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Eukaryotic cells must contend with a continuous stream of misfolded proteins that compro-
mise the cellular protein homeostasis balance and jeopardize cell viability. An elaborate
network of molecular chaperones and protein degradation factors continually monitor and
maintain the integrity of the proteome. Cellular protein quality control relies on three distinct
yet interconnected strategies whereby misfolded proteins can either be refolded, degraded,
or delivered to distinct quality control compartments that sequester potentially harmful mis-
folded species. Molecular chaperones play a critical role in determining the fate of misfolded
proteins in the cell. Here, we discuss the spatial and temporal organization of cellular quality
control strategies and their implications for human diseases linked to protein misfolding and
aggregation.

ROLE OF PROTEIN QUALITY CONTROL IN
CELLULAR INTEGRITY

Maintaining the integrity of the proteome is
essential for cell viability. Although ener-

getically favored, the native state of proteins is
in a precarious equilibrium (Brockwell and
Radford 2007). Proteins often misfold during
the life of the cell, as a result of stochastic fluc-
tuations, the presence of destabilizing muta-
tions, stress conditions, or unique metabolic
challenges, such as those occurring during can-
cer or aging (Hartl and Hayer-Hartl 2009). In
the cell, misfolded proteins can have deleterious
“gain-of-function” activities, in part because of
their heightened tendency to aggregate (Dob-
son 2003). Although the precise mechanisms
of toxicity are not well understood, it is clear
that misfolded proteins engage in inappropriate
interactions with other cellular components

and can accumulate in potentially toxic protein
inclusions (Lansbury and Lashuel 2006). Pro-
tein misfolding is emerging as a major mech-
anism of human disease, as highlighted by
the growing list of “conformational diseases,”
which result from the cellular accumulation of
misfolded proteins (Muchowski 2002; Saka-
hira et al. 2002). These include a staggering
array of pathologies, ranging from lysosomal
storage diseases (Sawkar et al. 2006), cancer
(Dai et al. 2007), cystic fibrosis (Koulov et al.
2010) to, most prominently, many neurodegen-
erative disorders such as Alzheimer (AD), Par-
kinson’s (PD), and Huntington’s (HD) diseases
(Caughey and Lansbury 2003; Cohen and Kelly
2003; Morimoto 2008). It is becoming clear that
the cellular capacity to manage the proteome
declines during aging and this likely underlies
the late onset of neurodegenerative diseases
caused by protein misfolding (Cuervo et al.
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2005; Ben-Zvi et al. 2009; Demontis and Perri-
mon 2010).

The cell has developed an elaborate machi-
nery that monitors and maintains the health
of its proteome (Frydman 2001; Hartl and
Hayer-Hartl 2009; Richter et al. 2010). Preserv-
ing protein homeostasis, or “proteostasis,”
involves several parallel strategies that aim at
either refolding, degrading, or sequestering
misfolded polypeptides (Fig. 1) (Powers et al.
2009). Central to all these strategies is a network
of molecular chaperones that recognizes mis-
folded proteins (Hartl and Hayer-Hartl 2002;
McClellan et al. 2005a). Chaperones can actively
promote refolding of the misfolded protein or,
if this is not possible, can promote their degra-
dation via the ubiquitin-proteasome pathway
(McClellan et al. 2005b). Recent findings have
revealed an additional cellular strategy to cope
with misfolded proteins that are not refolded
or degraded, namely sequestration into special-
ized quality control compartments (Bagola and
Sommer 2008; Kaganovich et al. 2008). The
spatial compartmentalization of cellular quality
control may help the cell cope with an overload
of aberrant proteins, prevent formation of toxic

aggregates, and regulate the inheritance of
damaged and/or aggregation-prone species
(Tyedmers et al. 2010a). Here we review the cen-
tral mechanisms that maintain protein homeo-
stasis and quality control in eukaryotic cells and
highlight the emerging concept that protein
quality control is associated with subcellular
compartments that sequester and concentrate
both soluble and aggregated forms of misfolded
proteins.

