
The Effects of Incorrect Modeling on Noise and Resolution
Properties of ML-EM Images

D. W. Wilson and
Department of Radiology, University of Arizona, Tucson, AZ 85724 USA

H. H. Barrett
Department of Radiology and the Optical Science Center, University of Arizona, Tucson, AZ
85724 USA
D. W. Wilson: dwwilson@radiology.arizona.edu; H. H. Barrett: barrett@radiology.arizona.edu

Abstract
The effects of incorrect compensation for collimator blur in single-photon emission computed
tomography (SPECT) images are studied in terms of the noise and resolution properties of the
reconstructed images. Qualitative analysis of images of the Hoffman brain phantom reconstructed
using nonlinear maximum-likelihood—expectation maximization (ML-EM) show the behavior of
longer noise correlations for high-pass filtered images. These qualitative observations are
confirmed with more quantitative noise measures. The differences also appear in images
reconstructed using linear Landweber iteration. However, the signal-to-noise ratio, in terms of the
noise-equivalent quanta, remains largely unchanged. We conclude that the compensation model
affects SPECT image properties, though the effect on human task performance remains to be
studied.

Index Terms
Image reconstruction; image resolution; image restoration

I. Introduction
In single-photon emission computed tomography (SPECT), the data collected by the
imaging system are degraded by the physical effects of attenuation and Compton scatter
within the patient, and the blur produced by the finite size and length of the collimator bores.
If these effects are not compensated for, the resulting reconstructed images will be further
degraded since the system model used by the reconstruction algorithm is not the same as the
process that generated the data. This results in images with reduced resolution or with
artifacts, and many studies have shown the benefits, in terms of image resolution and
reduced artifacts, of properly modeling the imaging system in the reconstruction algorithm
[1].

Since iterative reconstruction methods such as maximum-likelihood—expectation
maximization (ML-EM) and Landweber iteration place few restrictions on the imaging-
system model built into the algorithm, these are generally employed when compensation for
physical effects is desired. It is well known that with a correct model of the imaging process,
with no statistical noise, and with enough iterations these algorithms will arrive at an
estimate that very closely resembles the original object. Unfortunately, an exact model of a
SPECT imaging system and data with no statistical noise are only truly realizable in
computer models. Any real understanding of these algorithms’ properties requires that the
consequences of statistical noise and improper models be understood. The effects of
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statistical noise in iterative SPECT reconstruction have been studied [2]. So too have the
effects of modeling or not modeling scatter, detector response, and attenuation [1], [3]. One
area that has received less attention is the consequences of incorrect modeling of imaging-
system properties.

When noise is present, the effects of compensation algorithms can be complicated. Roughly
speaking, if the uncompensated image is blurred, say by the collimator resolution, then a
compensation algorithm acts as a high-pass filter. If the system and the filter are shift-
invariant, the deterministic characteristics of the processed image are described by an overall
modulation-transfer function (MTF), including both the MTF of the uncompensated
reconstruction and the compensating filter. Similarly, if the noise is stationary, the stochastic
properties can be described by the noise power spectrum (NPS). Under these restrictive
assumptions, the effect of the compensating filter is well understood. If the filter transfer
function is T(ρ), where ρ is the spatial frequency vector, then the MTF after compensation,
denoted MTFout(ρ), is equal to MTFin(ρ)T(ρ), where MTFin(ρ) is the MTF before
compensation. Similarly, NPSout = NPSin(ρ)|T(ρ)|2, where again the subscripts indicate
before and after compensation. We see that the ratio MTF2(ρ)/NPS(ρ), often known as the
noise-equivalent quanta or NEQ, is unchanged by the compensation under these
assumptions of shift-invariance and stationarity.

Of course, SPECT reconstructions are not shift-invariant, and the image noise is not
stationary, but it is possible to define functions that describe locally the noise, resolution,
and signal-to-noise properties. In this paper, we employ three such quantities. The first is the
local MTFr(ρ)—the Fourier transform of the image response to a point impulse at object
position r. The second is the Wigner spectrum [4], a measure of image noise correlations in
the region about r. The third is the local NEQr(ρ), the ratio of  that serves as
the local frequency-domain signal-to-noise ratio (SNR).

