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WHAT IS ALREADY KNOWN ABOUT
THIS SUBJECT
• The pharmacokinetic properties of isoniazid

are well characterized, having been studied
in seminal work beginning in the early
1950s. Pharmacokinetic models have been
published in other populations.

WHAT THIS PAPER ADDS
• This work provides a population model for

isoniazid pharmacokinetics in a South
African population from a
tuberculosis-endemic region, of potential
use in investigating the complex
exposure-response relationships found in
the first line treatment of pulmonary
tuberculosis. Previous work has been
performed in smaller groups of healthy
volunteers or predominantly Caucasian or
Asian patients, but the pharmacokinetics of
isoniazid in the population in this study are
significantly different from those previously
reported in other populations. The
developed model will provide a basis for
estimation of optimal doses in children.

AIM
This study was designed to characterize the population
pharmacokinetics of isoniazid in South African pulmonary tuberculosis
patients.

METHODS
Concentration–time measurements obtained from 235 patients
receiving oral doses of isoniazid as part of routine tuberculosis
chemotherapy in two clinical studies were pooled and subjected to
nonlinear mixed-effects analysis.

RESULTS
A two-compartmental model, including first-order absorption and
elimination with allometric scaling, was found to describe the observed
dose-exposure relationship for oral isoniazid adequately. A mixture
model was used to characterize dual rates of isoniazid elimination.
Estimates of apparent clearance in slow and fast eliminators were 9.70
and 21.6 l h-1, respectively. The proportion of fast eliminators in the
population was estimated to be 13.2%. Central volume of distribution
was estimated to be 10% smaller in female patients and clearance was
found to be 17% lower in patients with HIV. Variability in absorption
rate (90%) was completely interoccasional in nature, whereas in relative
bioavailability, interoccasional variability (8.4%) was lower than
interindividual variability (26%). Oral doses, given once daily according
to dosing policies at the time, were sufficient to reach therapeutic
concentrations in the majority of the studied population, regardless of
eliminator phenotype. Simulations suggested that current treatment
guidelines (5 mg kg-1) may be suboptimal in fast eliminators with low
body weight.

CONCLUSIONS
A population pharmacokinetic model was developed to characterize
the highly variable pharmacokinetics of isoniazid in a South African
pulmonary tuberculosis patient population. Current treatment
guidelines may lead to underexposure in rapid isoniazid eliminators.

British Journal of Clinical
Pharmacology

DOI:10.1111/j.1365-2125.2011.03940.x

Br J Clin Pharmacol / 72:1 / 51–62 / 51© 2011 The Authors
British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society



Introduction

Mycobacterium tuberculosis infects approximately one-
third of the world’s population. The global burden of
disease is greatest in Southeast Asia and in Africa, which
account for 35% and 30%, respectively, of about 9.4 million
incident cases globally [1]. Globally, 11–13% of incident
cases are associated with human immunodeficiency virus
(HIV) co-infection and 80% of co-infected patients are in
Africa, where up to 60% of tuberculosis patients are
infected with HIV. Tuberculosis incidence rates are rising
steadily in countries with high burdens of tuberculosis and
HIV, like South Africa [2]. It is therefore crucial to ensure
optimal antimycobacterial treatment in order to reduce
transmission and slow the development of resistance.

Isoniazid (INH) has been an essential component of first
line antituberculosis treatment for more than half a
century. It has excellent early bactericidal activity (EBA).
The drug eliminates rapidly-metabolizing bacilli found in
the sputum of microscopy smear-positive pulmonary
tuberculosis patients during the first 48 h of treatment
[3–5] and is also effective in preventing resistance in its
companion drugs, rifampicin, pyrazinamide and ethambu-
tol [6]. Isoniazid inhibits the synthesis of long-chain
mycolic acids, indispensable components of mycobacterial
cell walls [7, 8].