CAUSES AND CONSEQUENCES OF PROTEIN
MISFOLDING

Under normal growth conditions, the cell con-
tends with a continuous stream of misfolded
proteins arising from inefficient protein bio-
genesis, expression of mutant proteins, excess
unassembled subunits of oligomeric complexes,
and inefficiently translocated secretory and
mitochondrial precursors (Balch et al. 2008;
Voisine et al. 2010). The precise degree to which
these processes burden the cellular quality con-
trol machinery has been a matter of controversy.
In addition to these normal, physiological
sources of misfolded proteins, a number of
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Figure 1. Cellular strategies to maintain protein homeostasis. Cells have evolved distinct yet interconnected cel-
lular strategies to maintain protein homeostasis. Each strategy presents advantages and drawbacks. Misfolded
proteins can either be refolded, degraded, or delivered to distinct quality control compartments that sequester
potentially deleterious species. These strategies are all assisted by molecular chaperones that ensure the system
remains balanced. Failure of the cellular strategies can tip the protein homeostasis balance and lead to a decrease
in cell viability.
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pathological conditions, environmental and
metabolic stresses, aging, and cancer, enhance
the production of misfolded proteins (Haigis
and Yankner 2010). Altogether, these factors can
further tax the protein homeostasis machin-
ery. Potential environmental stresses include
elevated temperature, exposure to chemicals
or heavy metals, viral/bacterial infections, and
tissue injury. Potential metabolic stresses are
associated with nutrient balance, production
of reactive oxygen species (ROS) and mitochon-
drial dysregulation. These challenges are pre-
dominantly met by the activation of the
environmental stress response (ESR), which ele-
vates expression of protective cellular compo-
nents (Voisine et al. 2010). Notably, the high
rates of cell division and high mutation rates
that accompany cancer lead to a higher load of
misfolded proteins (Whitesell and Lindquist
2005). Thus, cancer cells typically overexpress
chaperones, and induction of an ESR is an inte-
gral part of carcinogenesis (Whitesell and Lind-
quist 2005). Conversely, aging is associated with
a decline of protein homeostasis capacity (Mor-
ley et al. 2002; Morley and Morimoto 2004).
Presumably, old cells or organisms accumulate
deleterious mutations and oxidatively damaged
proteins, which overwhelm the capacity of the
protein homeostasis network (Gidalevitz et al.
2006). This in turn promotes further protein
damage, eventually leading to widespread pro-
tein aggregation, toxicity, and cell death (Doug-
las and Dillin 2010).

Given that increasing the misfolded protein
load may tip the balance of the proteostatic net-
work, it is essential for the cell to mount a rapid
and robust response to restore cellular homeo-
stasis. The cell relies on two major protein
management strategies: (1) the up-regulation
of quality control components, and (2) the
sequestration of misfolded and/or aggregated
proteins. Several transcriptional programs sense
stress and enhance expression of molecular
chaperones and degradation components.
These include the cytosolic ESR, regulated by
the transcription factors Hsf1 and Msn2/4 in
yeast or HSF-1 and DAF-16 in worms, as well
as the UPR in the secretory pathway and the
oxidative stress response (Akerfelt et al. 2010).

Notably, enhancing chaperone expression via
hsf-1 and daf-16 delays aging and protects
organisms from neurodegenerative diseases
(Morley and Morimoto 2004; Cohen et al.
2006). Little is known about the mechanisms
controlling misfolded protein sequestration,
thus it is unclear whether and how partitioning
into cellular quality control compartments is
regulated.

CHAPERONES DICTATE THE BALANCE
BETWEEN PROTEIN FOLDING,
DEGRADATION, AND AGGREGATION

All aspects of cellular protein homeostasis
depend on molecular chaperones (Frydman
2001; Bukau et al. 2006; Schlecht et al. 2011).
Chaperones promote the folding of newly
synthesized polypeptides, their translocation
across membranes, and the refolding of stress-
denatured substrates. Chaperones also play a
key role in targeting misfolded proteins for deg-
radation as well as preventing aggregation. In
eukaryotic cells, these distinct functions are
performed by two distinctly regulated chaper-
one networks: the chaperones linked to protein
synthesis (CLIPS), which are functionally and
physically linked to the translation machinery
and assist folding of newly translated proteins
(Albanese et al. 2006), and the heat shock pro-
teins (HSPs), which can be induced by HSF
and serve to protect the proteome from stress
(Haslbeck et al. 2005).