In this paper, we shall use these quantities to determine noise and resolution effects of
incorrectly compensating for detector blur, both with nonlinear and shift-variant ML-EM
reconstruction and with linear but shift-variant Landweber iteration. We present
comparisons of images reconstructed using correct and incorrect compensations that show
visually how noise properties vary as the reconstruction algorithm changes from under-
compensating to correctly compensating to overcompensating for the blur. We demonstrate
how overcompensation produces apparent broad noise correlations in reconstructed images,
the opposite of what one would expect from a high-pass filter meant to accentuate shorter
correlations rather than longer ones. We show that, despite the large changes in noise
properties, the resolution is not greatly affected by the choice in compensation. We use
quantitative measures of noise and resolution to verify the conclusion arrived at by visual
analysis. Finally, we use the NEQr(ρ) to demonstrate that, despite the different manners the
noise and resolution are affected, the signal to noise undergoes little change as a result of
different reconstruction compensation models.

II. Methods
A. Reconstruction Algorithms

A SPECT imaging system can be modeled as a continuous-to-discrete linear process

(1)
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where f is the continuous source distribution of radiotracer, H is the continuous-to-discrete
imaging system and contains the scatter and attenuation in the patient and the resolution of
the SPECT system, n is the Poisson measurement noise resulting from the finite number of
photons detected in the imaging session, and g is the projection data collected by the photon
detector. The goal of tomographic reconstruction is to, in some sense, solve (1) for f. In this
study, L-EM [5] and Landweber iteration [6] were the algorithms employed. While neither
is the most commonly used reconstruction method in research or clinical practice, they
illustrate important properties of linear and nonlinear algorithms without the excess number
of parameters present when ordered subsets or intermediate filtering versions of these
algorithms are employed.

The ML-EM algorithm has the form

(2)

where  is the image estimate after the kth iteration and hij is an element of the discrete-to-
discrete H (a computationally necessary approximation of the true continuous-to-discrete H)
and represents the probability that a photon emitted from object voxel l is detected by
projector pixel i. The equation

(3)

is the projection through H of the kth image estimate. The method by which the algorithm

works is clearly seen in (2) and (3). Equation (3) computes , the estimated projection data

through H. The  is compared by division to the true projection data, and the
backprojected result is used to multiplicatively update the image estimate.

The ML-EM algorithm possesses two favorable properties for image reconstruction. The
first is that a complex imaging-system model can be incorporated into the algorithm simply
by using an that contains the desired physics. The second is that, with nonnegative g and H

and a nonnegative initial estimate , the nonlinear multiplicative update insures that the
subsequent estimates will also be nonnegative. Thus images with unrealistic negative
radiotracer concentrations will never be obtained. This has been shown to produce
advantages in many image reconstruction situations [7].

Another means of solving (1) is the Landweber iteration. The Landweber algorithm is
written

(4)

where α is an acceleration parameter that must be properly selected for the algorithm to
converge. The Landweber algorithm, like ML-EM, allows for easy incorporation of any

desired H but, unlike ML-EM, the errors in estimate of  are obtained by subtraction
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rather than division and the update is additive. Thus, the algorithm is linear, and while this
means that voxel estimates with negative radiotracer values are possible and even likely, the
linearity leads to easier analysis of reconstructed image properties.

B. Noise and Resolution Analysis
The noise properties of an image are typically defined in terms of the covariance function

(5)

Here  is the ensemble mean of the image estimate at the pixel located at image position r
and the brackets indicate the expected value over the ensemble. If the imaging system is
shift invariant, the c(r, r′) = c(r − r′) for any r. The Fourier transform of c(r − r′) is then the
noise power spectrum (NPS) and is often used as a measure of system noise properties. In a
similar manner the resolution properties are measured using the point spread function (PSF)
and its Fourier transform, the modulation transfer function (MTF). For a linear and shift-
invariant system, NPS and MTF completely specify the system resolution and the noise
properties through second-order statistics.

Unfortunately, tomographic systems are not shift-invariant, and both the resolution and
noise properties are a function of position within the image. Also, if the ML-EM algorithm
is used, the relationship between f and f̂ is nonlinear. One measure of the noise properties for
shift-variant systems is the Wigner spectrum, which gives the autocovariance relative to a
point, r. In order to calculate the Wigner spectrum the local covariance at image position r
(the Cr) must be calculated. To insure a symmetric distribution and hence a purely real noise
power spectrum, an element of the Cr is defined as

(6)

The Fourier transform of cr(r′) with respect to r′ is the Wigner spectrum, Wr, and is
calculated as

(7)

where ρ is the wavevector. The quantity Wr(ρ) is then a frequency-domain measure of the
local noise properties for a region centered at the image position r. Note that for a shift-
invariant system the Wigner spectrum would be equal to the NPS.

