromatogram files were generated for every LC-MS/MS

measurement. The subsequent data conversion and search process

was carried out using Mascot software (Version 2.1.04, Matrix

Science Ltd, London, UK). Prior to database search, each product

ion spectrum in these files was converted into peak list(s) using an

extract_msn.exe program (Thermo Fisher Scientific) without any

grouping process. The criterion for the data conversion was at

least 10 product ions in a spectrum. These peak lists were searched

with the Mascot algorithm (MS/MS Ion Search mode) [45]

against a Swiss-Prot amino acid sequence database (http://www.

expasy.org/sprot/; Release 55.0; 18,610 entries (Homo sapiens);

updated on February 26, 2008). The database search parameters

were set as follows: tryptic digestion (hydrolysis of the peptide

bonds following lysine and arginine residues); fixed modification of

cysteine residues (S-carboxyamidomethylation, +57.0 Da); variable

modification of methionine residues (oxidation, +16.0 Da); #2

missed cleavages, i.e. assuming at most 2 predicted tryptic

digestion sites are not actually digested; peptide tolerance of 2.0

Da; an MS/MS tolerance of 60.8 Da (http://www.matrixscience.

com).

Bioinformatics
Identification of significant pathways. We utilized the

IPA system (IngenuityH Systems, www.ingenuity.com) to analyze

the set of proteins we identified as demonstrating a significant

difference in expression levels between cases and controls. The

Ingenuity Pathways Analysis Knowledge Base is a large curated

database of previously published findings on mammalian biology.

The version used was v. 6.5, build 59570, content version 1602,

build oqa-kb_enif, 2008-08-20, 21:16:03.

The list of proteins identified was overlaid onto the curated

pathways in IPA. The dynamic Canonical Pathways are well-

characterized metabolic and cell signaling pathways that have

been curated and hand-drawn. The information contained in

Canonical Pathways comes from specific journal articles, review

articles, text books, and the KEGG (Kyoto Encyclopedia of Genes

and Genomes) ligand database (http://www.genome.jp/kegg/

ligand.html). The most significant pathway was identified as the

pathway with the highest network score. The network score is

based on the hypergeometric distribution and is calculated with

the right-tailed Fisher’s Exact Test. The score is the negative

logarithm of this p-value. The ratio for an overlay to a given

pathway was calculated by the ratio between the number of

proteins from the data set found in the pathway and the total

number of proteins associated to the pathway.
Gene network analysis. Gene network analysis was

performed using IPA Systems web-based software application

(http://www.ingenuity.com/products/pathways_analysis.html). In

this approach the Ingenuity literature data are used to identify

interconnected protein networks based on reported interactions

identifying particular proteins as interacting with each other.

Protein level modeling
For each of the proteins identified (through one or more

peptides) as having the greatest significant difference between cases

and controls, the full set of digested peptides from that protein was

also identified, and a summary protein intensity (using the

intensities of all component peptides) was calculated using a

method based on PCA, as follows:

1. Remove the batch effect from all the peptide intensities by

subtracting the batch means.

2. Restrict the set of peptides to those with a positive correlation

after removing the batch effect with the peptide showing the

greatest evidence of differential expression between the case

and control groups (i.e. the smallest p-value).

3. Arrange the remaining batch adjusted peptide intensities in a

matrix and apply PCA on the scaled data matrix.

4. The score of the first principal component, i.e. the greatest

source of variability, is the protein intensity score.

Where there is strong correlation between all the constituent

peptides, this method will produce effectively an average of the

peptide intensities, as the loadings given to all the peptides will be

similar. Where a peptide has low correlation with the remaining

peptides, either because it is also a digestion product and therefore

measuring other proteins, or has low intensity making it an

unreliable measurement, then it will receive a low loading in the

PCA and will contribute little to the protein intensity measure.
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A summary pathway intensity score was calculated from the

intensities of proteins within a common pathway in a similar

manner by taking the scores from the first principal component of

the matrix of protein intensities.

Protein and pathway intensities were modeled using logistic

regression, with case-control status as the response and optionally

the clinical variables as predictive variables, in an analogous way

to peptide intensities as described above.

Validation
Reproducibility of the identified differentially expressed pep-

tides was validated by comparing the peptide intensities from 39

repeated samples with duplicate MS/MS analysis, allowing for

consistent between-batch differences.

