
Intrinsic restriction activity by apolipoprotein B
mRNA editing enzyme APOBEC1 against the
mobility of autonomous retrotransposons
Terumasa Ikeda1, Khaled Hussein Abd El Galil1, Kenzo Tokunaga2, Kazuhiko Maeda3,

Tetsutaro Sata2, Nobuo Sakaguchi3, Thierry Heidmann4 and Atsushi Koito1,*

1Department of Retrovirology and Self-Defense, Faculty of Life Sciences, Kumamoto University, Kumamoto
860-8556, 2Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, 3Department of
Immunology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan and 4Unite des
Retrovirus Endogenes et Elements Retroides des Eucaryotes Superieurs, CNRS UMR 8122, Institute Gustave
Roussy, 39 rue Camille Desmoulins, F-94805 Villejuif Cedex, France

Received January 27, 2010; Revised February 15, 2011; Accepted February 18, 2011

ABSTRACT

The ability of mammalian cytidine deaminases
encoded by the APOBEC3 (A3) genes to restrict a
broad number of endogenous retroelements and ex-
ogenous retroviruses, including murine leukemia
virus and human immunodeficiency virus (HIV)-1, is
now well established. The RNA editing family mem-
ber apolipoprotein B (apo B)-editing catalytic
subunit 1 (APOBEC1; A1) from a variety of mamma-
lian species, a protein involved in lipid transport
and which mediates C–U deamination of mRNA for
apo B, has also been shown to modify a range of
exogenous retroviruses, but its activity against
endogenous retroelements remains unclear. Here,
we show in cell culture-based retrotransposition
assays that A1 family proteins from multiple mam-
malian species can also reduce the mobility and
infectivity potential of LINE-1 (long interspersed nu-
cleotide sequence-1, L1) and long-terminal repeats
(LTRs) retrotransposons (or endogenous retro-
viruses), such as murine intracisternal A-particle
(IAP) and MusD sequences. The anti-L1 activity
of A1 was mainly mediated by a deamination-
independent mechanism, and was not affected by
subcellular localization of the proteins. In contrast,
the inhibition of LTR-retrotransposons appeared
to require the deaminase activity of A1 proteins.
Thus, the AID/APOBEC family proteins including
A1s employ multiple mechanisms to regulate
the mobility of autonomous retrotransposons in
several mammalian species.

INTRODUCTION

The ability of polynucleotide cytidine deaminases encoded
by the mammalian APOBEC3 (A3) genes to restrict a
variety of retroelements is now well established (1,2). A3
molecules belong to a family of proteins that also includes
apolipoprotein B (apo B)-editing catalytic subunit 1
(APOBEC1; A1), activation-induced cytidine deaminase
(AID), APOBEC2 (A2) and APOBEC4 (A4) (3–5).
These proteins have deaminase activities that can modify
cytosine bases to uracils (C–U) on DNA and/or RNA. A1,
the catalytic component of a complex that deaminates
apoB mRNA in gastrointestinal tissues, is the original
member of this family and remains the best characterized
(6,7). AID, a DNA-editing enzyme that is the second
member to be identified, has been shown to play key
roles in the diversification of antibody genes in activated
B cells (8). The human genome encodes seven A3 proteins,
from A3A to A3H, while the mouse genome contains a
single A3 gene (9,10). Since only AID- and A2-like but not
A3- or A1-related sequences are encoded in the genome of
non-mammalian vertebrates such as birds and fishes, AID
as well as A2 is thought to be the evolutionary precursor
to the various AID/APOBEC family proteins (10).

Several A3 proteins have been shown to possess the
capacity to reduce the mobility and infectivity potential
of autonomous retrotransposon LINE-1 (long inter-
spersed nucleotide sequence-1, L1) (11–16). In contrast,
it was suggested that neither AID nor A2 possess any
activity against the mobility of retroelements in cell
culture assays (12,17,18), but this issue is controversial
(19–21). Similar to A3, several reports including ours
indicated that A1 inhibits a wide range of exogenous
retroviruses such as HIV (human immunodeficiency
virus)-1 (17,22–24). The inhibitory activities against
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HIV-1 observed with A1s from rodent and rabbit were
based, at least in part, on cytidine-deamination of the
viral genomic RNA, and analysis of mutational hot
spots indicated that the molecular mechanisms for
intra-virion editing of HIV-1 genomic RNA and apoB
mRNA overlap (23,24). Thus, it is conceivable that A1
also affects the mobility of the autonomous retroelements.
Here, we investigated the effects of A1 proteins on the
retrotransposition of LINE-1 and long terminal repeats
(LTRs) retrotransposons such as murine intracisternal
A-particle (IAP) and MusD sequences. We showed that
A1 proteins do possess the capacity to inhibit the trans-
position of L1 and endogenous retrovirus sequences. The
anti-L1 activity does not require cytidine deaminase
activity, and is not affected by subcellular localization of
the A1 proteins. In contrast, A1 inhibits the replication of
murine IAP and MusD through a DNA deamination-
dependent mechanism. Together, the data suggest that
the A1 proteins can also function in innate defense
against endogenous retroelements, exerting their effects
using multiple mechanisms in several mammalian species.

