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Abstract

A large percentage of prostate cancers harbor TMPRSS2-ERG gene fusions, leading to aberrant overexpression of the
transcription factor ERG. The target genes deregulated by this rearrangement, however, remain mostly unknown. To address
this subject we performed genome-wide mRNA expression analysis on 6 non-malignant prostate samples and 24 prostate
carcinomas with (n = 16) and without (n = 8) TMPRSS2-ERG fusion as determined by FISH. The top-most differentially expressed
genes and their associations with ERG over-expression were technically validated by quantitative real-time PCR and biologically
validated in an independent series of 200 prostate carcinomas. Several genes encoding metabolic enzymes or extracellular/
transmembrane proteins involved in cell adhesion, matrix remodeling and signal transduction pathways were found to be co-
expressed with ERG. Within those significantly over-expressed in fusion-positive carcinomas, CRISP3 showed more than a 50-fold
increase when compared to fusion-negative carcinomas, whose expression levels were in turn similar to that of non-malignant
samples. In the independent validation series, ERG and CRISP3 mRNA levels were strongly correlated (rs = 0.65, p,0.001) and
both were associated with pT3 disease staging. Furthermore, immunohistochemistry results showed CRISP3 protein
overexpression in 63% of the carcinomas and chromatin immunoprecipitation with an anti-ERG antibody showed that CRISP3 is
a direct target of the transcription factor ERG. We conclude that ERG rearrangement is associated with significant expression
alterations in genes involved in critical cellular pathways that define a subset of locally advanced PCa. In particular, we show that
CRISP3 is a direct target of ERG that is strongly overexpressed in PCa with the TMPRSS2-ERG fusion gene.
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Introduction

Gene fusions involving members of the ETS family of

transcription factors, such as ERG, ETV1, ETV4 and ETV5, have

been shown to occur in a high proportion of prostate carcinomas

[1,2,3]. ERG rearrangement with TMPRSS2, a prostate-specific

transmembrane serine protease regulated by androgens [4],

accounts for more than 90% of the fusion-positive cases, being

present in about 50% of prostate carcinomas [5] and 20% of the

presumed precursor lesion high-grade prostatic intraepithelial

neoplasia (HGPIN) [6]. ETS rearrangements seem to define a

distinct subgroup of prostate carcinomas, but their biological

relevance and clinical impact is not yet understood.

ETS transcription factors have been associated with several

biological processes [7,8,9]. Identification of deregulated genes

downstream of the overexpressed TMPRSS2-ERG fusion gene may

clarify the relevance of this event for prostate carcinogenesis and

provide feasible targets for novel treatment approaches. The

scarce studies that have addressed this issue have described only a

limited number of genes associated with ERG overexpression in

prostate cancer [10,11,12]. Using an in silico approach on

published expression data, it has been shown that HDAC1 (a

histone deacetylase involved in epigenetic programming) was

consistently co-expressed with ERG [10]. These authors also

highlighted genetic signatures enriched in ERG positive tumors,

namely an increased expression of WNT-associated pathways and
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down-regulation of TNF and cell-death pathways [10]. Increased

expression of members of plasminogen activator pathway were

also described to be associated with ERG overexpression [11].

Using a similar approach to provide signatures linked to ETS

transcription factors (ERG, ETV1 and ETV4), others have reported

an enrichment of genes of the chromosome region 6q21 when

comparing ETS-negative with ETS-positive PCa [12].

In this work, the transcriptomes of a series of prostate

carcinomas, stratified by the TMPRSS2-ERG fusion gene status,

were analyzed using whole-genome expression microarrays. Genes

with significant differential expression between the TMPRSS2-

ERG positive and negative lesions were identified and validated by

qRT-PCR in a larger series of prostate carcinomas, as well as by

immunohistochemistry and chromatin immunoprecipitation anal-

yses (ChIP).

Methods

Ethics Statement
This study was approved by the institutional review board.

Prostate tissue specimens
Primary tumor samples were collected from patients with

clinically localized prostate adenocarcinoma (PCa) consecutively

diagnosed and treated with open radical prostatectomy at the

Portuguese Oncology Institute – Porto, Portugal. For control

purposes, benign prostate hyperplasias (BPH) and normal prostate

tissues (NPT) were used (grouped as non-malignant tissues –

NMT). BPH samples were collected from patients that underwent

transurethral resection of the prostate and NPT samples were

collected from the peripheral zone of prostates obtained from

cystoprostatectomy specimens of bladder cancer patients. Two

series of primary prostate carcinomas were available for the

purposes of this study: a test group of 24 carcinomas diagnosed

from 1999 to 2000, and a validation group comprising 200

consecutive carcinomas collected from 2001 to 2004. From each

case, a representative paraffin block of the dominant tumor focus

was selected for FISH and immunohistochemical analysis. The

tumor areas varied from 0.5 to 2.5 cm in greatest diameter,

approximately. After histological identification of PCa, BPH and

NPT by an experienced pathologist (author: RH), fresh-frozen

tissue fragments (which were immediately frozen after surgical

removal, i.e., less than 30 minutes following surgery) were trimmed

to maximize the yield of target cells (.70%) and an average of fifty

12-micron thick sections was cut for RNA extraction. Relevant

clinical data, namely Gleason grading, clinico-pathological staging

and PSA level at diagnosis, were obtained from medical records.