Efforts to combat tuberculosis and prevent the spread
of drug resistance have hinged on the adoption of the
directly-observed treatment (short-course) (DOTS) strat-
egy developed by the World Health Organization (WHO)
[9]. Results since implementation have, however, been
mixed [10–12]. One possible reason for this may be inad-
equate treatment. Low concentrations of pyrazinamide

have been associated with poor outcomes in tuberculosis
patients in Botswana [13]. Dosing of isoniazid is tradition-
ally performed by body weight to approximate the WHO
recommended dose of 5 mg kg-1 [14]. Treatment with iso-
niazid is further complicated by polymorphism in the
expression of the enzyme system primarily responsible for
its elimination, N-acetyltransferase-2 (NAT2), resulting in
trimodal elimination (slow, intermediate and fast) [15].
Finally, isoniazid is associated with hepatotoxicity and
peripheral neuropathy, and slow acetylators may be at
increased risk of toxicity [16, 17].

It is therefore important to ensure that exposure to
first-line chemotherapeutic agents, including isoniazid, is
appropriate in tuberculosis patients in a clinical setting.
The population pharmacokinetics of rifampicin and pyrazi-
namide, also key first-line agents, have been studied in the
same population of South African patients [18, 19]. The
objective of this analysis is to characterize the population
pharmacokinetics of isoniazid in the same population, and
to provide a population pharmacokinetic model suitable
for predicting isoniazid exposure based on dose and other
demographic covariates suitable for scaling.

Methods

Patients
Data from 235 pulmonary tuberculosis patients participat-
ing in two clinical studies were pooled to generate the
dataset of 2352 concentration–time observations used in
the analysis (Table 1). Hospitalized patients were recruited
from two treatment centres, the DP Marais SANTA (South
African National Tuberculosis Association) Centre, near

Table 1
Patient demographics, covariates and study designs of the clinical studies contributing data to the isoniazid pharmacokinetic model. Continuous variables
are given as median (95% range)

DPM BKH Combined

Subjects 91 144 235
Age (years) 37 (23–60) 36 (20–60) 36 (20–60)

Gender (female/male) 24/67 78/66 102/133
Race (Coloured / Black / Caucasian) 64/25/2 128/16/0 192/41/2

Weight (kg) 52.5 (37.5–66.9) 46.1 (31.2–68.0) 48.0 (33.7–68.0)
Dose (mg kg–1) 5.11 (3.98–6.90) 6.51 (4.41–9.59) 5.88 (4.28–8.92)

BMI (kg m–2) 19.6 (15.6–24.5) 17.8 (13.1–23.7) 18.5 (13.3–24.4)
HIV infection* 21 (24.1% of 87) 14 (9.79% of 143) 35 (15.2% of 230)

Formulation (fixed-dose combination /
single drug)

89/2 34/110 123/112

Study length (weeks) 2 1

Samples/subject 12
3 per day, twice per week

9
during a single day

2352†

Sampling schedule Pre-dose and random between 0–12 h post-dose Pre-dose and at 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8 h post-dose

Dosing (mg day–1, p.o.) 100 (n = 1); 225 (n = 8); 240 (n = 29); 300
(n = 53); 400 (n = 2) – 5 days per week

200 (n = 1); 300 (n = 142); 450 (n = 1) – 7 days per week

*n = 230 subjects; five patients declined to be tested. †Total number of samples.
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Cape Town and Brewelskloof Hospital, in the Breede River
Valley in South Africa’s Western Cape province. The study
participants were males and non-pregnant females over
the age of 18 years. Treatment was administered in accor-
dance with the WHO’s DOTS tuberculosis control strategy
[9]. Isoniazid was always administered in combination
with rifampicin, and with pyrazinamide, ethambutol and
streptomycin as appropriate with respect to the WHO’s
tuberculosis treatment recommendations and national
guidelines at the time. All subjects were fasted from
22.00 h on the evenings prior to blood sampling and pro-
vided full written informed consent for participation in the
studies. Ethical approval for the studies was granted by the
research ethics committees of the University of Cape Town,
South Africa and the participating study centres.