MATERIALS AND METHODS

DNA constructs

Plasmids coding for human L1 (pL1RP-EGFP and pCEP4/
L1mneoI/ColE1) were kindly donated by E.T. Luning
Prak and N. Gilbert, respectively (25,26). Plasmids
coding for murine L1 (pCMV L1Md-Gf21neoTET),
MusD (pCMV L1Mus-6DneoTNF) and IAP (pGL3-
IAP92L23neoTNF) have been described (27–30). HA-
tagged human A3A, A3B and A3G expression plasmids,
HA-tagged A1 from mammalian species and rabbit A1
with catalytic site mutant (E63Q, E63A) expression
plasmids have been described (16,23,31). Rabbit and rat
A1 catalytic mutants N57A and P29T were constructed
with QuickChange� XL Site-Directed Mutagenesis Kit
(Stratagene) using oligonucleotide primers (rabbit A1
N57AF; 50-CGC AGC TCG GGC AAG GCC ACC
ACC AAT CAC GTG-30, rabbit A1 N57AR; 50-CAC
GTG ATT GGT GGT GGC CTT GCC CGA GCT
GCG-30, rat A1 P29TF; 50-GTC TTC TTT GAC ACC
CGG GAA CTT-30, rat A1 P29TR; 50-AAG TTC CCG
GGT GTC AAA GAA GAC-30, rabbit A1 P29TF;
50-GTC TTC TTT GAC ACC CAA GAA CTG CG-30,
rabbit A1 P29TR; 50-CGC AGT TCT TGG GTG TCA
AAG AAG AC-30), and inserted into pCAGGS vector.
To clone a full-length murine AID cDNA, total RNA
from mouse germinal center B-cells was prepared using
TRIzol reagent and synthesis of cDNA was performed
with Superscript II RT kit using random primers. The
cDNA encoding the AID gene was amplified using
primer sets, 50-GGGGGATCCATGGACAGCCTTCTG
ATGA-30 and 50-GCTCTAGATCAAAATCCCAACAT
ACGAAA-30. The AID cDNA fragment was inserted
into the BamHI–XbaI sites of pBS-3x Flag vector and
confirmed by DNA sequencing. The Flag-fused AID
fragment was isolated from ‘SalI-NotI’ sites and transfer
into the cloning sites in pEF-BOS-derived mammalian ex-
pression vector. The untagged AID gene was amplified

with 50-GGCTCGAGATGGACAGCCTTCTGATG
AAGC-30 and 50-GGGGAATTCTCAAAATCCCAACA
TAC-30, inserted into EcoRI site of pCXN2 vector, a de-
rivative of pCAGGS that carries a fragment of the tk
promoter and neo gene (32).

L1 retrotransposition assay

The enhanced green fluorescent protein (EGFP)-based
human L1 retrotransposition assay was performed as pre-
viously described (16). Total of 3� 105 293T cells were
co-transfected with 0.5 mg of the respective APOBEC ex-
pression vector or empty vector (pCAGGS) together with
1.5mg of EGFP-based human L1 reporter vector pL1RP-
EGFP or pIRESpuro vector (CLONTECH) using
Effectene� (Qiagen). The amount of plasmid DNA for
transfection was normalized to 2.0mg. Twenty-four
hours post-transfection, cells were subjected to puromycin
(1.0 mg/ml) selection. After 7–9 days of puromycin selec-
tion, EGFP expression resulting from retrotransposition
was verified by flow cytometry. Another L1 retrotran-
sposition assay was performed by cotransfection of
HeLa cells (5� 105 cells) with 0.4mg of the respective
APOBEC expression plasmids and 1.2 mg of neomycin-
resistant (neor)-based human L1 reporter vector pCEP4/
L1mneoI/ColE1 or neor-based murine L1 reporter vector
pCMV L1Md-Gf21neoTET along with 0.4mg of
pIRES-EGFP (CLONTECH) using the FuGENE tech-
nology (Roche Applied Science), as previously described
(16,33). After 72 h, 5� 105 cells were equivalently
re-seeded onto 100mm dishes for G418 (0.5–0.75mg/ml)
selection and maintained. After 12–14 days of selection,
resultant G418-resistant (G418R) colonies were fixed,
stained with crystal violet (SIGMA), and counted.
Retrotransposition frequencies were calculated as a
number of G418R colonies/transfection efficiency
(percent of GFP+ cells). Data are shown by the values
relative to the pCAGGS control vector. The average of
three experiments with standard deviation is indicated.