Expression microarrays
A total of 24 PCa, 3 BPH and 3 NPT (collected from the

peripheral zone and selected based on availability of good quality

RNA) were submitted to whole-genome expression analysis using

the Applied Biosystems Expression Array platform (Applied

Biosystems, Foster City, CA, USA). For this purpose, total RNA

was extracted from 250 mg of tissue using the FastRNA Kit

(Qbiogene, Carlsbad, USA) and processed into digoxigenin(DIG)-

labeled cDNA using the Applied Biosystems Chemiluminescent RT

Labeling Kit according to the manufacturers’ instructions. The

Human Genome Survey Microarray slides (V2.0) contain 32,878

oligonucleotide probes (60-mers) targeting expressed sequences of

more than 29,000 known or predicted genes. The system includes

dedicated software for the normalization, processing and statistical

analysis of the acquired images. Normalized, log-transformed and

median-centered array results (features with a signal at least two

standard deviations above the local noise level in at least 50% of the

samples) were submitted to Significance Analysis of Microarrays

(SAM) using the two-class unpaired t-statistic method to determine

differentially expressed genes among sample subgroups [13].

Fluorescence in situ hybridization (FISH)
To determine TMPRSS2-ERG fusion status in the test series of

carcinomas (n = 24) and in the non-malignant tissues (n = 6), four-

micron thick sections were cut from representative paraffin-

embedded blocks of each sample onto SuperFrost Plus Adhesion

slides (Menzel-Glaser, Braunschweig, Germany). Sample process-

ing, hybridization, and analysis were performed as previously

described [14]. A triple-labeled commercial probe flanking the

TMPRSS2 and ERG genes at 21q22 (Poseidon TMPRSS2-ERG

probe, Kreatech Diagnostics, Netherlands) was applied to each

sample. The probe design allows identification of TMPRSS2-ERG

fusions but also possible rearrangements of each gene with other

partners. An abnormal signal pattern was considered representa-

tive when present in a minimum of 50 morphologically intact,

nonoverlapping nuclei [15].

Technical validation by quantitative Real-time PCR (qRT-
PCR)

To confirm findings obtained in the expression array, qRT-PCR

was performed for selected genes in a subset of 13 samples with

available RNA (3 NMT and 10 PCa from the series analyzed with

the array). For this purpose, 200 ng of RNA were converted into

cDNA using the TransPlex Whole Transcriptome Amplification

Kit (Sigma-Aldrich), according to the manufacturer’s instructions.

Primers and probes for ERG, CRISP3 and RBMS2 were designed

using the Primer Express 2.0 software (Applied Biosystems) and

acquired from Metabion (Metabion, Martinsried, Deutschland)

(Table S1). Primers and probe for the beta-glucuronidase (GUSB)

gene, used as endogenous control, were acquired as a pre-developed

assay reagent from Applied Biosystems. To determine the relative

expression level of each target gene, the comparative Ct method was

used [16].

Biological validation using Taqman Low Density Arrays
(TLDA)

To validate selected candidate genes, an independent series of

200 consecutive PCa cases was analyzed using custom-design

TLDA cards from Applied Biosystems, specifically comprising

probes for ERG, CRISP3 and RBMS2. For this purpose, 100 mg of

RNA were converted to cDNA using the High-Capacity RNA-to-

cDNA kit, according to the manufacturer’s instructions (Applied

Biosystems). Relative expression values were obtained by the

comparative Ct method, using 18S as endogenous control.

External validation from publicly available microarray
data

Using the data available from Setlur et al. (dataset GSE8402

[17]) that stratifies 455 primary prostate tumours according to the

presence/absence of the TMPRSS2-ERG fusion, we selected all the

103 fusion positive cases available and also 103 randomly selected

fusion negative cases. Normalized signal intensity values for both

ERG and CRISP3 were linearized and plotted in both TMPRSS2-

ERG positive and negative groups.