A total of 91 pulmonary tuberculosis patients treated
with isoniazid were included from the first study, which we
shall refer to as DPM. Oral doses ranged between 100 and
400 mg day-1, Monday to Friday, for a minimum of 2 weeks
prior to pharmacokinetic assessment (Be-, Be-Tabs, Rood-
epoort, South Africa; Rifafour e-200, Hoechst Marion
Roussel, Midrand, South Africa; Rifinah-150 and Rifinah-
300, Aventis Pharma, Midrand, South Africa). Details are
provided in Table 1. Two patients had their isoniazid doses
adjusted during the course of the study, for reasons unre-
lated to this investigation. Sets of three blood samples for
the determination of isoniazid pharmacokinetics were
taken twice weekly, at random times between 0 and 12 h
post-dose, for 2 weeks. The second study (which we shall
refer to as BKH) included 144 pulmonary tuberculosis
patients, sampled (pre-dose and at 0.5, 1.0, 1.5, 2.0, 2.5, 3.0,
4.0, 6.0 and 8.0 h post-dose) on a single occasion at the end
of the 2 month intensive phase of treatment (including
isoniazid). Patients were dosed according to the attending
physicians’ best clinical judgment, in line with treatment
policy at the site. Oral doses of between 200 and 450 mg
day-1 were administered (Be- 100; Be- 100, Lennon Iso-
niazid 100, Lennon Isoniazid 200, and Norstan Isoniazid
200, Lennon Medicines, Gallo Manor, South Africa; Rifinah-
150; Rifinah-300; see Table 1). In contrast to the 5 day
dosing cycle used in the DPM study, BKH patients were
administered isoniazid 7 days per week. In addition to iso-
niazid, patients received their other prescribed medica-
tions as usual.

Covariate information recorded for each patient
included age, weight, body mass index (BMI) and gender
(Table 1). Patient use of alcohol, tobacco and drugs of
abuse was determined by questionnaire. Details of con-
comitant medication were recorded (none had previously
been reported to interact with isoniazid), and full medical
histories were taken from every subject. Antituberculosis
treatment ingestion on study days was monitored by
direct observation.

A noncompartmental analysis of isoniazid concentra-
tions from the BKH study has been reported previously
[20].

Specimen collection and storage
Venous blood samples for determination of isoniazid
pharmacokinetics were collected into lithium heparin
vacuum tubes (Vacuette®, Greiner Bio-One International
AG, Kremsmuenster, Austria) through an intravenous
cannula (Introcan® 1.1 ¥ 32 mm, B. Braun AG, Melsungen,
Germany) inserted into an arm vein. The samples were
stored for up to 20 min in darkness on ice, before separa-
tion of plasma which was subsequently stored at -80°C
until analysis.

Patients were requested to undergo voluntary testing
for the presence of HIV (10 subjects declined) using an
automated ELISA method (AxSYM HIV Ag/Ab Combo,
Abbott Diagnostics, Germany). Counselling was provided
pre- and post-test, for all subjects. Confirmatory testing
was carried out in subjects whose initial screening result
was positive using the Enzygnost Anti-HIV 1/2 Plus (Dade
Behring, Liederbach, Germany), a second ELISA test.

Analytical methods
Plasma concentrations of isoniazid were determined by
high-performance liquid chromatography (HPLC) using UV
detection [21]. The HPLC system consisted of a Spherisorb
C8 analytical column of dimensions 25 cm ¥ 4.6 mm and
particle diameter 5 mm (PSS831815, Waters Corporation,
Milford, Massachusetts, USA) in conjunction with a reverse-
phase guard column (2.5 cm ¥ 0.46 cm, packed with Pelli-
guard LC-8, Upchurch Scientific, Oak Harbor, Washington,
USA). The mobile phase consisted of acetonitrile (BDH,
Poole, United Kingdom) and 0.06% trifluoroacetic acid
(Riedel-de Haën, Seelze, Germany) in the ratio 5:95. The UV
detection wavelength was 270 nm and the flow rate was
1.5 ml min-1.

Frozen plasma samples were allowed to thaw in a water
bath at ambient temperature. The C18 extraction column
(Bond Elut 3.0 cm, Varian, Palo Alto, California, USA) was
primed with 1 ml 0.5 mM potassium phosphate buffer (pH
4.5) and 0.5 ml of plasma was applied to the column. The
sample was drawn onto the column and allowed to stand
for 10 min. The column was washed with 1 ml of the phos-
phate buffer. Finally, isoniazid was eluted into an analytical
vial using 0.5 ml acetonitrile and 0.5 ml methanol. All sol-
vents were of HPLC grade.The extracted sample (20 ml) was
injected directly onto the column at ambient temperature
and the retention time was approximately 2.8 min. The
limit of detection was 0.04 mg l-1 and the limit of quanti-
tation was 0.2 mg l-1.