The cell has several different classes of chap-
erones, generally classified according to their
molecular masses (e.g., hsp100, hsp90, hsp70,
hsp60, and hsp40) and small heat shock pro-
teins (smHSPs). Each family is comprised of
multiple chaperone isoforms. Certain ATP-
driven chaperones, such as Hsp70 and Hsp90
interact with cofactors, which directly influence
their ATPase activity and direct them along
certain folding pathways (Kampinga and Craig
2010; Taipale et al. 2010). In addition to differ-
ences in size and structure, chaperones play
different roles spatially and temporarily within
the proteostasis network. The ring-shaped
chaperonin TRiC/CCT and a subset of Hsp70s
assist in de novo protein folding, whereas other
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chaperones, such as Hsp70s, Hsp90, and the
smHSPs appear to assist conformational matu-
ration, oligomeric assembly, and degradation.
Importantly, different chaperone systems co-
operate functionally to promote folding and
degradation (Hartl and Hayer-Hartl 2002). In
addition to their well-established role in assist-
ing protein folding and refolding, chaperones
can direct the ubiquitination and degradation
of misfolded proteins (Youker et al. 2004;
McClellan et al. 2005b; Kundrat and Regan
2010). For instance, Hsp70, Hsp110, and
Hsp90 are required for degrading misfolded
variants of VHL (McClellan et al. 2005a) and
other proteins (Hampton 2011). In addition,
overexpressing Hsp70 and Hsp40 increases the
proteasome-mediated degradation of a-synu-
clein and polyQ-expanded proteins (Muchow-
ski and Wacker 2005).

Chaperones also prevent the formation of
toxic aggregates (Warrick et al. 1999; Muchow-
ski 2002; Morimoto 2008). For example, over-
expressing Hsp70 suppresses the toxicity
associated with Ab and tau in AD, a-synuclein
in PD, superoxide dismutase (SOD1) in familial
Lou Gehrig’s disease (fALS), and polyQ-
expanded Huntingtin (Htt) in HD, as well as
spinobulbar muscular atrophy (SBMA) and
ataxias (Muchowski and Wacker 2005). TRiC/
CCT has also been shown to remodel Htt aggre-
gates and appears to be a major cellular modu-
lator of their toxicity (Behrends et al. 2006;
Kitamura et al. 2006; Tam et al. 2006). Interest-
ingly, in most of these cases, chaperones do not
prevent formation of protein inclusions, but
rather likely inhibit formation of toxic species
by directing the misfolded species to nontoxic
aggregates (Wacker et al. 2004; Muchowski
and Wacker 2005; Tam et al. 2009).

Beyond serving as a link between folding
and degradation, certain chaperones have the
ability to extract and refold proteins from aggre-
gates. The small heat shock proteins (smHSPs)
have been observed to tightly associate with
aggregates (Haslbeck et al. 2005). A specialized
class of chaperones, the ring-shaped hexameric
AAA-ATPases can extract misfolded proteins
from aggregates in an ATP-dependent manner
(Wendler et al. 2007). Chaperones such as

ClpB in bacteria and Hsp104 in yeast extract
misfolded polypeptides from aggregates by
threading them through a central pore lined
with aromatic residues (Lum et al. 2004; Hasl-
berger et al. 2008; Wendler et al. 2009). Higher
eukaryotes lack a clear Hsp104 homolog, but
a “disaggregase” activity has recently been
reported (Bieschke et al. 2009; Murray et al.
2010). The extracted protein can then be trans-
ferred to Hsp70 and Hsp40 chaperones for
refolding or degradation (Buchberger et al.
2010; Lotz et al. 2010; Richter et al. 2010). Inter-
estingly, shifting the balance from refolding to
degradation following disaggregation impairs
the ability of bacterial cells to withstand stress
(Weibezahn et al. 2004).

Although the ability of chaperones to recog-
nize misfolded polypeptides is central to pro-
tein quality control, the molecular basis of the
triage process by which chaperones decide
whether to fold, degrade, or sequester a mis-
folded protein in an inclusion is perhaps the
most critical and least understood question
surrounding protein quality control.