Chromatin immunoprecipitation (ChIP)
We used the TMPRSS2-ERG positive cell line VCaP (European

Collection of Cell Cultures, Sigma-Aldrich) and the ERG

monoclonal antibody #EPR3864 (Abcam) to evaluate ERG

CRISP3 Is a Direct Target of ERG
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binding to CRISP3 promoter. For each immunoprecipitation with

the EZ-Magna ChIPTM G kit (Millipore) 26106 cells were used

following the manufacturer’s instructions. To select for putative

ETS binding sequences in the promoter region of CRISP3, a

bioinformatic survey of the 10 kb sequence upstream of the

CRISP3 ATG start site was conducted using ConSite [18]. Three

regions, each containing two putative ETS binding sequences,

were selected for PCR analysis of the ERG-immunoprecipitated

chromatin. Primers were designed using the Primer3 online

software, and acquired from Metabion (Metabion, Martinsried,

Deutschland) (Table S2). The presence of the TMPRSS2-ERG

rearrangement in VCaP cells was confirmed by FISH analysis

using the triple-labeled Poseidon TMPRSS2-ERG probe, as

described above. High levels of the TMPRSS2-ERG transcript

were confirmed by qRT-PCR (data not shown).

Protein analysis by immunohistochemistry (IHC)
Four-micron thick sections from representative paraffin-embed-

ded blocks of the 30 samples used in the expression array (24 PCa

and 6 NMT) were deparaffinised in xylene and hydrated through

an alcohol series. After antigen retrieval with EDTA, tissues were

stained with anti-CRISP3 antibody (clone LV-2A2, sc-101378)

diluted 1/200, as previously described [19]. Antibody specificity

was confirmed by Western-blot analysis. An additional 10 BPH

and 8 NPT samples were included to increase the number of

negative controls, whereas pancreatic tissue was used as a positive

control (data not shown). Protein expression was classified

according to the following parameters: 0- no immunoexpression,

1- underexpression, 2- expression similar to the normal tissue, 3-

overexpression. Cases with heterogeneous expression were also

noted.

Statistical analysis
The non-parametric Mann-Whitney (MW) test was applied to

compare RNA expression levels of ERG, CRISP3 and RBMS2 in

the different sample groups [non-malignant tissue (NMT),

TMPRSS2-ERG-positive PCa (TMP-ERG+) and TMPRSS2-ERG-

negative PCa (TMP-ERG2)] and to correlate this expression with

clinico-pathological parameters. To assess possible associations

between ERG, CRISP3 and RBMS2 levels in the same samples, and

to determine the concordance of findings obtained by different

methodologies, the Spearman non-parametric correlation test (rs)

was used. For correlation analysis between the IHC data and the

clinico-pathological parameters, the Pearson Chi-Square was used,

testing for Linear-by-linear association when appropriate. A

p-value smaller than 0.05 was considered statistically significant.

Statistical analyses were performed using the Statistical Package

for Social Sciences software, version 15.0 (SPSS Inc., Chicago, IL).

Results

Fluorescence in situ hybridization
Sixteen of the 24 carcinomas analyzed had FISH signal patterns

indicative of a TMPRSS2-ERG rearrangement (67%, Table S3,

Figure 1). Based on the three-color probe setting, 8 PCa showed a

normal signal pattern (Figure 1A), 5 PCa displayed a pattern

consistent with interstitial deletion between the TMPRSS2 and

ERG genes (Figure 1B), whereas 11 PCa showed the insertion

mechanism of the rearrangement (Figure 1C). None of the samples

showed a pattern indicative of ERG or TMPRSS2 involvement

with other partners. No rearrangement was seen in the six non-

malignant samples.

Expression microarray analysis
After quantile normalization of the expression results for the 30

samples, a total of 18,797 probes passed our final quality criteria

(signal intensity more than two standard deviations above the local

noise level in at least 12 samples) [20]. It should be noted that the

values for the ERG probe in the expression array showed a modest

variation between fusion-positive and fusion-negative cancers.

This particular 60-mer probe targets an exon11:exon12 junction

towards the 39 terminal of ERG that is common to most

transcripts. As the targeted sequence shows no known single base

polymorphisms, the probe should be able to detect fusion-driven

overexpression, even if this was not evident in our data. Given that

qRT-PCR with a different probe design clearly validated ERG

overexpression in fusion-positive carcinomas (see corresponding

Results section below), fusion status as determined by FISH was

used for subsequent SAM analysis.

Several gene lists were generated from the normalized, log-

transformed data using SAM (two-class unpaired analysis, t-statistic).

Figure 1. Examples of the TMPRSS2-ERG tri-color FISH assay results. A) Two clusters of three co-localized signals indicative of a sample
without rearrangement (# P134); B) One cluster of three co-localized signals and one cluster with only the blue and red signals, indicative of
rearrangement through deletion (# P164); C) One cluster of three co-localized signals and two clusters (blue-green and blue-red) indicative of
rearrangement through insertion (# P072). Yellow arrowheads point to the TMPRSS2-ERG fusion; insertion of the segment between TMPRSS2 and ERG
in a different part of the genome is marked by a white arrowhead. Split of the blue signal was consistently found in TMPRSS2-ERG rearrangement
through insertion, as the blue probe covers part of ERG (also validated with ERG break-apart BAC probes in the same cases – not shown). Detailed
FISH findings are available in Table S3.
doi:10.1371/journal.pone.0022317.g001

CRISP3 Is a Direct Target of ERG
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On a first analysis, cancerous (n = 24) and non-cancerous lesions

(n = 6) were compared, providing ,1,596 significant hits at a 5%

false-discovery rate (FDR). Genes with significant differences

between ERG-positive (n = 16) and ERG-negative tumors (n = 8)

were also obtained (114 hits, FDR = 5.3%). A comparison of non-

malignant samples with either ERG-positive (1154 hits, FDR = 5%)

or ERG-negative cancers (35 hits, FDR,5%) was additionally

performed. By cross-tabulating the aforementioned gene lists, several

candidates emerged that were categorized into subgroups based on

their distinct biological roles (Figure 2 and Figure S1).