The standard curve was linear and provided a detec-
tion range of 0.2–20 mg l-1. Quality control samples of
0.5 mg l-1, 8 mg l-1 and 16 mg l-1 were interspersed
between the samples. Percentage coefficients of variation
(CV) were 4.2%, 9.4% and 11.3% for the low, medium and
high quality control samples, respectively. Mean (�SD)
recovery was assessed by measuring the isoniazid
concentration obtained from spiked plasma samples
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corresponding to points on the standard curve, and
was determined to be 72.9% � 4.35%.

Pharmacokinetic data analysis
A total of 52 concentration–time observations (1.6% of the
total) were below the lower limit of quantification. Since
the actual concentrations were available, and since they
made up a negligibly small proportion of the dataset, they
were retained unaltered in the dataset. Model-building
was conducted using NONMEM (version 7 Level 1.0).
Graphical diagnostics were managed using the software
utility Xpose 4.0 [22]. NONMEM’s first-order conditional
estimation (FOCE) method with e-h interaction was used
for model development.

Observed isoniazid concentrations vs. time after dose,
conditional on study site, are shown in Figure 1. The data
were log-transformed and fitted using one- and two-
compartment models with first-order absorption and
elimination. Several approaches to modelling absorption
were tested, including the use of an absorption lag time,
the transit compartment model [18, 23], combined first-
and zero-order absorption models, the use of a zero-order
input into the absorption compartment to mimic the
release of drug from solid-phase formulation, and a model
for saturable first-pass elimination. Elimination was
assumed to take place from the central plasma compart-
ment in all models tested. The known trimodality of iso-
niazid elimination was investigated through the use of a
mixture model for apparent clearance. The influence of
covariances between model variance parameters was
tested through the estimation of off-diagonal elements in
the variance-covariance matrix. A priori scaling of clearance
and volume parameters was tested according to the
approach suggested by Anderson & Holford [24], using a

reference weight of 70 kg.Typical values of clearance terms
were scaled as in the example in Equation (1), and typical
volume of distribution terms were scaled as in the example
in Equation (2).

CL CL WT WTi iF( ) = ⋅( )0 75. (1)

V F Vc c( ) = ⋅( )
i iWT WT 1 00. (2)

(CL/F)i is scaled oral clearance for individual i, CL is the
typical value of the clearance term for a 70 kg individual,
and WTi is the body weight of individual i in kg. Similarly
(Vc/F)i and Vc are scaled volume in individual i, and
typical value of the volume term for a 70 kg individual,
respectively.

Interindividual variability (IIV) parameters were defined
as being normally distributed with mean 0 and variance w2.
Similarly, interoccasional variability (IOV) parameters were
normally distributed with mean 0 and variance p2. An occa-
sion was defined as a dosing interval in which blood sam-
pling was conducted.The number of occasions per patient
ranged between 1 (all patients in the BKH group) and 4.
Residual variability,arising from unspecified within-subject
variability, model misspecification and experimental error,
was normally distributed with mean 0 and variance s2; it
was applied as an additive model on the log scale.