PATHWAYS OF MISFOLDED PROTEIN
DEGRADATION

Most soluble misfolded proteins are cleared
through the ubiquitin-proteasome system
(UPS), the major eukaryotic proteolytic path-
way (Ciechanover 1998). An enzymatic E1/
E2/E3 ubiquitination cascade tightly controls
degradation by marking proteins by polyubiq-
uitination, which tags them for destruction
by the 26S proteasome. Degradation may
require additional factors, such as the p97/
Cdc48-Ufd1-Npl4 complex and its various
cofactors (Wilkinson 2000). The 26S protea-
some in eukaryotes is composed of a 20S
proteolytic core and a 19S ATP-dependent reg-
ulatory cap (Pickart and Cohen 2004). Different
types of polyubiquitin chain linkages can target
proteins for degradation (i.e., K48) or specific
subcellular localization (i.e., K63) (Xu et al.
2009) and different ubiquitin states (mono-
vs. polyubiquitination) can control the activity
level and trafficking of proteins (Finley et al.
2004).
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The communication between the E3 ubiq-
uitin ligases, which ubiquitinate target proteins
and the chaperone machinery is not fully
understood. A number of E3 ligases have been
shown to ubiquitinate misfolded proteins in
an Hsp70-dependent manner. In mammalian
cells, the E3 ligase CHIP (carboxy-terminal
Hsp70 interacting protein) binds directly to
Hsp70 and Hsp90 (Arndt et al. 2007; Vembar
and Brodsky 2008). CHIP has been shown to
target some Hsp70-bound proteins for degra-
dation, but also can tag substrates with non-
canonical ubiquitin chain linkages (e.g., K27
and K63) for functions other than proteasomal
degradation (Alberti et al. 2002). In yeast, two
E3 ubiquitin ligases anchored to the endoplas-
mic reticulum (ER) membrane, Doa10 and
Hrd1, can mediate Hsp70-dependent ubiquiti-
nation of misfolded ER and cytosolic sub-
strates (Nakatsukasa et al. 2008; Hirsch et al.
2009). Recently, two distinct chaperone-medi-
ated quality control pathways were identified
whereby misfolded and/or chaperone-bound
proteins are ubiquitinated by the E3 ligase
Ubr1 in the cytosol and by the E3 ligase San1
in the nucleus (Heck et al. 2010). Future studies
should clarify the mechanistic basis for these
observations and how Hsp70 and other chaper-
ones control the option of transferring their
substrate to an E3 ligase.

Misfolded aggregated proteins can also be
degraded by a separate autophagy pathway
that involves their ultimate delivery to the lyso-
some (Klionsky et al. 2010). Autophagy is a
nonspecific bulk degradation pathway that was
initially described for long-lived cytoplasmic
proteins and damaged organelles (He and
Klionsky 2009). This process is also a major
degradation pathway for many aggregation-
prone proteins associated with neurodegenera-
tive disorders (Kroemer et al. 2010). Knock-
down of the autophagy genes (e.g., Atg5 and
Atg7) leads to aggregation and neurodegenera-
tion in certain mouse models (Hara et al.
2006; Komatsu et al. 2006). Conversely, up-
regulation of autophagy can play a protective
role in quality control because it can promote
the clearance of soluble small-oligomeric aggre-
gates, for instance, in HD models (Rubinsztein

et al. 2007; Mizushima et al. 2008). A number of
studies suggest that there is a functional rela-
tionship between proteasomal and autophagic
degradation of misfolded proteins: impairment
of the UPS induces compensatory autophagy
(Pandey et al. 2007), whereas knockdown of
autophagy components leads to the accumula-
tion of proteasomal substrates (Komatsu et al.
2005; Hara et al. 2006). Furthermore, some sub-
strates partition between these two pathways.
For instance, the majority of misfolded ER pro-
teins are cleared by the ER-associated degra-
dation (ERAD) pathway that retrotranslocates
misfolded proteins to the cytoplasm for degra-
dation by the UPS. If the ERAD pathway does
not effectively clear the accumulated misfolded
proteins, or if ERAD is impaired otherwise,
then the autophagy-lysosome pathway is acti-
vated. This acts as a final strategy for ER pro-
tection, specifically recognizing and degrading
potentially toxic higher molecular weight ag-
gregates (Ishida et al. 2009).