In this study, we shall also have reason to measure the resolution properties of the imaging
system. For both Landweber and ML-EM the measurement process is complicated by the
fact that the imaging system is shift variant, and ML-EM has the further difficulty of
nonlinearity. It has been shown that resolution for nonlinear, nonstationary, tomographic
imaging systems can be measured using the local point response function (PSFr) [6], [8].
PSFr is defined as the image response to a point source at object position r. It is a low-
contrast approximation and is typically measured with a point source of low contrast relative
to the background. However, the PSFr is known to behave linearly within a fairly broad
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range of object contrasts [9]. We shall define the PSFr symmetrically, as in (6). The Fourier
transform of the PSFr, the local modulation transfer function (MTFr), is then purely real.

C. Simulation Methods
Two phantoms were used during this study. The first, shown in Fig. 1, was a single slice
from the Hoffman brain phantom designed to model the radiotracer uptake of 18F-labeled
fluorodeoxyglucose in the human brain [10]. The second was a uniformly emitting and
attenuating two-dimensional (2-) disk with an 8.5-m radius. While the disk is reflective of
no real clinical imaging task and brain imaging plays only a small role in current clinical
practice, these phantoms were chosen for their ability to illustrate general noise properties as
the former serves as a model for low-contrast regions and the latter is a well-known phantom
with high-resolution structures. The disk phantom was used to quantitatively measure the
noise and resolution properties of the imaging system. The resolution measurements were
made by calculating the difference between reconstructions of the disk phantom alone and
the disk phantom with a point source of contrast 1% relative to the disk. The position of the
point source was 2.1 cm from the disk center.

The projection data, g, were computer generated with an analytical model of H that included
the effects of attenuation and the finite resolution of a parallel-hole collimator. Blur was
simulated for a collimator with a bore length of 34.0 mm and a bore diameter of 1.4 mm.
The detector consisted of 643-mm pixels, and no other blur from the detector was assumed.
Sixty-four projections were collected over 360°. In order to simulate the effects of modeling
a continuous-to-discrete H with a discrete-to-discrete H, the projection data were generated
using an H 5 × 5 times more finely sampled than the H used for the reconstruction. The finer
sampling for generation of g was the only source of error for the H containing the system
model with a 1.4–mm bore diameter. The incorrect H matrices used by the reconstruction
algorithms were generated with imaging-system models that assumed bore diameters
different than 1.4 mm. While it is probably unlikely in clinical practice that the assumed
bore diameter for compensation is too large, results from overcompensation were included
in order to illustrate the effects, positive or negative, if such an assumption was made.

III. Results
A. Qualitative Assessment With the Hoffman Brain Phantom

The slice from the digital Hoffman brain was projected through a simulated imaging system
with a collimator of 1.4-mm bore diameter and 34.0-mm bore length. Statistical noise was
added at 500 000 total projection counts. These data were then ML-EM reconstructed using
H matrices that contained models assuming collimator blurs ranging from none to that
resulting from a 2.0-mm bore diameter. Fig. 2 gives ML-EM estimates after 10, 20, 50, 100,
200, and 400 iterations reconstructed with an H matrix that assumed the correct 1.4-mm
collimator bore diameter. The expected blurring at low iterations and noise buildup at higher
iterations are seen. Fig. 3 gives estimates at the same iteration numbers for an H that
assumed a perfect parallel-hole collimator (reconstruction with no compensation for detector
blur, which we define as our most extreme undercompensation). Again, blurring at low
iterations and increased noise at higher iterations is seen. The striking feature, however,
when compared to Fig. 2, is the difference in noise texture between the images reconstructed
with the two different collimator models. The noise in the uncompensated images seems to
take on a much more salt-and-pepper character, with shorter apparent noise correlations than
noise in the properly compensated images. Fig. 4 shows the estimates reconstructed with an
H matrix that assumed a bore diameter of 2.0 mm (overcompensation). The noise
correlations in these images appear to display even longer noise correlations than those in
Fig. 2. Fig. 5 shows images after 200 iterations for H matrices assuming no collimator blur
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and blurs from collimator bore models ranging in size from 0.8 to 2.0 mm. It appears that, as
the assumed collimator blur increases, so too does the length of the noise correlations
(although Figs. 2–4 should be consulted when comparing models at a given iteration number
as the apparent convergence is a function of the model). This is a counterintuitive result, as
compensation for a broader point spread function should sharpen the image, and one might
instinctively believe it would sharpen the noise as well [11].