The first subgroup of genes showed significant fold-changes only

in the presence of over-expressed ERG (Figure 2A and Figure

S1A). Strikingly, the top-ranked gene – CRISP3 – showed a

massive fold increase in ERG-positive carcinomas as compared to

both non-malignant tissue and ERG-negative carcinomas, which

led us to validate and study this candidate target further. Within

this list, comprised mainly of over-expressed candidates, several

metabolic enzymes could be found, such as GLDC (amino-acid

metabolism), B3GAT1 (carbohydrate metabolism), PLA1A (lipid,

fatty acid and steroid metabolism), PLA2G7 (fatty acid and steroid

metabolism) and DNASE2B (nucleic acid metabolism). Several

membrane receptor and extracellular matrix proteins were also

noticeable, with strong up-regulation of COL9A2 (cell adhesion

and communication functions), COL2A1 (cell adhesion and

motility), KCNC2 (ion channel, cell communication), KCNN2 (ion

channel, cell communication), MYO6 (cell structure and motility),

CHRM3 (membrane receptor with signaling activity) and RAB3B

(intracellular protein trafficking, signaling transduction function)

(Figure 2A). The top-ranked down-regulated genes, such as HSPB3

(chaperone) or HIF3A (transcription factor), displayed much

smaller fold-changes (Figure S1A).

The second subgroup comprised genes that showed a mutually

exclusive association with ERG (Figure 2B and Figure S1B).

Within this group, SPINK1 (serine protease inhibitor), TFF3

(growth factor, signaling molecule), PKIB (protein kinase inhibitor)

and FABP5 (carrier protein, steroid hormone-mediated signaling)

showed noticeably higher levels of expression in samples without

ERG fusion (Figure 2B), whereas NUCB1 (nucleic acid binding

protein), ORM1 (binding protein) and GRN (signaling molecule)

showed significantly lower expression in this ERG-negative group

(Figure S1B).

We then distinguished a group of genes with a significant fold-

increase in carcinomas and whose expression changes did not

seem to be associated with ERG (Figure 2C and Figure S1C).

Noteworthy hits based on fold-change and function were AK5 (a

kinase involved in nucleic acid metabolism), RELN (serine

protease), ASPN (transmembrane receptor with signal transduction

activity), HPN (serine protease) and REPS2 (protein modulator,

part of signal transduction complex) (Figure 2C). Within the list of

genes significantly down-regulated in tumor samples (but not

associated with ERG), CXCL13 (cytokine precursor), UBOX5 and

ZNF179 (both showing ubiquitin ligase activity) are worth

highlighting (Figure S1C).

Finally, a subgroup of genes showed significant fold-differences

in ERG-negative carcinomas with an even more significant

increase/decrease in ERG positive tumors (Figure 2D and Figure

S1D). Within the very few genes showing under-expression in

ERG-negative carcinomas with an even more marked fold-

decrease in ERG-positive lesions, RBMS2 (nucleic acid binding

protein) displayed a massive fold-change reduction, which we set

out to validate (Figure S1D). Within the group of genes showing

the inverse pattern (i.e., overexpression in ERG-negative cancers

with a marked fold-increase in ERG-positive tumors), noteworthy

hits were AMACR (lipid and amino-acid metabolic enzyme), PCA3

(prostate cancer antigen), THBS4 (a membrane protein involved in

various processes) and GAL (signaling molecule) (Figure 2D).

qRT-PCR analysis (technical validation)
The main findings obtained in the technical validation series are

displayed in Figure 3 and Figure S2, together with the array results for

ERG and CRISP3. Within this 13 sample subset, a positive correlation

could be seen between CRISP3 and ERG values (rs = 0.597, p = 0.031,

Figure 3B), but not between RBMS2 and ERG (rs = 20.355,

p = 0.234; data not shown). The non-parametric correlation between

expression array and qRT-PCR results for CRISP3 was very high

(rs = 0.901, p,0.001, Figure 3C), whereas the same analysis for ERG

(rs = 0.601, p = 0.029) and RBMS2 (rs = 0.641, p = 0.018) revealed a

significant but smaller degree of correspondence (data not shown).