SPATIAL ORGANIZATION OF QUALITY
CONTROL PATHWAYS

Accumulation of misfolded proteins in spatially
distinct inclusions has been observed in bacte-
rial and eukaryotic cells (Winkler et al. 2010).
Their formation is enhanced by various envi-
ronmental stresses that destabilize folded pro-
teins. Although inclusions often form when
the folding and degradation machineries are
overwhelmed, there is increasing evidence that
inclusion formation is a stereotypical cellular
response that aims to spatially and functionally
sequester misfolded proteins in specific cellular
compartments (Kaganovich et al. 2008). There
are also instances of regulated inclusion for-
mation in response to environmental and
metabolic stimuli. In yeast, nutrient depletion
induces formation of reversible protein inclu-
sions, which are resolubilized after the readdi-
tion of nutrients (Narayanaswamy et al. 2009).

Interest into the function and formation of
protein inclusions initially arose from the
observation that insoluble amyloid aggregates
are a hallmark of many neurodegenerative dis-
eases, including Alzheimer, Huntington’s, and
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prion diseases (Dobson 2006). However, it is
clear that many other proteins are found in
inclusions, including defective ribosomal prod-
ucts (David et al. 2010), polyubiquitinated pro-
teins (Ross and Poirier 2004), and oxidatively
damaged proteins (Nystrom 2005). On heat
stress or nutrient stress, sequestration into
defined inclusions has been observed for com-
ponents of the translation machinery (Radonjic
et al. 2005), biosynthetic machinery (An et al.
2008), and small HSPs (i.e., Hsp12) (Welker
et al. 2010). Furthermore, viruses can also
induce a nuclear quality control compartment
in infected cells, known as a VICE domain,
which contains Hsc70 and the 20S proteasome
and degrades nuclear proteins (Livingston
et al. 2009).

Several different types of cellular inclusions
have been observed in eukaryotic cells. Interest-
ingly, although some inclusions accumulate
insoluble aggregated proteins, others contain
proteins that exhibit properties of soluble non-
aggregated proteins, including the ability to
exchange with the cytosolic pool (Kaganovich
et al. 2008). Thus, inclusion formation does
not solely serve the purpose of sequestering
aggregates. As discussed below, these different
inclusions likely serve different functions within
the quality control network. Insoluble mis-
folded proteins often accumulate in perinuclear
aggregate structures, particularly on protea-
some inhibition. One of these structures,
termed the aggresome was found to colocalize
in mammalian cells with the microtubule-
organizing center (MTOC) (Johnston et al.
2000, 2002). Aggresome formation depends
on minus-end-directed transport along micro-
tubules (Kopito 2000). In yeast, prions such as
Sup35, also accumulate as insoluble amyloid-
like aggregates (Tanaka et al. 2006) in distinct,
nonperinuclear inclusions (Tyedmers et al.
2010b). Two transiently formed inclusions,
termed the ALIS and DALIS, which form in
response to immune activation or stress, appear
to concentrate soluble proteins targeted for
proteasomal or autophagic clearance (Szeto et al.
2006). For instance, the ALIS transiently accumu-
lates polyubiquitinated defective ribosomal prod-
ucts in lipopolysaccharide-stimulated dendritic

cells (Lelouard et al. 2002); this compartment
also forms in other mammalian cells in
response to environmental stresses (Szeto et al.
2006). Formation of the ALIS and DALIS do
not depend on microtubule polymerization
(Lelouard et al. 2002).