To validate between technologies, protein intensities derived

from MS/MS were compared with those derived from Western

blots with densitometry for 9 key selected proteins identified by

the statistical and bioinformatic analyses. The depleted plasma

proteins were reduced and denatured in the presence of 50 mM

dithiothreitol and 2% w/v SDS at 95uC for 5 min, and then

subjected to SDS-PAGE with 7.5%, 10%, or 12% acrylamide

(0.1 or 1 mg protein per lane). Separated proteins were electrically

transferred onto polyvinylidene difluoride (PVDF) membranes

(Bio-Rad Laboratories) with a wet-type transfer system. After

transfer, non-specific binding reactions were blocked by rocking

the membranes for 1 h with 3% w/v BSA and 3% w/v

polyvinylpyrrolidone K30 in TBST (150 mM NaCl, 0.05% v/v

Tween 20 and 10 mM Tris-HCl, pH 8.0). The membranes were

then washed with TBST, incubated with antibodies in TBST

containing 0.1% BSA (TBST-BSA) for 30 min, washed again

with TBST, and finally incubated with a HRP-conjugated second

antibody in TBST-BSA for 30 min (Table S4). After washing

again with TBST, the specific binding was detected using an

ECL-Plus system (GE Healthcare) according to the manufactur-

er’s instructions, in combination with a LAS-3000 imaging

analyzer (FUJI FILM). For densitometry, the gel image was

opened with Image-J software (National Institutes of Health,

Research Services Branch, USA; http://rsbweb.nih.gov/), and

the density of each band was obtained. After subtraction of a

background value, the density data were used for further

analyses.

Supporting Information

Acknowledgment S1 Members of the CCS study
organization.

(DOC)

Figure S1 Comparison of p-values for all detected
peptides from analyses adjusted for and unadjusted
for batch. All peptides showing a significant difference in the

unadjusted analysis also show a significant difference in the

analysis adjusted for batch. The analysis adjusted for batch also

identifies additional significantly differentially expressed peptides

that were not detected by the unadjusted analysis.

(TIF)

Figure S2 Effect of batch-to-batch variability on the
overall intensity difference between cases and controls
for peptides. (A) An example peptide which exhibits no

discernable between-batch variation and so is significant

independent of whether the analysis is adjusted for batch or

not. (B) An example peptide with a highly significant variation

between batches, which consequently is only significant when

batch is accounted for. Overall pooled effect not adjusting for

batch on left, followed by batches 1–9 with one study sample each

from 180 of the 181 study subjects. Red = cases; blue =

controls.

(TIF)

Figure S3 Effect of adjusting for key clinical variables.
Left panel shows a comparison of p-values for all detected peptides

from analyses adjusted for and unadjusted for 4 key clinical

variables. Right panel shows an example of the effect of

accounting for the clinical variable WHO PS on the pattern of

intensity difference between cases and controls. Overall pooled

effect on left, followed by case-control difference (red = cases;

blue = controls) plotted by WHO PS.

(TIF)

Figure S4 Networks obtained from entering the identi-
fied 29 proteins into the Ingenuity Pathway Analysis
system. Highest-scoring (A) and combined highest- and second

highest-scoring (B) networks. Panel A represents a more annotated

version of Figure 4 in the main manuscript material. In panel B,

combining the two networks with the highest scores further adds

IL1-beta, HNF1A, HNF4A, HNF6 (ONECUT1), and CEBPB as

central components (green shading). In panel A, dark blue shapes

and lines = proteins identified as predictors in this study and

interactions between them. Grey shapes and lines = proteins

identified by Ingenuity to generate the network and interactions

between them. Light blue lines = interactions between proteins

identified by Ingenuity to generate the network and the proteins

identified in the study. A Relationship labels: A = Activation; B =

Binding; C = Causes/Leads to; CC = Chemical-Chemical

interaction; CP = Chemical-Protein interaction; E = Expression

(includes metabolism/synthesis for chemicals); EC = Enzyme

Catalysis; I = Inhibition; L = ProteoLysis (includes degradation

for Chemicals); LO = Localization; M = Biochemical Modifi-

cation; MB = Group/complex Membership; P = Phosphoryla-

tion/Dephosphorylation; PD = Protein-DNA binding; PP =

Protein-Protein binding; PR = Protein-RNA binding; RB =

Regulation of Binding; RE = Reaction; RR = RNA-RNA

Binding; T = Transcription; TR = Translocation. Numbers in

brackets = number of observations supporting the interaction. B
Proteins identified in the study: SERPINA1 = alpha-1-antitryp-

sin; SERPINA3 = alpha-1-antichymotrypsin; SERPINC1 =

antithrombin-III; APOA1 = apolipoprotein A-I; APOB =

apolipoprotein B-100; APOC3 = apolipoprotein C-III; C3 =

complement C3; C4A, C4B = complement C4-A; complement

C4-B; C9 = complement component C9; GSN = gelsolin;