TLDA results (validation series)
Within the 200 independent carcinomas assessed using a

custom-made TLDA, a positive correlation was observed between

ERG and CRISP3 (rs = 0.646, p,0.00001, Figure 4A), but no

association could be seen for RBMS2 (data not shown). When we

performed a two-group categorization of the carcinomas based on

the median value of the ERG probe, CRISP3 values were

significantly higher in the group of samples with increased ERG

(Figure 4B, p,0.001, Mann-Whitney U test; median 52-fold

increase).

External validation
Using the available normalized signal intensity values for both

ERG and CRISP3 in the 206 samples selected from Setlur et al.

(dataset GSE8402 [18]), a significant positive correlation was

found (rs = 0.595, p,0.00001). When tumors were stratified

according to the presence of the TMPRSS2-ERG rearrangement,

CRISP3 was found significantly upregulated in the fusion-positive

group (Figure S3, p,0.001, Mann-Whitney U test; median 5.5-

fold increase).

CRISP3 is a direct target of ERG
Using chromatin immunoprecipitation, we showed that ERG

binds to the CRISP3 promoter. From a bioinformatics approach

we found 23 putative ETS binding sites in the 210 kb region of

the CRISP3 promoter (data not shown) and selected three regions

for PCR analysis of the ERG-immunoprecipitated chromatin

(Figure 5A). Specific amplification of the three CRISP3 promoter

regions, each containing two putative binding sequences, is shown

in Figure 5B. PCR product sequences were confirmed by

sequencing analysis (not shown).

Immunohistochemistry findings
CRISP3 protein expression was observed in the cytoplasm of

epithelial cells. A strong immunostaining was observed in the

Figure 2. Genes showing different patterns of overexpression in carcinomas. A) genes with high fold-increase in ERG-positive carcinomas;
B) genes with overexpression in ERG-negative carcinomas; C) genes with high fold-increase in carcinomas, independent of ERG status; D) genes with
high fold-increase in ERG-negative carcinomas accompanied by an even greater overexpression in ERG-positive cancers. Abbreviations: FC(a), median
fold-change between non-malignant samples (NMT) and ERG-negative carcinomas; FC(b), median fold-change between non-malignant samples and
ERG-positive carcinomas; FDR, false discovery rate. The top 20 genes in each subgroup, ranked based on fold-increase, are provided (when available).
doi:10.1371/journal.pone.0022317.g002
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pancreatic tissue used as positive control, whereas non-malignant

prostatic tissue depicted a less intense staining (not shown). In the

24 prostatectomy specimens analyzed by expression arrays,

CRISP3 was classified as over-expressed in 62.5% of tumor

samples (8 ERG positive and 7 ERG negative) as compared to the

non-malignant prostatic tissue (Table 1, Figure 6), with the

remaining showing normal/decreased protein expression. A

heterogeneous staining pattern (i.e., tumors containing areas with

various immunostaining intensities) was found in 11 tumors (46%).

No differences were observed in the staining pattern of CRISP3

between ERG-positive and ERG-negative PCa. Western-blot

analysis of protein extracts obtained from two PCa samples and

two prostate-derived cell lines with the CRISP3 antibody (clone

LV-2A2, sc-101378) proved antibody specificity to a protein of

,30 kDa, as expected. Interestingly, while CRISP3 was detected

in both PCa samples and in the tumor-derived VCaP cells, the

benign prostate cell line PNT2 showed no detectable expression

(data not shown).

Clinico-pathological associations
Table 1 and Table 2 show the relationship between ERG and

CRISP3 expression and the clinico-pathological parameters for the

test and validation series, respectively. Using non-parametric tests

on the qRT-PCR data from the validation series, we found a

significant association between both ERG and CRISP3 expression

with pathological stage pT3, with p = 0.001 and p = 0.006 for ERG

and CRISP3, respectively. In the array series, association of

CRISP3 expression with pT3 tumors was not statistically significant

(p = 0.183), probably due to the low number of samples that was

available for qRT-PCR analysis (n = 10). This observation is

supported by the array data (n = 24) where CRISP3 expression

shows a tendency for a significant association with pT3 tumors

(p = 0.074). Qualitative assessment of CRISP3 expression by IHC

was not associated with any clinico-pathological parameter. A

significant, but borderline, association was found between ERG

expression and lower Gleason grades (p = 0.043), whereas ERG

rearrangements assessed by FISH were significantly associated

with pT3 staging (p = 0.019). The overall data, therefore, indicates

that the TMPRSS2-ERG fusion gene and the consequent ERG and

CRISP3 overexpression are associated with pathological features

related with locally advanced disease in patients with clinically

localized prostate cancer. No significant association was found

between PSA levels at diagnosis and either ERG or CRISP3

expression in any of the series analyzed.