Although it is difficult to visually estimate in a quantitative manner the resolution of the
images reconstructed using the different system models, there are no obvious differences in
the resolution of the various images shown in Fig. 5. This is another counterintuitive result
since, as we pointed out in Section I, for linear and shift-invariant systems the resolution and
noise should follow the same course. With such an obvious differences in noise properties as
are apparent in Figs. 2–5, we might expect an equally obvious difference in resolution, but it
is difficult to say from visual analysis which of the images has the superior resolution.

B. Quantitative Assessment of Local Noise and Resolution Properties
The conclusions of Section III-A were based purely on qualitative visual analysis. In order
to determine if these conclusions stood up to more quantitative inspection, we turned to the
local noise and resolution methods discussed in Section II-B. For this study the uniformly
emitting and attenuating disk served as the phantom.

The resolution was measured using a point source located 2.1 cm from the center of the disk.
Noise-free projection data were generated for a collimator with a 1.4-mm bore diameter, and
this noise-free data were ML_EM reconstructed using imaging-system models with assumed
bore diameters of 0.8, 1.4, and 2.0 mm. The response to the point source was then Fourier
transformed to generate the local MTF. Fig. 6 shows the MTFr after 200 iterations for
models assuming a bore diameter of 0.8, 1.4, and 2.0 mm, and Fig. 7 gives radially averaged
profiles through the MTFr of Fig. 6. It appears that the qualitative analysis of Section III-A
was correct as no great differences in resolution are seen between the different
compensations, though some differences at lower frequencies are seen.

Poisson statistical noise was added at a count level of 500 000 counts and the images were
reconstructed using the ML-EM algorithm with the various correct and incorrect imaging-
system models built into the H matrix. The local noise properties were estimated from a
sample of 10 000 images reconstructed from independent Poisson noise realizations. The
estimation procedure was performed using (6) with the expectation replaced by a sum over
all the images.

Cr and Wr were calculated for r again located 2.1 cm from the center of the uniformly
emitting disk and for compensation for collimators with bore diameters of 0.8, 1.4, and 2.0
mm. Images of the Wr are given in Fig. 8 and radially averaged profiles through the Wr are
given in Fig. 9. Again, the qualitative analysis of Section III-A. appears to be correct. Figs. 8
and 9 show large differences in the noise correlations among the different compensations,
with the correlation length increasing as the assumed bore diameter increases.

Figs. 6–9 clearly demonstrate that the noise properties and resolution properties are changed
in different manners when images are ML-EM reconstructed using different collimator-blur
compensation models. In order to determine if it was the nonlinearity of ML-EM that led to
the unexpected behavior in the ratio of noise correlations to resolution, we conducted the
same experiment using the linear Landwebber algorithm. The results after 200 iterations are
given in Fig. 10, which shows the radial average through the MTFr for 0.8-, 1.4-, and 2.0-
mm compensations, and Fig. 11, which gives the radial averages through the Wr for these
same compensations. Figs. 10 and 11 show the same trends as were seen for ML-EM, with
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the noise correlations broader for overcompensated images but the resolution not changing
greatly. We concluded from this that is was the shift-variant property of the reconstruction
algorithms, rather than the nonlinearity, that lead to the different behaviors of the resolution
and noise when the reconstruction model is altered.