HBA2 = hemoglobin alpha; HBB, HBD = hemoglobin beta/

delta; HP = haptoglobin; HPR = haptoglobin-related protein;

HRG = histidine-rich glycoprotein; KLKB1 = plasma kallikrein;

IGKC = Ig kappa chain V-III region Ti; RBP4, Rbp = retinol

binding protein 4; APCS = serum amyloid P-component; TF =

serotransferrin; TTR = transthyretin; ORM1 = alpha-1-acid

glycoprotein 1; A1BG = alpha-1B-glycoprotein; LRG1 =

leucine-rich alpha-2-glycoprotein; ARMC2 = armadillo repeat-

containing protein 2; AHSG = alpha-2-HS-glycoprotein; ITIH4

= inter-alpha-trypsin inhibitor heavy chain H4.

(TIF)

Figure S5 Scatterplots of intensities from Western blots
(densitometry) and MS/MS for 9 selected differentially
expressed proteins. Red triangles = cases; green circles =

controls. APOA1 = apolipoprotein A–I; C3 = complement C3; C4

= complement C4-A; fetuin = alpha-2-HS-glycoprotein; HPT beta

= haptoglobin; ORM1 = alpha-1-acid glycoprotein; serpin A1 =

alpha-1-antitrypsin; serpin A3 = alpha-1-antichymotrypsin.

(TIF)
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Figure S6 Western blot images from 12 subjects on 9
selected differentially expressed proteins. 1 mg (0.1 mg for

serpin A1) of depleted human plasma proteins of study samples (6

ILD cases and 6 controls) were separated by SDS-PAGE,

transferred onto PVDF membrane, and detected with Western

blotting. alpha-2-HS-glycoprotein = alpha-2-HS-glycoprotein;

APOA1 = apolipoprotein A-I; C3 beta-chain = complement

C3 beta-chain; C4 beta-chain = complement C4 beta-chain;

HPT beta-chain = haptoglobin beta-chain; orsomucoid-1 =

alpha-1-acid glycoprotein; serpin A1 = alpha-1-antitrypsin; serpin

A3 = alpha-1-antichymotrypsin.

(TIF)

Figure S7 Significance levels from proteins, constituent
peptides, and acute phase pathway intensities, adjusted
for clinical variables. p-values for the proteins are shown by red

stars, p-values for individual peptides are shown by points, and the

distribution of these for each protein is shown by a boxplot. In each

boxplot, the upper and lower sides of the box represent the higher and

lower quartile values (Q3 and Q1), respectively. The black bar in each

box represents the median value. The p-value for the acute phase

pathway is represented by the dashed line; boxplots for proteins in the

acute phase response pathway are shaded. A1AG1 = alpha-1-acid

glycoprotein; A1AT = alpha-1-antitrypsin; A1BG = alpha-1-B-

glycoprotein; A2GL = leucine-rich alpha-2-glycoprotein; AACT =

alpha-1-antichymotrypsin; ANT3 = antithrombin-III; APOA1 =

apolipoprotein A–I; APOB = apolipoprotein B-100; APOC3 =

apolipoprotein C-III; ARMC2 = armadillo repeat-containing protein

2; CO3 = complement C3; CO4 = complement C4-A, complement

C4-B; CO9 = complement component C9; FETUA = alpha-2-HS-

glycoprotein; GELS = gelsolin; HBA = hemoglobin alpha;

HBB,HBD = hemoglobin beta/delta; HPT = haptoglobin; HPTR

= haptoglobin-related protein; HRG = histidine-rich glycoprotein;

ITIH4 = inter-alpha-trypsin inhibitor heavy chain H4; KLKB1 =

plasma kallikrein; KV3 = Ig kappa chain V-III region Ti; RETBP =

retinol binding protein 4; SAMP = serum amyloid P-component;

TRFE = serotransferrin; TTHY = transthyretin.

(TIF)

Table S1 Characteristics of study subjects (NSCLC
patients treated with gefitinib) included in proteomics
analyses.

(DOC)

Table S2 Quality control results of sample preparation
for 181 study samples, by LC-MS/MS measurement
batches.

(DOC)

Table S3 Protein Identification from the selected
peaks.

(DOC)

Table S4 Antibodies used for Western Blot validation.

(DOC)
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