Model selection was informed by use of the objective
function (OFV), a goodness-of-fit criterion equivalent to
minus twice the log-likelihood of the data given the
model, as well as by evaluation of parameter estimates
(including precision), graphical goodness-of-fit, visual pre-
dictive checks (VPCs) and prediction-corrected visual pre-
dictive checks (PC-VPCs).The differences in OFV between a
full and a reduced model are approximately chi-square
distributed. Differences of �3.84 in the OFV were regarded
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Figure 1
Observed isoniazid concentrations plotted against time after dose, obtained from patients at DP Marais SANTA Centre (DPM) and Brewelskloof Hospital
(BKH). Dosing was 5 days per week, Monday to Friday, at DPM, and daily at BKH, owing to policy differences between the sites. Time points for 200 mg and
450 mg doses in the BKH plot have been jittered by 0.25 h to facilitate visibility
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as significant, corresponding to a confidence level of P <
0.05 assuming 1 degree of freedom (the norm when com-
paring nested models), respectively. For VPCs, the final
model was used to simulate 600 new datasets based upon
the design of the original dataset. First, the observed and
simulated datasets were each divided into bins of approxi-
mately equal numbers of observations by ranges of time
after dose, stratified by dose. For each separate bin in the
observed data, the 2.5%, 50% and 97.5% percentiles were
calculated. This process was repeated for each bin in each
of the simulated datasets to yield a distribution for each of
these percentiles, from which a 95% confidence interval
was calculated. The 95% prediction intervals (the 2.5%,
50% and 97.5% quantiles) and associated 95% confidence
intervals derived from the simulations were then plotted
against the 2.5%, 50% and 97.5% quantiles of the binned
observations to yield the final VPC. Additionally, a PC-VPC
was used, in which observations and simulated predictions
in each bin were first normalized by the typical model
prediction in the bin in order to generate prediction-
corrected observations and predictions, which were used
in all subsequent steps of the VPC. Stratification is unnec-
essary in PC-VPCs [25].

Potential covariate relationships were tested for inclu-
sion in the model using a stepwise covariate modelling
(SCM) procedure. First, potential covariate relationships
were tested one at a time, and included only if an OFV
change of �3.84 (P < 0.05) was observed. At each forward
step, the relationship with the highest change in OFV
above the cut-off was included at each step, and the
remaining relationships were tested again. This process
was repeated until no further relationships could be
included at the specified significance level. During the
backwards elimination process, the relationships selected
during the forward process were univariately removed
using an OFV change of �10.83 (P < 0.001) as a prerequi-
site for retention, until only those above the backward cut-
off were retained. The pool of covariates tested included
body weight, age, gender, race and HIV status. Continuous
covariates were allowed to enter the model as linear and
power relationships.

A nonparametric bootstrap of 1000 iterations, stratified
by site, was performed to provide estimates of the stan-
dard errors and the 95% confidence intervals of the esti-
mated model parameters.

Influential individuals in the data were identified
through the use of a case-deletion diagnostic procedure.
Each of the 235 included patients was removed from the
original dataset in turn to create 235 new datasets, each
composed of 234 individuals, and each omitting a different
individual included in the original data. The final model
was used to fit each of these new datasets. In order to
evaluate the impact of the deletion of each of the subjects
in the data, Cook scores and covariance ratios (where avail-
able, since these were dependent on a successful covari-
ance step) were calculated for each of the 235 model fits,

and the results compared. Changes in the parameter esti-
mates caused by removal of each individual were also
examined.

The final pharmacokinetic model was used to simulate
concentration–time curves over 7 days of continuous daily
dosing in pulmonary tuberculosis patients according to
the covariates in the final model, based on current WHO
guidelines for isoniazid dosing, which recommend
5 mg kg-1 body weight [14]. Four bands were used for
assigning doses by weight: 150 mg for weights of 30–37 kg
(4.1–5 mg kg-1), 225 mg for weights of 38–54 kg (4.2–
5.9 mg kg-1), 300 mg for weights of 55–70 kg (4.3–
5.5 mg kg-1) and 375 mg for weights of >70 kg
(<4.9 mg kg-1). Covariates were bootstrapped from those
in the original dataset.

Equal groups of simulated patients for each of the
weight bands were generated, using the weight range in
the study population (28.5–85.5 kg). Eight subgroups
reflected all possible permutations of fast and slow elimi-
nators, HIV status and gender for a total of 38 400 simu-
lated patients. With the four different weight bands for
dosing, the total number of simulated dose groups was 32,
containing 1200 simulated patients per subgroup. Area
under the concentration–time curve to infinity (AUC(0,•)),
peak concentration (Cmax) and concentration at 2 h post-
dose (C2h) were derived for each simulated individual. The
distributions were compared with previously-published
cut-offs (related to 90% of maximal EBA) for AUC(0,•)
(10.52 mg l-1 h) and C2h (2.19 mg l-1) [26] and to the lower
limit of the ‘normal range’ (3 mg l-1) for isoniazid [27].

