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To the Editor:

Smith-Magenis syndrome (SMS; OMIM 182290) is a genomic disorder characterized by
multiple congenital anomalies, developmental delay, intellectual disability, and a distinct
behavioral phenotype including aggressiveness, self-injury, and sleep disturbances [Edelman
et al., 2007; Greenberg et al., 1996; Smith et al., 1986]. Most patients with SMS (~75%)
harbor a recurrent 3.7 megabase (Mb) microdeletion of 17p11.2, mediated by flanking low
copy repeats (LCRs) [Bi et al., 2003; Chen et al., 1997; Potocki et al., 2003; Shaw et al.,
2002]. . The retinoic acid-induced gene 1 (RAI1) is one of approximately 25 genes within
the SMS critical region [Bi et al., 2002; Vlangos et al., 2003], and heterozygous RAI1
mutations have been reported in individuals who resemble SMS patients clinically, but who
lack a 17p11.2 deletion; thus, haploinsufficiency of RAI1 is considered the cause of most of
the manifestations of SMS [Bi et al., 2004, 2006; Girirajan et al., 2005, 2006; Slager et al.,
2003]. Nonetheless, the prevalence of some phenotypes, for example cardiovascular
malformations and hearing loss, differ between SMS deletion patients and those with RAI1
point mutations [Edelman et al., 2007; Girirajan et al., 2006], suggesting that other loci
within 17p11.2 and/or genomic rearrangement itself [Ricard et al., 2010] may contribute to
or modify the SMS phenotype.

Subjective sleep disturbances are well documented in SMS [Smith et al., 1998].
Additionally, objective sleep disturbances, including multiple awakenings, decreased or
increased percentage of REM sleep, and decreased total sleep time have been detected by
polysomnography [Greenberg et al., 1996; Potocki et al., 2000] and actigraphy [De
Leersnyder et al., 2001a; Gropman et al., 2006]. Inverted circadian rhythmicity of melatonin
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in SMS deletion patients has also been reported [De Leersnyder et al., 2001a; Potocki et al.,
2000].

Persons with RAI1 mutations also have a high rate of subjective sleep disturbance (14 of 14
subjects described in [Bi et al., 2004, 2006; Girirajan et al., 2005, 2006; Slager et al., 2003]),
statistically equivalent to that of individuals with the common (3.7 Mb) SMS deletion (39/39
in [Potocki et al., 2003]). It is unknown if RAI1 mutations lead to an alteration of melatonin
rhythmicity. Given melatonin’s role in sleep-wake patterning [Brzezinski 1997], we
hypothesized that haploinsufficiency of RAI1 alone may lead to inversion of melatonin
rhythmicity, potentially explaining disordered sleep in individuals with this genotype. In this
report we document an inverted circadian rhythm of melatonin in a child and an adult who
each harbor a RAI1 mutation.

Individuals with clinical suspicion for SMS were enrolled in a multidisciplinary clinical
study, approved by the Institutional Review Board of Baylor College of Medicine, at Texas
Children’s Hospital in Houston, USA; informed consent was provided in each case. This
comprehensive clinical protocol included physical examination, polysomnography, and
urine collection to measure 6-sulfatoxymelatonin (6-hydroxymelatonin sulfate, aMT6s), the
major excreted metabolite of melatonin [Reiter, 1991; Potocki et al., 2000]. Molecular
characterization and some phenotypic details of these subjects have been described
previously [Bi et al., 2004, 2006; Chen et al., 1997; Liburd et al., 2001; Potocki et al., 2000,
2003; Slager et al., 2003]. Briefly, individuals with clinical suspicion for SMS were
screened by FISH for deletions on chromosome 17p11.2. Subjects who did not have a
del(17)(p11.2p11.2) by FISH underwent sequencing of the RAI1 gene, which identified a
heterozygous nonsense mutation in subject 1106, an 11-year-old girl [Bi et al., 2004], and a
heterozygous frameshift mutation in subject 526 (listed as SMS156 in Slager et al., [2003]),
a 27-year-old woman. Both of these subjects experienced subjective sleep disturbances by
parental report. Subject 1106 took melatonin (6 mg at bedtime), which was discontinued 3
weeks prior to the study. Subject 526 took no medications.