Bacterial mutator assay

To generate the bacterial-expression vectors encoding the
various APOBECs, APOBEC fragments in the relevant
pCAGGS-based plasmid, including the C-terminal HA
tag (23), were PCR-amplified by using oligonucleotides
(sense orientation, human A3G; 50-CTC GAG ATG
AAG CCT CAC TTC AGA AAC ACA GTG G-30,
human A1; 50-CTC GAG ATG ACT TCT GAG AAA
GGT CCT TCA ACC G-30, ferret A1; 50-CTC GAG
ATG GCT TCT GAC AAA GGT CCT TCA GC-30

rabbit A1; 50-CTC GAG ATG GCT TCC GAG AAA
GGT CCT TCA AA-30, rat A1; 50-CTC GAG ATG
AGT TCC GAG ACA GGC CCT G-30, XhoI site
underlined) and another primer (antisense orientation,
50-CTG CAG TCA AGC GTA ATC TGG AAC ATC
GTA TGG GTA-30, PstI site underlined), digested with
XhoI and PstI restriction enzymes, and inserted into XhoI
and PstI sites present in the bacterial expression plasmid
pTrcHisA (Invitrogen). All constructs were verified by
DNA sequencing. The ung (uracil DNA glycosylase)-defi-
cient Escherichia coli strain BW310 [(34,35); donated by
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E. coli Genetic Resource Center, Yale University] was
transformed with the pTrcHisA parental plasmid and vec-
tors encoding the various APOBEC cDNAs. Transformed
bacteria were then selected overnight on LB plates con-
taining ampicillin. Twenty colonies were pooled into 2ml
of LB medium plus ampicillin plus 1mM IPTG and
cultures grown overnight at 37�C. One hundred micro-
liters of the saturated culture was then plated on LB
plates containing 100 mg/ml of rifampicin, and the total
number of rifampicin-resistant (RifR) colonies per plate
was counted 24 h later. For viable cells, appropriate dilu-
tion was plated onto LB plate containing ampicillin and
mutation frequencies were caluculated as RifR colonies
per viable cell. To verify protein expression, 100 ml of the
saturated IPTG-induced culture was lysed and analyzed
by western blot analysis as described above.

Immunofluorence microscopy and confocal analysis

A total of 2�104 HeLa cells were seeded onto 8-well Lab-
Tek Chamber Slide (Nalge Nunc International) and
immunofluorescence studies were performed at 24 h after
transient transfection using FuGENE. Cells were subse-
quently fixed with 4% formaldehyde in PBS(�) for
30min, permeabilized with 0.1% Triton-X100 in PBS for
2min at room temperature, and subsequently washed
3 times in PBS. Then, the cells were treated with 0.1M
glycine/PBS for quenching and 0.3% BSA/PBS for block-
ing. For APOBECs staining, coverslips were incubated in
a humid chamber at 37�C for 1 h with anti-HA antibody
(HA.11, Covance; 1:1000 dilution) in 0.3% BSA/PBS. A
fluorescein isothiocyanate (FITC)-conjugated goat
anti-mouse IgG (Sigma; 1:300) in 0.3% BSA/PBS was
then added and incubation continued for an additional
hour. Subsequently, 4,6-diamidino-2-phenylindole
staining (Invitrogen; 1 mg/ml) was performed for 5min.
The coverslips were mounted with Fluorescent
Mounting Medium (Dako). Fluorescence pattern were
visualized with a Zeiss LSM 700 laser-scanning confocal
microscopy. The images were captured using IPLab and
processed using Adobe PhotoShop 4.0 software.

IAP and MusD retrotransposition assay

IAP and MusD retrotransposition assay was performed
by cotransfection of HeLa cells with 0.2–0.4 mg of the re-
spective APOBEC expression plasmids or empty vector
(pCAGGS) together with 0.6 mg of neor-based murine
IAP-reporter vector pGL3-IAP92L23neoTNF or 1.2 mg
of neor-based murine MusD-reporter vector pCMV
Mus-6DneoTNF along with 0.4 mg of pIRES-EGFP
using FuGENE, as previously described (33). After 72 h,
1� 105–5� 105 cells were re-seeded onto 100mm dishes
for G418 (0.75–1.0mg/ml) selection and maintained.
Twelve to fourteen days after selection, resultant G418R

colonies were fixed, stained with crystal violet, and
counted. Retrotransposition frequencies were calculated
as described above.

Quantitation of de novo L1 copy number

Copy number of retrotransposed L1 elements was esti-
mated by real-time PCR targeting the EGFP gene as

described previously (16). Briefly, 6–7 days after transfec-
tion as described above, total cellular DNA was extracted
from 293T cells by using the QIAamp DNA Blood Mini
Kit (Qiagen) which is able to recover both chromosomal
and episomal DNA. Real-time PCR reactions were then
performed using TaqMan Gene Expression Master Mix
by 7500 Real-Time PCR System (Applied Biosystems,
Foster City, CA, USA). L1 DNA levels are presented as
copies per 106 cells.