Discussion

The majority of prostate carcinomas harbor recurrent fusion

genes, albeit the biological mechanisms triggered by these events

and their clinical significance for the patients remain mostly

undetermined. Specifically, although the ETS genes involved in

the rearrangements are transcription factors known to regulate key

cellular processes [8], their nuclear targets in prostate tissue

remain largely unknown, precluding most approaches to hinder or

revert the effects of the fusion chimera. In this work we used global

gene expression data from a series of prostate lesions with and

without a TMPRSS2-ERG fusion to assess possible downstream

targets of this rearrangement.

By crosschecking gene lists obtained from two-sided compari-

sons within different sample groups, several strong candidates

emerged that could be linked to either prostate carcinogenesis in

general or to overexpression of the transcription factor ERG in

particular. The list of genes showing significant fold-changes in the

presence of up-regulated ERG comprised mainly overexpressed

Figure 3. Correlation between ERG and CRISP3 in the test series
of samples. A) Expression array findings for ERG and CRISP3; B)
Quantitative Real-time PCR findings for ERG and CRISP3; C) Methodo-
logical comparison between array and qRT-PCR probes for CRISP3.
doi:10.1371/journal.pone.0022317.g003

CRISP3 Is a Direct Target of ERG
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candidates and included several metabolic enzymes, some of

which previously found associated with TMPRSS2-ERG, such as

PLA1A and PLA2G7 [10,11,21]. A clear over-representation of

membrane receptor proteins, extracellular matrix proteins and

adhesion molecules was also noticeable, and in particular MYO6,

CHRM3 and several potassium-channel family members [11,21].

Figure 4. Associations between ERG and CRISP3 in the validation series. A) Non-parametric correlation between expression values for ERG
and CRISP3; B) Box-plots of CRISP3 expression values grouped according to the median levels of ERG (Mann-Whitney U test).
doi:10.1371/journal.pone.0022317.g004

Figure 5. Chromatin immunoprecipitation of CRISP3 promoter with ERG antibody. A) Schematic representation of CRISP3 gene showing
the sequence of three ETS binding sites found in the CRISP3 promoter, each with two putative consensus binding sequences. Shadowed letters show
the ETS core motif GGAA/T. B) CRISP3 promoter amplification after chromatin immunoprecipitation with ERG antibody; specific amplification of the
three ETS binding sites is shown; From left to right: Ld-100 bp DNA ladder, 1- ‘‘input’’ chromatin, 2- ChIP with Anti-RNA polymerase II antibody
(positive control), 3- ChIP with Mouse IgG antibody (negative control), 4- ChIP with ERG antibody (#EPR3864), 5- Total DNA from VCaP cells, 6- Blank.
doi:10.1371/journal.pone.0022317.g005
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Strikingly, the top-ranked gene on this list, CRISP3, showed an

impressive 53-fold increase in TMPRSS2-ERG-positive cases as

compared to non-malignant tissue, and an about 40-fold increase

when compared to fusion-negative tumors.

The cysteine-rich secretory protein (CRISP) family is large and

highly conserved among vertebrates [22]. In mammals, it

comprises several members expressed predominantly in salivary

glands and in the male reproductive tract, most of which under

strong androgen-dependency. The rat sperm-coating protein AEG

(now CRISP1), abundantly expressed in the epididymis under

strict androgen control, was found implicated in the process of rat

spermiogenesis, post-testicular sperm maturation, and capacitation

to oocyte-sperm fusion [23]. The mouse homolog, as well as the

related CRISP2 protein, were isolated and characterized shortly

after from epididymal and salivary gland transcript libraries, and

also found to be strongly regulated by androgens [24]. The mRNA

for CRISP3 was identified in the mouse salivary gland as an

androgen dependent transcript, showing a 77% homology to

CRISP1.

Human CRISP3 was first described in neutrophils, but

transcripts are widely distributed in exocrine glands (salivary

glands, pancreas, and prostate) and also found at much lower

Table 1. Correlation analysis of ERG and CRISP3 expression with clinico-pathological parameters in the array series (n = 24).

Clinico-pathological
parameters ERG rearrangement/expression CRISP3 expression

FISH qRT-PCR* Array qRT-PCR* IHC expression

Negative N (%) Positive N (%) N (Mean) N (Mean**) N (Mean) Normal*** N (%) Overexpr.N (%)

Age median (min-max) 65.5 (46-70)

PSA at diagnosis#

#10 2 (22.2) 7 (77.8) 4 (170.1) 9 (20.1) 4 (65.5) 5 (55.6) 4 (44.4)

.10 4 (57.1) 3 (42.9) 3 (146.5) 7 (15.6) 3 (162.3) 2 (28.6) 5 (71.4)

p = 0.152 p = 0.857 p = 0.470 p = 0.629 p = 0.280

Gleason score

#7 (3+4) 6 (28.6) 15 (71.4) 9 (163.1) 21 (19.4) 9 (90.7) 9 (42.9) 12 (57.1)