What is the biological significance of such
different soluble and insoluble misfolded pro-
tein inclusions? Recent work has defined two
compartments, called the JUNQ ( juxtanuclear
quality control) and IPOD (insoluble protein
deposit), that sequester distinct types of mis-
folded proteins and appear to fulfill separate
functions within the protein homeostasis net-
work (Fig. 2) (Kaganovich et al. 2008). The
JUNQ and the IPOD differ in their spatial and
temporal separation of cytosolic inclusions
and interface with different protein clearance
pathways. The JUNQ compartment is associ-
ated with the cytosolic surface of the ER and
contains 26S proteasomes and some chaperones
such as Hsp104. The JUNQ concentrates sol-
uble misfolded proteins that can either be
degraded by the UPS or refolded by cytoplasmic
chaperones. The IPOD contains insoluble aggre-
gated proteins, including disease-associated pro-
teins such as huntingtin and prions. The IPOD
does not colocalize with proteasomes but does
colocalize with the autophagy associated Atg8.
The spatial concentration of soluble misfolded
proteins into a chaperone and proteasome-rich
JUNQ compartment may serve to both enhance
clearance rates and enhance the removal of mis-
folded species from the crowded cellular milieu.
In contrast, the spatial sequestration of aggre-
gated proteins in the IPOD compartment may
prevent these terminally misfolded aggregates
from clogging the proteasome and sequestering
soluble chaperones. Additionally, protein inclu-
sions may enhance the efficiency of aggregate
clearance, presumably by facilitating interac-
tions with the lysosomal and autophagic path-
ways (Taylor et al. 2003). Importantly, the
JUNQ and IPOD compartments are observed
in both yeast and mammalian cells (Kaganovich
et al. 2008), pointing to a conservation of these
pathways and their functions.

The distinct sequestration pathways de-
scribed above are likely interconnected. For
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instance, in Caenorhabditis elegans, the HSF-1
transcriptome induces a disaggregation path-
way that reduces the aggregation-mediated tox-
icity of cytosolic Ab inclusions (Cohen et al.
2006); thus, it is tempting to speculate this
enhances their flux through the JUNQ. On
overloading of this pathway, the DAF-16 tran-
scriptome enhances sequestration of Ab into
insoluble aggregates that are used for detoxifi-
cation (Cohen et al. 2006); presumably, these
enhance terminal sequestration in an IPOD-like
compartment. These observations provide evi-
dence for the cooperation between the two
sequestration pathways to ensure maximal cel-
lular protection against toxic aggregates.

How are proteins targeted and delivered to
these cellular inclusions? Although it is clear

that the processes of protein sequestration into
quality control compartments is highly organ-
ized, how protein oligomers and aggregates
are directed toward these compartments is still
poorly understood. Targeting of misfolded pro-
teins to the JUNQ depends on their ubiquitina-
tion state; for instance, blocking ubiquitination
of misfolded VHL redirects it to the IPOD and
renders it insoluble (Kaganovich et al. 2008).
It has been proposed that histone deacetylase
6 (HDAC6) helps move ubiquitinated proteins
along microtubules toward the MTOC (John-
ston et al. 2002). Overexpression of HDAC6
has been shown to suppress toxicity in a fly
model of SBMA by inducing a shift from pro-
teasomal to autophagic degradation of the
mutant androgen receptor protein (Du et al.

Nucleus

IPOD

JUNQ

ER

Hsp104

26S proteasome

Chaperone

Atg8

Misfolded protein

E3 Ub ligase

Ubiquitin

Protein aggregate

Figure 2. Distinct quality control compartments in eukaryotic cells. Quality control substrates can be sequestered
into two spatial distinct compartments, the JUNQ and the IPOD. Misfolded, ubiquitinated proteins are deliv-
ered to the JUNQ, where they can be either degraded by the 26S proteasome or refolded with the assistance of
chaperones, such as Hsp104. Insoluble misfolded proteins can also be terminally sequestered in the IPOD. The
IPOD may be linked to the autophagy pathway based on its colocalization with Atg8. The molecular chaperone
Hsp104 is also sequestered in the IPOD.
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2010). HDAC6 is also implicated in the clear-
ance of aggresomes through selective autopha-
gic turnover and recruits the actin-remodeling
machinery for ultimate engulfment (Lee et al.
2010). Another protein that has been pro-
posed to link quality control and autophagic
degradation is p62/SQSTM1, which binds to
ubiquitinated proteins and autophagic com-
ponents (Pankiv et al. 2007); although, its
function in this process remains controversial
(Riley et al. 2010). In yeast, aggregates are trans-
ported on actin filaments during mitotic cyto-
kinesis by the polarisome complex and the
myosin motor protein Myo2 (Liu et al. 2010).
It is currently unclear how nuclear aggregates
are formed.