Fast protein liquid chromatography analysis

The 293T cells were co-transfected with 1.5mg of pIRESpuro
or pL1RP-EGFP and 0.5mg of respective pCAGGS-
APOBEC-expression vectors. At 24h post-transfection, the
transfected cells were harvested and then lysed by Fast
protein liquid chromatography (FPLC) buffer [50mM
HEPES pH 7.2, 125mM NaCl, 10% glycerol, 0.1%
NP-40 and protease inhibitor cocktail (Sigma-Aldrich)].
Twenty micrograms of the total protein was separated by
sequentially adding 300ml of the FPLC buffer into 10 frac-
tions on Sepharose 4B (Sigma-Aldrich) packed serological
column (Fisher). The each eluted fraction was analyzed by
western blot. To test RNase sensitivity, the cell lysates were
treated with RNase A (50mg/ml, QIAGEN) at 37�C for 1h,
before fractionation.

RNA immunoprecipitation assay and real-time
quantitative RT–PCR

To examine the physical association of A1 protein with L1
and cellular RNAs, RNA immunoprecipitation assay was
carried out as previously described (36), with minor modi-
fication. Briefly, 293T cells were co-transfected with 1.5mg
of pL1RP-EGFP and 0.5 mg of expression plasmids for
APOBEC family proteins, and 24 h later, cells were har-
vested and then lysed by FPLC buffer. The cell lysates
were cross-linked and then immunoprecipitated with
control rabbit IgG (Cell Singnaling) or anti-HA rabbit
IgG (Cell Singnaling) conjugated to Dynabeads� M-280
Sheep anti-Rabbit IgG (Invitrogen). The precipitated
RNAs with APOBEC proteins were extracted from copre-
cipitated samples and analyzed by real-time quantitative
RT–PCR (qRT–PCR) with primers specific for L1-EGFP,
7SL RNA, GAPDH and eIF4G2 (37). Isolated samples
were treated with TURBOTM DNase (Ambion) and then
reverse transcribed using High-Capacity cDNA Reverse
Transcription Kits (Applied Biosystems). qRT–PCR
was performed using Applied Biosystems 7500 (Applied
Biosystems) and MESA Blue qPCR MasterMix
(EUROGENTEC). The target sequences were amplified
using the following primer set. L1-EGFP, forward;
50-TCC AGG AGC GCA CCA TCT T-30 and reverse;
50-ATG CCC TTC AGC TCG ATG C-30. 7SL RNA,
forward; 50-ATCGGGTGT CCGCAC TAAG-30 and re-
verse; 50-CAC CCC TCC TTA GGC AAC CT-30.
GAPDH, forward; 50-GCA AAT TCC ATG GCA CCG
T-30and reverse; 50-TCG CCC CAC TTG ATT TTG G-30.
eIF4G2, forward; 50-ACA AAT GCC AGG TAG CGG
AA-30 and reverse; 50-TTG CCT CCC ATC TCT CCA
AA-30.
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Statistical analysis

The statistical significance between two groups was
determined by performing the Student’s test. A value of
P< 0.05 was considered to be of statistical significance.

RESULTS

A1s from multiple mammalian species possess
anti-L1 activity

To examine the anti-L1 activities of A1s, we co-
transfected 293T cells with expression plasmids encoding
various A1s carrying C-terminal HA-tag and the EGFP-
based L1 retrotransposon indicator construct pL1RP-
EGFP (25), with hA3A, hA3B and hA3G (which are
also C-terminal HA epitope-tagged) serving as controls.
The pL1RP-EGFP plasmid contains a full-length human
L1 genome with the EGFP gene inserted in the anti-sense
orientation, as well as a ‘puromycin’-resistance gene which
allows for selection. The EGFP gene is under the control
of a CMV promoter and is disrupted by a g-globin intron

in the sense orientation. EGFP expression, therefore,
requires transcription and splicing of the L1 transcript,
followed by reverse transcription and retrotransposition
into the host cell genome. After 7–9 days of puromycin
selection, EGFP expression resulting from retrotran-
sposition was verified by flow cytometry. The appearance
of many GFP+ events in cultures transfected with the
pL1RP-EGFP plasmid alone (7.21% with a MFI of
421.3; vector) as compared with the few events in those
without (0.3% with a MFI of 49.9; Nega) demonstrates
the dependence of EGFP expression on the successful
occurrence of L1 retrotransposition (Supplementary
Figure S1). As expected, pronounced decrease in the L1
retrotransposition was observed when hA3A and hA3B
were expressed (4.6-fold and 5.1-fold, respectively).
Consistent with previous observations (11–16), hA3G
was also found to cause pronounced decrease in L1
mobility (5.1-fold). The anti-L1 activity of A1 proteins
from different mammalian species was more variable
and was dose-dependent (Figure 1C). At 0.5 mg DNA
input, the reduction in L1 mobility with A1s from
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Figure 1. Inhibition of L1 retrotransposition by A1 proteins. (A) 293T cells were co-transfected with 0.5 mg of the expression plasmids for APOBEC
family proteins and 1.5 mg of L1 retrotransposition indicator construct pL1RP-EGFP. After 24 h, cells were subjected to puromycin (1.0 mg/ml)
selection. GFP expression within the transfected 293T cells was analyzed on flow cytometry, after 7–9 days of puromycin selection. Relative
retrotransposition frequency in the absence of APOBEC proteins (vector) was set as 1.0. The histogram bars represent the mean of three independent
cultures, and the standard deviation is shown. (B) Western blot analysis was performed by using extracts from 293T cells transfected by the
expression plasmids for APOBEC family proteins and detected by using antibodies specific for the epitopes present in the test proteins. (C) The
transposition frequency of L1 in 293T cells co-transfected with 1.5 mg of pL1RP-EGFP along with the expression plasmids for APOBEC family
proteins as described in (A), except for that the amounts of APOBEC-expression plasmids were varied (0.5, 0.25 and 0.125 mg). The histogram bars
represent the mean of three independent cultures, and the standard deviation is shown. (D) Western blot analysis of the protein expression levels
from the experiment in (C).
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human and ferret was modest (2.4-fold and 1.8-fold, re-
spectively), while those from rodents such as hamster, rat
and mouse reduced L1 retrotransposition by �3-fold. A1
from rabbit was the most potent, with close to a 4-fold
decrease in L1 retrotransposition seen with this cytidine
deaminase. As AID from multiple species including
primary vertebrates such as chicken and fish has also
been shown to possess anti-L1 activity (21), we tested
mouse AID activity against the L1 reporter construct
pL1RP-EGFP in 293T cells. Although mouse AID
reduced L1 retrotransposition, its activity is lower than
those observed with A1s from other mammalian species
(Figure 1 and Supplementary Figure S1).
To assess whether the editing activity of A1 is necessary