Subjects were evaluated in the sleep laboratory at Texas Children’s Hospital [Potocki et al.,
2000]. Briefly, the subjects underwent continuous 21-channel polysomnographic monitoring
as well as in-person and video behavioral monitoring for one night. Sleep staging was
determined using standard criteria. A multiple sleep latency test (MSLT) was performed the
following day. The subjects’ spontaneously voided urine was collected at several time points
and analyzed for aMT6s concentration [Potocki et al., 2000]. Urine from a healthy girl and a
healthy man, analyzed similarly, served as controls [Reiter et al., 1996].

Both subjects with RAI1 mutations demonstrated sleep disturbances by polysomnography
similar to those of subjects with the SMS common deletion (Table I). MSLT findings were
normal (data not shown). The rhythm of urinary aMT6s concentration, a surrogate for serum
melatonin concentration [Reiter, 1991], was found to be altered in both subjects with RAI1
mutations (Fig. 1). A normal circadian rhythm of urinary aMT6s concentration peaks in the
early morning (Fig. 1a), resulting from a nocturnal maximum of melatonin production. In
contrast, the urinary aMT6s concentration in both child (1106) and adult (526) with RAI1
point mutations (Fig. 1b) displayed an inverted pattern with a daytime maximum, similar to
age-matched subjects with the SMS common deletion (1206 and 1123, respectively [Potocki
et al., 2000]) shown for comparison (Fig. 1c). As subjects 1106 and 1206 and the younger
control individual are children, their overall levels of aMT6s are expectedly higher than
those of the adult control individual or of subjects 526 and 1123 [Waldhauser et al., 1984].

Subjective sleep disturbance is common in SMS, corroborated by objective abnormalities on
polysomnography [Greenberg et al., 1991, 1996]. SMS deletion patients have been reported
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to have an inverted circadian rhythm of melatonin [De Leersnyder et al., 2001a; Potocki et
al., 2000]. Our results indicate that SMS patients with mutations in RAI1, a gene mapping
within the SMS critical region, have similarly altered melatonin rhythmicity.

It is unknown whether RAI1 is the only gene within the SMS critical region for which
reduced dosage leads to altered melatonin rhythmicity. For example, RASD1, also located
within the SMS critical region, is a modulator of the responsiveness of the core
(suprachiasmatic nucleus) circadian clock to photic and nonphotic inputs [Cheng et al.,
2004]. It is also unknown 1) whether alteration of melatonin rhythmicity is solely
responsible for the sleep disturbances in SMS, 2) whether this alteration accompanies or
causes similar disturbance of the core circadian clock, peripheral clocks, or other clock
outputs, and 3) most basically, whether it constitutes a true inversion of rhythmicity or
simply a phase advance or delay of approximately half of a day.

Properly-timed exogenous administration of melatonin can shift human circadian rhythms
[Lewy et al., 1992] and promote and quantitatively improve sleep in adults with sleep
disorders and in children with neurodevelopmental difficulties [Brzezinski 1997; Jan et al.,
2000; Zhdanova and Wurtman 1997]. Thus, exogenous melatonin has been given
nocturnally to SMS patients to induce and improve sleep, in some cases in combination with
diurnal β1-adrenergic antagonist administration to inhibit daytime melatonin production and
resultant daytime sleepiness [Carpizo et al., 2006; De Leersnyder et al., 2001b, 2003, 2006].
The success of this regimen in a small number of patients is promising, and our results
indicate that, in addition to SMS deletion patients, it is rational that RAI1 mutation patients
may also benefit from such treatments.
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Figure 1. Melatonin rhythmicity is altered in RAI1 mutation patients
Levels of urinary 6-sulfatoxymelatonin (aMT6s), a surrogate for serum melatonin
concentration, were determined over one day and normalized to urinary creatinine (Cr). a. In
healthy individuals, the highest concentration of aMT6s is found in the first morning sample,
reflecting the normal rise of serum melatonin during the night (adapted from [Reiter et al.,
1996]). b-c. This rhythmicity is ‘inverted’ in RAI1 mutation patients (b), similar to
individuals with the SMS common deletion (c; adapted from [Potocki et al., 2000]). Both
children (top) and adult patients (bottom) exhibit this aberrant rhythmicity. The overall
magnitude of melatonin concentrations is expectedly higher in children than in adult
subjects [Waldhauser et al., 1984]. Shaded areas indicate the period of darkness. RAI1, RAI1
mutation; Del, common SMS deletion.
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