Results

The best model describing isoniazid pharmacokinetics
in the studied population was found to be two-
compartmental, with first-order absorption and an absorp-
tion lag time, and first-order elimination. All clearance and
volume terms were allometrically scaled by body weight. A
mixture model applied on apparent clearance was used to
characterize the effect of metabolic polymorphism on iso-
niazid elimination, but could only be parameterized in
terms of two subpopulations rather than three, owing to
insufficient information to differentiate between estimates
of apparent clearance in intermediate acetylators and in
fast acetylators. The mixture model produced a difference
in clearance of approximately two-fold between slow and
rapid eliminator populations.

Interindividual variability (IIV) was incorporated into
the model on apparent clearance (18.4%, a single term for
fast and slow eliminators, CLfast/F and CLslow/F, respectively),
central volume of distribution (Vc/F, 16.5%), intercompart-
mental clearance (Q/F, 93.1%), relative bioavailability (F,
26.2%), and lag time (tlag, 88.4%). Interoccasion variability
was incorporated into the model on absorption rate

Population pharmacokinetics of isoniazid
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constant (ka, 90.1%) and relative bioavailability (F, 8.4%).
Residual variability was additive on the natural logarithmic
scale.

A priori allometric scaling of clearance and volume
terms by weight was included [24]. Two additional covari-
ate relationships were found to be significant at the P <
0.001 level during covariate model building. Typical Vc/F
was estimated to be 10.3% lower in female patients than
male patients, and typical oral clearance (both CLfast/F and
CLslow/F) was estimated to be 17.4% lower in patients
infected with HIV.

Model parameter estimates are presented in Table 2.
Figure 2 provides an overview of model fits to individual
subject data, divided into categories of best, typical and
worst, selected by evaluation of mean absolute individual
weighted residual for each patient. A PC-VPC of the final
model appears in Figure 3, along with VPCs stratified by
doses of 240 mg and 300 mg, and indicated that the
model’s ability to reproduce the central tendency of the
observed data was adequate.A tendency towards overpre-
dicting variability was, however, observed after approxi-
mately 4.5 h post-dose, although this trend was greatly
reduced in the VPCs stratified by dose. The case-deletion
diagnostic procedure did not identify any patients exert-
ing disproportionate influence on any of the model param-
eter estimates.

Shrinkage in interindividual variability estimates for
CL/F (43.8% and 43.6% in fast and slow eliminators, respec-
tively) and Vp/F (52.5% and 42.8% in fast and slow elimina-

tors, respectively) was high, as was shrinkage in the
interoccasional variability estimates for ka (15.6% to 100%
for fast eliminators and 21.7% to 62.5% for slow elimina-
tors) and F (63.4% to 100% for fast eliminators and 63.8%
to 75.8% for slow eliminators). Shrinkage was lower in
other IIV parameters (Q/F: 3.61% and 28.2% in fast and
slow eliminators, respectively; F: 14.4% and 17.% in fast and
slow eliminators, respectively; tlag: 16.4% and 27.4% in fast
and slow eliminators, respectively). Shrinkage in residual
error was 7.44% for fast eliminators and 23.2% for slow
eliminators.

Figure 4 compares the predictions of Cmax, C2h, and
AUC(0,•) obtained from simulations of current WHO-
recommended dosing guidelines for the eight different
subgroups and the four weight-based dosing bands. Expo-
sure in fast eliminators was relatively low relative to the
cut-offs used, especially in patients of low body weight.

Discussion

A model for the population pharmacokinetics of isoniazid
incorporating allometric scaling was developed and found
to describe and predict the observed patient data
adequately.The model was flexible enough to describe the
pharmacokinetics of isoniazid the majority of patients, and
provided adequate predictive power as judged by VPCs.