ADVANTAGES OF PROTEIN
SEQUESTRATION AS A PROTECTIVE
QUALITY CONTROL STRATEGY

Many neurodegenerative diseases are character-
ized by the formation of intracellular or extra-
cellular inclusions containing amyloid forms of
disease-causing misfolded proteins, including
huntingtin, a-synuclein, Ab-peptide, SOD-1,
and prion proteins. These proteins do not share
primary sequence features, or functional char-
acteristics, but do aggregate into insoluble,
b-rich amyloid structures that stain with dyes
like Congo Red and Thioflavin T (Wright et al.
2005). However, it is clear that any protein is
capable of forming an amyloid under certain
conditions (Chiti et al. 2000). Presumably, the
ability to interact with the chaperone and qual-
ity control machineries distinguishes those
disease-causing proteins that accumulate in
amyloid inclusions from those that are degraded
on misfolding and do not form amyloids.

Although the aggregation of misfolded pro-
teins underlies a range of debilitating diseases
(Finkbeiner et al. 2006), formation of insoluble
amyloid inclusions can also promote cell sur-
vival and may serve as a protective mechanism
by sequestering potentially harmful aggregates
from the cytosol (Liu et al. 2010). Sequestration
of disease-associated proteins into insoluble
protein inclusions reduces their cytotoxicity
(Arrasate et al. 2004) and reverses proteasomal

dysfunction (Bodner et al. 2006). Incorporation
of toxic oligomers into protective amyloid-like
protein inclusions has been observed to reduce
toxicity of Htt and Aß expressed in mammalian
cells, C. elegans, and mouse models (Cheng et al.
2007; Bieschke et al. 2009; Cohen et al. 2009).
These studies support the hypothesis that
sequestration into an IPOD-like structure
removes toxic misfolded species from the cellu-
lar environment.

The formation of spatially distinct inclu-
sions also affords cells an additional mechanism
for misfolded protein clearance, namely
through the asymmetric inheritance of inclu-
sions (Kaganovich et al. 2008; Liu et al. 2010).
Asymmetric cell divisions entail differential seg-
regation of cellular components between two
cells (Henderson and Gottschling 2008). In
yeast, asymmetric cytokinesis involves a rejuve-
nating process in which aged mother cells gen-
erate daughters with full replicative potential
(Kennedy et al. 1994; Sinclair and Guarente
1997). Notably, whereas normal proteins in
yeast diffuse freely between the mother cell
and bud (Dobbelaere and Barral 2004), oxida-
tively damaged proteins are distributed asym-
metrically between young mothers and cells in
both Saccharomyces cerevisiae and Schizosac-
charomyces pombe (Aguilaniu et al. 2003;
Shcheprova et al. 2008). Similarly, asymmetric
inheritance in dividing mammalian cells has
been observed for ubiquitinated proteins
(Fuentealba et al. 2008) and protein aggregates
(Rujano et al. 2006). Interestingly, during yeast
aging the capacity for asymmetric inheritance is
lost (Liu et al. 2010), resulting in daughter cells
with reduced replicative potential. Thus, the
asymmetric inheritance of quality control
inclusions may help clear the misfolded protein
load in daughter cells in an actively dividing
tissue or population.

The observations that formation of large
insoluble aggregates can be protective (Arrasate
et al. 2004) and that these aggregates do not turn
over rapidly (Cohen and Kelly 2003; Balch et al.
2008), together with the finding that they may
be inherited asymmetrically (Liu et al. 2010),
underscore the advantages of protein sequestra-
tion as a quality control strategy.
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TOWARD A MODEL FOR MISFOLDED
PROTEIN TOXICITY IN AMYLOIDOGENIC
DISEASE

Despite the protection afforded by sequestra-
tion of aggregates into IPOD-like insoluble
inclusions, other inclusions correlate with cellu-
lar toxicity. For instance, formation of inclu-
sions of ALS-associated mutant SOD1 (G93A)
correlate with cell death, contrary to what is
observed for large insoluble Htt inclusions
(Arrasate et al. 2004). Indeed, polyQ-expanded
Htt and mutant SOD-1 form distinct inclusions
on coexpression in mammalian cells (Kitamura
et al. 2006; Matsumoto et al. 2006). SOD-1
mutants form mobile soluble inclusions
exposed to Hsp70, whereas Htt forms immobile
insoluble inclusions impermeable to other
cytosolic proteins. Not only do the mobile
SOD-1 inclusions recruit and sequester protea-
somes, but their appearance also correlates with
the onset of toxicity and cell death (Kitamura
et al. 2006; Matsumoto et al. 2006). A similar
study in C. elegans found that another ALS-
associated SOD1 mutant (G85R) causes neuro-
nal toxicity resulting from soluble intracellular
inclusions that appear to sequester the Hsp110
chaperone (Wang et al. 2009).