for inhibition of L1 retrotransposition, we tested the
rabbit A1 catalytic active site mutant in which the critical
glutamic acid at Position 63 (Figure 2) was changed to
glutamine (E63Q; 23). Furthermore, because a murine
AID catalytic mutant in which the critical asparagine at
Position 51 was changed to alanine (N51A) was reported
to result in the complete loss of the DNA deamination
activity (38), we introduced similar mutation at N57
(Figure 2) of rabbit A1, a site homologous to N51 of
AID, and examined the effect on L1 retrotransposition.
Results showed that the E63A, E63Q, E57A mutants and
WT proteins were expressed at comparable levels, but
the anti-L1 activity of rabbit A1 was moderately, not
significantly altered by these mutations (Figure 3 and
Supplementary Figure S1). Sequence analysis of HIV-1
genomic RNA in the presence of rabbit A1 WT or

N57A mutant revealed that the editing activity of E57A
mutant was almost disappeared (Supplementary Figure S2
and Table S1). Therefore, we concluded that the in-
hibitory activities of A1s against the L1 retrotransposition
are not largely dependent on cytidine-deaminating
activity.

A1s from rat and rabbit exhibit DNA mutator activities in
bacteria

Expression of A1 protein from rat in E. coli has previously
been shown to greatly enhance the frequency of the E. coli
RNA polymerase B gene (rpoB) mutations (39,40).
Mutations in rpoB are then detected by screening for the
frequency of Rifr colonies. This demonstrated that the
apoB mRNA editing enzyme A1 from certain mammalian
species can act as a powerful DNA mutator which edits
DNA cytidine in bacteria. This previously described DNA
mutation assay in bacteria was used to test whether A1s
from small animal species have the ability to edit dC
residues to dU on single-stranded DNA templates.
Consistent with previous observations (35,39), expression
of rat A1 and hA3G greatly (1000-fold) and modestly
(8.9-fold) enhance, respectively, the frequency of rpoB
mutations. Similarly, expression of A1 from rabbit was
found to increase the number of Rifr colonies by
33-fold, while A1 from human and ferret had a negligible
effect (Figure 4). Furthermore, at comparable expression
levels, the rabbit A1 catalytic site mutants E63Q and
N57A failed to elicit activity in E. coli (Figure 4). These
data strongly suggest that DNA mutator activity of A1s

Figure 2. Comparison of the predicted amino acid sequence of mammalian A1 proteins. Amino acids sequence alignment of A1 from primates
(human; GenBank accession number NM001644), mustelas (ferret; AB425821), lagomorphs (rabbit; U10695) and rodents (hamstar; AF176577, rat;
NM012907 and mouse; NM031159). The numbers are predicted amino acid residue positions. The putative bipartite nuclear targeting signals are
shown in dark gray boxes. The active site core motif in the cytidine deaminase domain is indicated in gray boxes. The amino acid residue Pro(P)-29,
which is shown to be critical for the nuclear localization (42), is denoted by dot. The amino acid residue Asn(N)-57, a site homologous to Asn(N)-51
of murine AID, which is shown to be critical for the DNA deamination activity (38), is denoted by reverse triangle. The Glu(E)-63 residue of active
site serving an essential role in catalysis as a proton shuttle, is indicated by asterisks.
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from rat and rabbit in bacteria is cytidine-deaminase
dependent.