$7 (4+3) 2 (66.7) 1 (33.3) 1 (10.3) 3 (2.7) 1 (8.1) 0 (0.0) 3 (100.0)

p = 0.249 p = 0.117 p = 0.206 p = 0.862 p = 0.160

Pathological stage

pT2 6 (60.0) 4 (40.0) 3 (3.00) 10 (9.40) 3 (3.33) 3 (30.0) 7 (70.0)

pT3 2 (14.3) 12 (85.7) 7 (6.57) 14 (14.71) 7 (6.43) 6 (42.9) 8 (57.1)

p = 0.019 p = 0.117 p = 0.074 p = 0.183 p = 0.521

*only 10 samples were available for qRT-PCR analysis.
**mean expression values (x103).
***two cases that showed underexpression of CRISP3 are included.
#information is missing for 3 of the 10 cases analysed by qRT-PCR and for 8 of the 24 cases run on the Array and analysed by IHC.
Statistically significant p-values (,0.05) are shown in bold; no confidence intervals are indicated due to the low number of cases in the test series.
doi:10.1371/journal.pone.0022317.t001

Figure 6. Immunoexpression of CRISP3 in prostate adenocarcinoma. The neoplastic glands demonstrate intense (left) to moderate (right)
cytoplasmic staining comparatively to normal prostatic epithelium (shown in the right picture).
doi:10.1371/journal.pone.0022317.g006
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levels in epididymis, ovary, thymus, and colon [25,26,27]. The

human CRISP3 protein contains 245 amino acid residues and is

encoded by a gene at 6p12.3, a chromosomal region that also

harbors the human CRISP1 and CRISP2 genes. CRISP3 is an

extracellular matrix protein mainly found in human plasma,

saliva, seminal plasma and sweat, which can be stored intracel-

lularly in specific compartments or granules or appear associated

with membrane proteins in a glycosylated state [28,29]. Its exact

function, however, remains unclear. Based on sequence similarities

to pathogenesis-related proteins in plants, cellular localization, and

expression profile in neutrophils and thymus, a role as an immune

response molecule has been proposed. Specifically, the presence of

CRISP3 in secretory granules of neutrophils, which are rich in

matrix-degradation enzymes, suggests a proteolytic role and an

involvement in cellular matrix remodeling. Other seminal plasma

proteases with matrix-regulation activities include TMPRSS2 (the

most common fusion partner of ERG), HPN and PSA, all

previously shown to be up-regulated in prostate cancer.

CRISP3 has been previously linked to prostate carcinogenesis.

Asmann et al. [30], using publicly available whole-genome

expression data from normal and malignant prostate samples,

and Ernst et al. [31], comparing 12,600 transcripts in 9 normal and

17 malignant prostate tissues, independently reported a significant

overexpression of CRISP3 in prostate carcinomas, being subse-

quently suggested as a potential prostate cancer specific biomarker

[32,33,34]. CRISP3 expression was also tested using tissue

microarrays and it was shown that patients with overexpression

had a slightly higher risk of recurrence after radical prostatectomy

(HR = 1.53, p = 0.010), albeit in multivariate analysis CRISP3

status did not improve the performance of existing prediction

models [35]. Using a consecutive series of 200 prostatectomy

samples, we found that CRISP3 overexpression at the mRNA

level is associated with pathological stage pT3 (p = 0.006). This

association was initially suggested by the array data obtained from

an independent series of 24 prostatectomy samples, which also

showed a significant association of CRISP3 protein overexpression

with tumors with higher Gleason score (p = 0.009). Both

associations suggest the involvement of CRISP3 in prostate cancer

progression, as reported by Bjartell et al. [35].

Our data confirms the upregulation of CRISP3 in prostate

cancer, but further shows that CRISP3 is under the direct control

of the transcription factor ERG. A strong correlation between ERG

and CRISP3 expression was seen in both our test and validation

series using different mRNA-based methodologies, and also by the

external validation using the publicly available expression data

from Setlur et al. (GSE8402) [17]. To determine if CRISP3 was a

direct target of the ERG transcription factor, we used the VCaP

cell line to perform chromatin immunoprecipitation with an anti-

ERG antibody, and specifically detected three putative ETS-

binding-sites containing-regions of the CRISP3 promoter in the

ERG-bound chromatin. To our knowledge, this is the first report

showing direct regulation of CRISP3 expression by the transcrip-

tion factor ERG, enhancing its relevance in the TMPRSS2-ERG-

positive subgroup of prostate carcinomas. Interestingly, in addition

to high CRISP3 mRNA levels, also high ERG mRNA levels and the

presence of an ERG fusion gene by FISH were significantly

associated with pathological stage pT3, thus suggesting a role of

ERG and CRISP3 in locally advanced prostate cancer in patients

with clinically localized disease. However, the prognostic value of

ERG rearrangements in prostate cancer is still controversial

[15,36,37,38].