An attractive hypothesis is that misfolded
oligomers and soluble aggregates cause toxicity
by diminishing the capacity of the protein fold-
ing machinery. This hypothesis is supported by
a recent study comparing the composition of
toxic and nontoxic cellular aggregates in mam-
malian cells (Olzscha et al. 2011). The toxic
aggregates are enriched in cellular metastable
proteins compared to the nontoxic ones, sug-
gesting that the toxic aggregates sequester essen-
tial chaperones and other factors, which in turn
impairs protein homeostasis. Moreover, experi-
ments in yeast, worms, flies, and mammalian
cells have all identified a strong connection
between misfolding, aggregation, cell death,
and dysfunctional protein homeostasis (Lans-
bury and Lashuel 2006; Brignull et al. 2007).
For instance, enhancers of polyQ toxicity
include factors involved in protein folding,
the stress response, and the UPS (Willingham
et al. 2003). Conversely, overexpression or

up-regulation of chaperones can delay or sup-
press aggregation and toxicity of various
disease-associated proteins (e.g., polyQ, Ab,
a-synuclein, SOD1) (Fonte et al. 2002; Nollen
et al. 2004; van Ham et al. 2008; Roodveldt
et al. 2009). These findings support the idea
that toxicity arises from adverse interactions
between aggregated proteins and the protein
homeostasis machinery. This in turn, diverts
these essential cellular factors away from their
quality control function. A number of studies
have identified small oligomeric aggregates as
the offending species linked to toxicity (Kayed
et al. 2003). For example, in mammalian cell
culture and yeast, accumulation of small oligo-
meric Htt aggregates correlates with toxicity
(Kitamura et al. 2006). Moreover, in C. elegans,
mutant SOD1 aggregates lead to misfolding of
other metastable proteins in the cell (Gidalevitz
et al. 2009). It is unclear at this point, which are
the key pathways targeted by the toxic aggre-
gates, or even if there is a primary system that
is affected. Notably, the deleterious effect of
the aggregating species can be modulated by
ectopic expression of a variety of different qual-
ity control factors. Indeed, overexpression of
chaperones, activation of autophagy, and/or
activation of the proteasome have all been
shown to ameliorate the symptoms of disease-
related protein aggregates (Behrends et al.
2006; Fonte et al. 2008) as well as increase
organism lifespan (Vacher et al. 2005). These
data support a model whereby toxic aggregates
sequester or block the function of chaperones
and/or other components of the quality control
network, leading to a general impairment of the
protein homeostasis capacity of the cell.

CONCLUDING REMARKS

The complexity of protein quality control and
protein homeostasis likely provides robustness
to a process that is critical for cell viability. A
surprising emerging concept is that quality con-
trol is spatially organized into compartments
that manage misfolded proteins hierarchically
within the cell. Soluble misfolded proteins are
concentrated to enhance their refolding or deg-
radation, whereas insoluble species with the
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potential to disrupt protein homeostasis are
sequestered to prevent their toxic interactions
with the quality control machinery. An impor-
tant question is how the quality control network
decides whether an aggregate should be seques-
tered or engaged in a refolding or degradation
process. One possibility is that certain aggre-
gates are simply insoluble and after being recog-
nized as such are delivered for sequestration.
Another possibility is that amyloidogenic and
potentially toxic species are delivered to a qual-
ity control compartment, which sequesters
them and allows them to aggregate into a benign
amyloid structure. Additional questions for
future research include how distinct compart-
ments are organized and maintained and how
their substrates are selected. Understanding
why cells occasionally fail to compartmentalize
misfolded toxic species, allowing them to inter-
fere with normal protein homeostasis, will be
instrumental in elucidating the etiology of
amyloid diseases.
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