Subcellular localization mutants of A1s inhibit
retrotransposition of L1

Previous studies demonstrated both nuclear and cyto-
plasmic localization of A1s in transfected cells (41,42).
The nuclear localization signal (NLS) of A1 interacts
with importin a, while the C-terminal leucine-rich
nuclear export signal (NES) associates with exportin 1
during transport. Mutation of proline 29 to threonine
(P29T; Figure 2) results in the abolishment of nuclear
targeting (42). To examine the effects of subcellular local-
ization on the anti-L1 activities of A1s, expression
plasmids encoding P29T mutant forms of rat and rabbit
A1 proteins were generated and co-transfected into 293T
cells with the pL1RP-EGFP. Results showed that while
the ability of the rat A1 P29T mutant to restrict the
mobility of L1 was severely impaired, the P29T mutant

forms of rabbit A1 were equally active against L1
(Figure 5A). However, western blot analysis of lysates
from 293T transfected cells revealed a large discrep-
ancy between the steady-state levels of the two proteins,
with much lower levels of rat A1 P29T protein
expression (Figure 5B, upper panel). When increasing
amounts of rat A1 P29T expression plasmid were trans-
fected into 293T cells together with a fixed amount of the
pL1RP-EGFP, such that the level of expression is similar
to that of wild-type (0.5 mg P29T plasmid), the rat A1
mutant P29T protein displayed �2-fold inhibition
(Figure 5C and D). Furthermore, when 2.0mg plasmid was
used, the rat A1 mutant P29T inhibited L1 to the same
extent as the wild-type (Supplementary Figure S1B). Thus,
the inability of rat A1 P29T to restrict L1 retrotrans-
position appears to reflect low protein expression levels
in transfected cells, and that the significantly different
expression levels of the rabbit and rat A1 mutant P29T
may explain the observed disparity in their anti-L1
activity.
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Figure 3. Inhibition of L1 retrotransposition by rabbit A1 with catalytic site mutations. (A) 293T cells were co-transfected with 0.5 mg of the
expression plasmids for rabbit A1 catalytic site mutants and 1.5 mg of pL1RP-EGFP. GFP expression within the transfected 293T cells were
analyzed on flow cytometry as described. Relative retrotransposition frequency in the absence of APOBEC proteins (vector) was set as 1.0. The
histogram bars represent the mean of three independent cultures, and the standard deviation is shown. (B) Western blot analysis was performed by
using extracts from 293T cells transfected by the expression plasmids for rabbit A1 catalytic site mutants and detected by using antibodies specific for
the epitopes present in the test proteins. (C) The transposition frequency of L1 in 293T cells co-transfected with 1.5 mg of pL1RP-EGFP along with
decreasing amounts (0.5, 0.25 and 0.125 mg) of the expression plasmids for rabbit A1 catalytic site mutants as described in (A). The histogram bars
represent the mean of three independent cultures, and the standard deviation is shown. (D) Western blot analysis of the protein expression levels
from the experiment in (C).
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We next confirmed the intracellular localization of the
wild-type and P29T mutant rat and rabbit A1 proteins
transiently expressed in HeLa cells, with hA3A, hA3B,
hA3G and human A1 serving as controls. Consistent
with previous reports, hA3A and human A1 exhibited
both nuclear and cytoplasmic localizations (12,41,42),
while hA3B was found exclusively in the nucleus (11)
and hA3G localized predominantly in the cytoplasm
(Figure 6). Nucleus and cytoplasm localizations were
also observed for ferret A1, mouse A1, hamster A1 and
catalytic mutants of rabbit A1 (E63Q and N57A), whereas
the murine AID protein was found exclusively in the cyto-
plasm (Figure 6).
For both wild-type and P29T mutant A1 from rabbit,

localization is largely cytoplasmic, but wild-type A1 from
rat exhibited profound nuclear accumulation that was
abolished with the P29T mutation (42). This latter obser-
vation for the P29T mutant A1 from rat suggests that the
anti-L1 activity of A1s is largely not affected by
subcellular localization of the proteins.

A1 suppress de novo L1 DNA synthesis

Our findings thus far suggested that A1s from multiple
mammalian species have the potential to attenuate L1
retrotransposition. However, how A1 acts against the
retrotransposition of L1 remains unclear, and it is not
known whether the anti-L1 function involves additional
cellular co-factor(s). We, therefore, measured the
presumed copy number of retrotransposed L1 elements
by performing real-time PCR using total DNA which
was isolated from the cells used in Figures 1, 3 and 5 in