Estimates of variability in CL/F and Vc/F were not unusu-
ally high, but the same was not true of absorption-related

Table 2
Parameter values estimated by the final pharmacokinetic model

Parameter Population mean %RSE* 95% confidence interval*

Typical apparent clearance, fast eliminators (CLfast/F, l h-1) 21.6 36.8 18.9, 28.2
Typical apparent clearance, slow eliminators (CLslow/F, l h-1) 9.70 3.05 9.61, 10.7

Typical apparent central volume of distribution (Vc/F, l) 57.7 2.81 56.3, 62.9
Typical apparent peripheral volume of distribution (Vp/F, l) 1730 14.7 1313, 2514

Typical apparent intercompartmental clearance (Q/F, l h-1) 3.34 8.52 2.43, 3.38
Typical absorption rate constant (ka, h-1) 1.85 4.01 1.72, 2.06

Typical absorption lag time (tlag, h) 0.180 7.63 0.166, 0.226
Proportion of fast eliminators in population (Pfast) 0.132 23.2 0.0685, 0.184

Linear effect of positive HIV status on CL/F (qCL,HIV) -0.174 22.2 -0.266, -0.0990
Linear effect of being female on Vc/F (qVc,gender,F) -0.103 25.7 -0.205, -0.0861

Interindividual variability (%CV)
Apparent clearance (wCL

2) 18.4 13.6 13.6, 19.3
Apparent central volume of distribution (wVc

2) 16.5 12.6 12.4, 16.8
Apparent intercompartmental clearance (wQ

2) 93.1 25.4 92.1, 132
Relative bioavailability (wF

2) 26.2 9.77 25.2, 29.9
Absorption lag time (wtlag

2) 88.4 9.57 86.6, 102
Interoccasional variability (%CV)

Absorption rate constant (kka
2) 90.1 5.92 80.5, 92.0

Relative bioavailability (kF
2) 8.4 33.0 8.77, 14.4

Residual variability (standard deviation)
Additive variability for DPM (s, log scale, mg l–1) 0.205 2.74 0.187–0.229

*Generated by nonparametric bootstrap, n = 1000. RSE = relative standard error. Typical value of CL/F = CL · (body weight/70)0.75 · (1–0.174 · HIV), where CL = 21.6 or 9.70 for
fast and slow eliminators, respectively, and HIV = 0 or 1 for negative and positive status, respectively; typical value of Vc/F = 57.7 · (body weight/70) · (1–0.103 · SEX), where SEX
is 0 for males and 1 for females; typical value of Vp/F = 1730 · (body weight/70); typical value of Q/F = 3.34 · (body weight/70)0.75.
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parameters. High variability in absorption rate constant (ka)
was estimated to be derived entirely from between-
occasion differences (90.1%). In contrast,variability in F was
had a larger interindividual component than interocca-
sional (26.2% vs. 8.4%, respectively). Interindividual vari-
ability in lag time was also large (88.4%).

Although absorption in many of the studied patients
was rapid, others appeared to absorb the drug much more
slowly (some examples appear in Figure 2), in contrast to
previously published reports in which isoniazid has been
shown to be rapidly and completely absorbed [28–30].This
has implications for therapeutic drug monitoring (TDM),
which has been suggested as a useful tool in the treatment
of tuberculosis [27]. Substantial variability in absorption
kinetics means that the use of a single consistent time
point for TDM is unlikely to provide a reliable estimate of
true isoniazid exposure. In any event, TDM is of limited
practical use in resource-poor high-burden countries,
where it is currently unavailable and unlikely to become
available in the foreseeable future.

In the absence of genotypic or metabolite data [31], a
mixture model composed of two populations, fast and
slow, was used to predict eliminator phenotype. The final
estimate of the proportion of fast eliminators in the
population was 13.2%. Trimodal elimination has been
defined by acetylator status [15], but these data did not
support the differentiation of intermediate eliminators
from fast and slow eliminators. The proportion of fast
acetylators in South African populations [5, 32, 33] has
been estimated to be between 23.4% and 74.3% (with
the lower frequencies described in Caucasian patients).
These estimates are based on genotype, however,
whereas our analysis relies on phenotype alone. In addi-
tion to acetylation, clearance in the fast and slow elimi-
nator groups is likely to include contributions by other
unidentifiable pathways.