C. SNR in Terms of the Local NEQ
In Section I, we pointed out that for a linear and shift-invariant system the MTF and NPS
change in a manner such that the ratio MTF2/NPS, termed the noise equivalent quanta (or
NEQ), remains the same. For shift-variant tomographic images the NEQ is not precisely
defined, but we can define a local NEQ (NEQr) as

(8)

Fig. 12 gives the radial averages about r of 1-D profiles through the NEQr’s (200 iterations)
for reconstruction models assuming collimator bore diameters of 0.8, 1.4, and 2.0 mm and r
at 2.1 cm from the disk center. From the previous results, where we saw the noise power
undergo large changes while the resolution remained relatively constant, we might expect
large changes in the NEQr. However Fig. 12 shows very little change in NEQr. The
differences at low frequencies are probably attributable to the fact that at a small radius there
are fewer samples in the radial averaging, and hence greater estimation error for the Wr.

In order to determine how the Wr could change so dramatically while the NEQr remained
constant, we plotted the natural log of the NEQr (Fig. 13). Like Fig. 12, this shows that the
NEQr is unchanged at lower frequencies. However Fig. 13 shows large changes in NEQr at
higher frequencies—the frequencies where the noise correlations differ the most between the
levels of compensation. At these frequencies, though, the NEQr is so small that the
differences do not show up on a linear plot, and the overall signal to noise for the image is
likely unaffected by these differences.

While the overall NEQr is little affected, it should be pointed out that an ideal-observer
model such as the NEQr is able to perfectly distinguish a given frequency while the human
observer is not. Noise correlations at frequencies containing little signal could well have a
large effect on human task performance. The fact that the NEQr remains unchanged
regardless of compensation does not necessarily imply that the large changes in Wr are not
important to human task performance.

IV. Conclusion
We have studied the effects of incorrect compensation for detector blur on the noise and
resolution properties of ML-EM images. Using local noise and resolution measures, we have
demonstrated that the noise properties are greatly changed by the model while the resolution
properties are less affected. One interesting result is that the noise correlations are actually
broadened as the blur is more compensated for, with the noise for highly-compensated
images clumped at fewer and lower frequencies.

Despite these large differences in the Wr, studies involving the NEQr revealed little
difference in SNRs for overcompensated, undercompensated, or properly compensated
images. The only differences seen were at values so low that a log plot was required in order
to see them.
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While the ideal observer has no difficulty with noise at frequencies where the signal is low,
the human observer might not find it such an easy task to ignore noise at frequencies without
signal. More analysis is required in order to ascertain the impact of these findings on the
quality of reconstructed images. The differences in Wr were surprising, and it is important to
determine if this has an effect on image quality in terms of the ability of a human to perform
a task. Methods we shall pursue for studying these effects involve more quantitative
measures of image quality in terms of human task performance. These include human
observer studies and studies using computer observers whose performance well models that
of the human observer.
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Fig. 1.
The slice from the Hoffman brain phantom used in this study.
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Fig. 2.
The reconstructed Hoffman brain phantom for correct compensation after 10, 20, 50, 100,
200, and 400 iterations.
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Fig. 3.
The reconstructed phantom with undercompensation (no blur modeled) after 10, 20, 50, 100,
200, and 400 iterations.
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Fig. 4.
The reconstructed phantom for overcompensation (2.0-mm bore) after 10, 20, 50, 100, 200,
and 400 iterations.
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Fig. 5.
The Hoffman brain phantom after 200 iterations for no compensation and compensation
assuming bore diameters of 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 mm.
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Fig. 6.
The MTFr for (from left to right) 0.8-, 1.4-, and 2.0-mm assumed bore diameter after 200
iterations for ML-EM reconstruction of a uniform disk.
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Fig. 7.
Radially averaged profiles through the MTFr for compensations at 0.8, 1.4, and 2.0 mm for
ML-EM after 200 iterations.
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Fig. 8.
Wr for (from left to right) 0.8-, 1.4-, and 2.0-mm assumed bore diameters after 200 iterations
for ML-EM reconstruction of a uniform disk.
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Fig. 9.
Radially averaged profiles through the Wr for compensations at 0.8, 1.4, and 2.0 mm for
ML-EM.
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Fig. 10.
Radially averaged profiles through the MTFr for compensations at 0.8, 1.4, and 2.0 mm
after 200 Landweber iterations.
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Fig. 11.
Radially averaged profiles through the Wr for compensations at 0.8, 1.4, and 2.0 mm after
200 Landweber iterations.
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Fig. 12.
Radially averaged profiles through the NEQr for compensations at 0.8 mm, 1.4 mm, and 2.0
mm for ML-EM.
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Fig. 13.
The log values for the NEQr’s plotted in Fig. 12.
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