order to determine if A1 is indeed effective on retrotran-
sposition inhibition. As noted above, the retroposition
cassette contains an intron in the EGFP gene that can
only be removed during a retrotransposition event. A
real-time PCR targeting the intronless EGFP, therefore,
should distinguish the EGFP-based L1 retrotransposon
indicator construct and any endogenous L1 DNA that
might have been newly synthesized in the cells from a
de novo pL1RP-EGFP-mediated retrotransposition event
(16). As shown in Figure 7, EGFP could be amplified
in cells transfected with pL1RP-EGFP and the empty
vector control. In contrast, when pL1RP-EGFP was trans-
fected into the cells together with hA3A expression
plasmid, only background levels of EGFP were detected.
Analysis using human A1, rabbit A1 wild-type, catalytic
mutants (E63Q and N57A) and subcellular localization
mutant (P29T) showed that results obtained with this
assay were largely consistent with those observed in flow
cytometry analysis (Figures 1, 3 and 5). Thus, results
obtained by detecting not only integrants (Figure 7), but
also reverse transcripts are similar to those in which levels
of EGFP expression represent L1 retrotransposition
(Figures 1, 3 and 5). We, therefore, conclude that A1 as
well as hA3A are indeed able to inhibit the accumulation
of nascent L1 DNA, suggesting interference with L1
reverse transcription and/or integration or intracellular
movement of L1 ribonucleoprotein (RNP). Furthermore,
the suppressive activity against de novo L1 DNA synthesis
was mainly in a deamination-independent manner, and
was not affected by subcellular localization of the
proteins.
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Figure 4. Mutations of E. coli genomic DNA by various A1 proteins. (A) The abilities of APOBEC family proteins to enhance mutagenesis levels in
bacteria were analyzed. Plasmid encoding the indicated proteins was introduced into bacteria, and their expression was induced. The level of
mutagenesis was then assessed by plating the bacteria on medium containing rifampicin and counting the number of RifR colonies. The median
mutation frequencies of twelve independent cultures with the standard deviation are indicated as the number of RifR colonies per viable cells.
(B) Western blotting of APOBEC family proteins expression in the bacterial strain analyzed in (A) was performed using an HA-tag-specific antibody.
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A1s from multiple mammalian species can also inhibit the
retrotransposition of murine L1

To confirm results of the EGFP-based L1 retrotran-
sposition assay, we next performed a different type of
retrotransposition assay, using L1 vector which carries
neor gene instead of the EGFP gene. L1 retrotransposition

events could be detected upon G418 selection of the target
HeLa cells, with no G418R clones detected with the
control plasmid (data not shown). As shown in Figure 8
and Supplementary Figure S3A, results obtained with the
neor-based retrotransposition assay using human L1
pCEP4/L1mneoI/ColE1 plasmid are consistent with

Figure 5. Effect of rat and rabbit A1 with subcellular localization mutations on L1 retrotransposition. (A and C) 293T cells were co-transfected with
1.5 mg of pL1RP-EGFP together with 0.5 mg of the expression plasmids for HA-tagged rat and rabbit A1 (WT; wild-type) or their subcellular
localization mutants (P29T). The decreasing amounts (0.5, 0.25 and 0.125 mg) of APOBEC expression plasmids were used in (C). EGFP-based L1
retrotransposition assay was performed as described. Relative retrotransposition frequency in the absence of APOBEC proteins (vector) was set as
1.0. The histogram bars represent the mean of three independent cultures, and the standard deviation is shown. (B and D) Western blot showing
expression of the HA-tagged proteins from a representative experiment from (A and C). (E) Escherichia coli-based RifR mutation assay was carried
out using rat and rabbit A1 or their subcellular localization mutants. The median mutation frequencies of twelve independent cultures with the
standard deviation are indicated as the number of RifR colonies per viable cells. Western blotting of HA-tagged protein expression in the bacterial
strain analyzed was performed using an HA-tag-specific antibody.
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those seen using EGFP-based assay. Mouse L1s are gen-
erally homologous to human L1s but differ significantly in
their 50UTR and the 50 half of ORF1. Thus, the effect of
A1 proteins on the retrotransposons of mouse L1 was
examined using murine L1 pCMV L1Md-Gf21neoTET

plasmid. As expected, hA3G caused modest decreases in
retrotransposition of both human and murine L1s, and
more pronounced impairment in retrotransposition of
L1s were observed when hA3A and hA3B were co-
transfected (Figure 8 and Supplementary Figure S3B). A
modest reduction in the mobility of human L1 was also
found with murine AID (Figure 1 and Supplementary
Figure S1A). These findings are in agreement with recent
analysis by MacDuff et al. (21), showing that AID from a
panel of vertebrates including chicken and zebrafish is able
to inhibit the replication of L1 and MusD through a DNA
deamination-independent mechanism. A1s from rabbit
and rodents were found to markedly impair retrotran-
sposition of both human and murine L1 (Figure 8 and
Supplementary Figure S3A and B). Analysis using rabbit
A1 catalytic mutants (E63Q and N57A) showed that the
cytidine deaminase activity is not required for the anti-L1
activity. Furthermore, we revealed that the inhibition of
L1 retrotransposition was not affected by subcellular lo-
calization of A1 proteins. These multiple lines of investi-
gations indicate that, similar to hA3A, hA3B and hA3G,
A1s from multiple mammalian species can function on
both human and murine L1, presumably through a
deamination-independent mechanism.