Some genes showed an expression pattern suggestive of a

mutually exclusive association with the TMPRSS2-ERG fusion

gene. Interestingly, SPINK1 has recently been shown to be up-

regulated, in a mutually exclusive pattern, in a small percentage of

TMPRSS2-ERG-negative carcinomas [39]. In the same study, the

outlier profile of ORM1 was also noteworthy and concordant with

our current data [39]. Other genes were significantly over-

expressed in carcinomas as compared to non-malignant tissue, but

with no association to the TMPRSS2-ERG status. These genes

likely play a role in prostate carcinogenesis independent of ERG

rearrangement, and noteworthy hits based on fold-change and

function are AK5, RELN and HPN.

Finally, a list of genes showed overexpression in TMPRSS2-

ERG-negative carcinomas but an even more significant fold-

increase in TMPRSS2-ERG-positive tumors, suggesting a role in

malignant transformation in the prostate that is potentiated by

ERG expression. Noteworthy hits in this subset include several

Table 2. Correlation analysis of ERG and CRISP3 expression obtained by qRT-PCR with clinico-pathological parameters in the
validation series (n = 200).

Clinico-pathological parameters N ERG expression Mean (CI) CRISP3 expression Mean (CI)

Age median (min-max) 64 (49–75)

PSA at diagnosis

#10 139 0.87 (0.70–1.03) 1.39 (0.93–1.85)

.10 61 0.93 (0.67–1.19) 1.28 (0.77–1.80)

p = 0.527 p = 0.642

Gleason score

#7 (3+4) 156 0.94 (0.79–1.10) 1.32 (0.98–1.66)

$7 (4+3) 44 0.68 (0.34–1.01) 1.48 (0.42–1.64)

p = 0.043 p = 0.721

Pathological stage

pT2 112 0.68 (0.53–0.84) 0.88 (0.60–1.16)

pT3 88 1.14 (0.89–1.39) 1.97 (1.26–2.67)

p = 0.001 p = 0.006

Statistically significant p-values (,0.05) are shown in bold; CI- Confidence interval.
doi:10.1371/journal.pone.0022317.t002
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previously described prostate cancer markers such as AMACR and

PCA3 [12]. Interestingly, most of the genes in this list are known to

be under androgen-regulation, which may explain the increased

levels also in malignant samples with no ERG fusion. RBMS2

(nucleic acid binding protein) displayed a massive fold-change

reduction in the array data in TMPRSS2-ERG-positive tumors, but

this inverse correlation could not be confirmed in the larger

validation series. It is thus likely that RBMS2 reduction may play a

role in malignant transformation but independently of ERG

rearrangement.

In conclusion, we show that the TMPRSS2-ERG fusion gene is

associated with up-regulation of several metabolic enzymes, as well

as extracellular/transmembrane proteins involved in cell adhesion,

matrix remodeling and signal transduction pathways. We observed

a massive fold-increase of CRISP3 in fusion-positive carcinomas as

compared to non-malignant tissue or fusion-negative carcinomas

and found that ERG genomic rearrangement and ERG and

CRISP3 mRNA overexpression are associated with pT3 locally

advanced tumors. We further show that CRISP3 is a direct target

of overexpressed ERG, suggesting that CRISP3 may be a

mediator of tumor progression driven by the TMPRSS2-ERG

rearrangement.

Supporting Information

Figure S1 Genes showing different patterns of under-
expression in carcinomas. A) Genes with considerable fold-

decrease in ERG-positive carcinomas; B) Genes with under-

expression in ERG-negative carcinomas; C) Genes with consider-

able fold-decrease in carcinomas, independent of ERG status; D)

Genes with considerable fold-decrease in ERG-negative carcino-

mas accompanied by an even greater underexpression in ERG-

positive cancers. Abbreviations: FC(a), median fold-change

between non-malignant samples (NMT) and ERG-negative

carcinomas; FC(b), median fold-change between non-malignant

samples and ERG-positive carcinomas; FDR, false discovery rate.

The top 20 genes in each subgroup, ranked based on fold-

decrease, are provided (when available).

(TIF)

Figure S2 Box-plots representing the expression of ERG
and CRISP3 across sample groups. A) Array findings (n = 30

samples); B) qRT-PCR findings (n = 13 samples). The Kruskal-

Wallis (KW) non-parametric test values are indicated.

(TIF)

Figure S3 External data. Linearized signal-intensity values for

ERG and CRISP3 obtained from publicly available expression data

from Setlur et al. for 206 prostate carcinomas: 103 with and 103

without TMPRSS2-ERG rearrangement (TMP-ERG+ and TMP-

ERG2, respectively). The Mann-Whitney (MW) non-parametric

test value is indicated.

(TIF)

Table S1 qRT-PCR primer and probe list.

(PDF)

Table S2 ChIP primer list for CRISP3 promoter.

(PDF)

Table S3 Summarized findings in 24 prostate carcino-
ma samples.

(PDF)
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