Fast eliminators were predicted to have a mean appar-
ent clearance of 21.6 l h-1, and slow eliminators were esti-
mated to have a mean apparent clearance of 9.70 l h-1.
Peloquin and colleagues [34] reported apparent
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clearances of approximately 15 l h-1 in slow acetylators and
approximately 50 l h-1 in rapid acetylators in a small study
conducted in healthy male North American subjects.These
estimates are substantially higher than those we report, do
not appear to be explained by differences in body weight
between the populations, and reflect observed concentra-
tions substantially lower than those observed in the
current study. Another model-based analysis, conducted
in healthy Caucasian volunteers and using a two-
compartment model with first-order absorption and elimi-
nation, produced CL/F estimates closer to those we report
[35]. Slow acetylators were predicted to have an apparent
clearance of 10.0 l h-1, intermediate acetylators an appar-
ent clearance of 19.2 l h-1, and fast acetylators were pre-
dicted to have an average apparent clearance of 28.4 l h-1.
A small steady-state study conducted in an African patient
population in Nairobi, Kenya, reported Cmax and
AUC(0,12 h) values substantially lower than we observed
[36]. In contrast, another study in South African patients
produced AUC estimates similar to ours [15, 26]. Possible
reasons for these discrepancies include differences in

methodology, study population, sampling schedules and
study design, analytical methods and drug formulations. It
is important to highlight that our study was multiple dose,
whereas the healthy volunteer studies used only single
doses of isoniazid. Substantial differences in isoniazid
pharmacokinetics appear to exist between South African
tuberculosis patients and other populations.

Two significant and potentially clinically relevant cova-
riate relationships were identified. Typical Vc/F in female
patients was estimated to be 10.3% lower than in male
patients, independent of body size. Reasons for pharmaco-
kinetic differences between genders are varied, and in this
case may relate to the typically greater percentage of body
fat in females [37]. HIV co-infection was associated with a
reduction of 17.4% in CL/F, which may relate to reported
drops in NAT2 activity in HIV-positive subjects [38–42]. A
link between isoniazid bioavailability and HIV status has
been reported previously [43–45], but no significant rela-
tionship was identified in our data.

EBA refers to the fall in log10 viable colony-forming
units of M. tuberculosis in sputum samples during the first 2
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days of treatment in patients with microscopy smear-
positive pulmonary tuberculosis [3], and has become
accepted as an objective and reproducible means of esti-
mating the ability of a drug to kill metabolically-active
bacilli [46]. Donald and colleagues have published thresh-
olds of AUC(0,•) and C2h which in their analysis were linked

to reaching 90% of maximal isoniazid-mediated EBA [26],
which together with the ‘normal range’ of isoniazid con-
centrations proposed for informing TDM [27], provide a
useful basis for evaluating levels of isoniazid exposure.
Results of simulations using weight-based dosing derived
from current WHO guidelines indicated that exposure may
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be suboptimal in fast eliminators according to these
thresholds, with low weight patients (<55 kg) in this sub-
group more likely to receive low exposures (Figure 4).
Between 15.4% and 35.2% of fast eliminators in the lowest
weight group were predicted to have day 2 AUC(0,•)
values below the cut-off of 10.52 mg l-1 h. The dosing regi-
mens in place at the study sites at the time the data were
collected resulted in isoniazid exposures that were higher
than are likely to result from application of current guide-
lines (Figure 1). Doses lower than 240 mg were rarely given
(Table 1), and low weight patients who would have
received 150 mg according to current guidelines often
received doses twice as high during the conduct of our
study. Without better knowledge of the exposure-
response relationships involved (including those related to
safety), it is, however, difficult to judge the significance of
these findings.

Knowledge of the pharmacokinetics of isoniazid in this
tuberculosis patient population will be of considerable
usefulness in the scaling of doses to paediatric patients. A
key area of future research will be the linking of this phar-
macokinetic model (as well as similar models for rifampi-
cin, pyrazinamide and ethambutol, amongst other
components of tuberculosis chemotherapy) with markers
of clinical response in order to derive a truly optimal
dosing regimen. Although this is a challenging undertak-
ing given the multidrug nature of tuberculosis treatment
and the significant quantities of time and resources
required to gather data of this kind at an acceptable level
of quality, it is an essential step to elucidate the complex
dose exposure-response relationships involved in

tuberculosis chemotherapy, an area that, even today, is
not fully understood.
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