A1s from multiple mammalian species can inhibit the
retrotransposition of murine IAP and MusD

A3s have been demonstrated to restrict the intracellular
transposition of a series of retroelements, including the

Figure 6. Subcellular localization of the APOBEC family proteins. HA-tagged APOBEC proteins were expressed in HeLa cells, fixed and immuno-
fluorescence staining was performed using an HA-tag-specific antibody and a FITC-conjugated goat anti-mouse IgG (in green). Cell nuclei were
visualized by 4,6-diamidino-2-phenylindole (DAPI) staining (in blue), and the samples staining by confocal microscopy.
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Figure 7. Real-time PCR targeting spliced EGFP genes. Total cellular
DNA was extracted at 6–7 days post-transfection from the cells used in
Figures 1 and 3, subjected to real-time PCR analysis using a probe designed
for the detection of spliced EGFP. Histgram bars represent the mean of
three independent experiments, and the standard deviation is shown.
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autonomous retrotransposons that bear LTR such as
murine IAP and MusD sequences, and this restriction
appears to be accompanied by hypermutation in the retro-
element genome that are attributed to the cytidine deami-
nase activity of the A3 proteins (33,43). To examine the
ability of A1s from multiple mammalian species to inhibit
the murine IAP and MusD in human cells, we co-
transfected HeLa cells with expression plasmids encoding
various AID/APOBEC family proteins and the previously
described IAP and MusD retrotransposition indicator
constructs IAP pGL3-IAP92L23neoTNF, murine MusD
pCMV Mus-6DneoTNF. This constructs contain
full-length IAP and MusD genome with the neor gene
inserted in the antisense orientation, which is spliced out
of the RNA intermediate, resulting in a functional gene
after reverse transcription and integration (43).

As demonstrated in Figures 8 and 9, hA3A, hA3B and
hA3G expression indeed reduced IAP retrotransposition
significantly, as previously described (43). Interestingly,
MusD was found to be more sensitive to hA3G, but rela-
tively resistant to hA3A than IAP. The A1s from rabbit
and rodents were found to be highly active against the
retrotransposition of IAP and MusD, reducing their

mobility >100-fold in some experiments. In contrast to
A1s from rabbit and rodent, A1s from human and ferret
exhibited no significant activity against IAP and MusD
retrotransposition. Furthermore, in contrast to the
activity against the L1 retrotransposition, the ability of
the catalytic mutants (E63Q, N57A) of rabbit A1 to
restrict the IAP and MusD retrotransposition were signifi-
cantly, but not completely impaired, suggesting the exist-
ence of a deaminase-independent restriction mechanism
by A1. To verify the findings with the rabbit A1 mutant,
hamster, rat and mouse A1 catalytic mutants E63A and
E63Qwere constructed and their inhibitory activity against
retrotransposition of human L1 pCEP4/L1mneoI/ColE1,
or murine MusD pCMV Mus-6DneoTNF was examined.
Results showed that the ability of these catalytic mutants

to restrict the MusD retrotransposition was significantly
impaired, while the activity against the L1 retrotransposition
was relatively conserved (Supplementary Figures S3D, E
and 4 A). Hyperediting of MusD genome by rat and
rabbit A1s was examined by differential DNA denaturation
PCR (3D-PCR) (24) to further demonstrate a deaminase-
dependent restriction mechanism. Sequencing of cloned
3D-PCR products obtained with rat and rabbit A1
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Figure 8. Effects of APOBEC family proteins on a range of autonomous retroelements using neor-based retrotransposition assay. HeLa cells were
co-transfected with 1.2 mg of L1 retrotransposition indicator construct human L1 pCEP4/L1mneoI/ColE1, murine L1 pCMV L1Md-Gf21neoTET,
MusD retrotransposition indicator construct murine MusD pCMV Mus-6DneoTNF or 0.6 mg of IAP, murine IAP retrotransposition indicator
construct pGL3-IAP92L23neoTNF, together with 0.4 or 0.2 mg of respective APOBEC expression plasmids and 0.4 mg of pIRES-EGFP vector. After
72 h, cells were trypsinized, re-seeded onto 100mm dishes, and subjected to G418 (0.5, 0.75 or 1.0mg/ml) selection. After 12–14 days of selection,
resultant G418R colonies were fixed, stained with crystal violet and counted to determine the level of autonomous retrotransposition.
Retrotransposition frequency was calculated as the number of G418R clones/transfection efficiencies (percent of GFP+ cells). Data are presented
by the values relative to samples containing retroelement alone (defined by quantifying G418R clones). The average of three experiments with
standard deviation is indicated.
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showed that guanosine bases were extensively edited, yielding
G–A hypermutations in plus-strand DNA (Supplementary
Figure S5). On the other hand, sequence analysis of de novo
L1 insertions reveals no obvious editing (Supplementary
Figure S6). Interestingly, the ability of the rabbit A1 P29T
mutant to restrict the mobility of IAP and MusD were
severely impaired, although this rabbit A1 P29T mutant
was as active as wild-type against both human and murine
L1. The inhibitory activities against murine IAP and MusD
observed in A1s from rabbit were based on, at least in part,
cytidine-deaminating activity on IAP and MusD proviral
DNA, since rabbit A1 P29T mutant exhibit a negligible
DNA mutator activities in bacteria (Figure 5E). On the
other hand, the inability of rat A1 P29T to restrict murine
IAP and MusD retrotransposition appears to reflect low
protein expression levels in transfected cells (Figure 5 and
Supplementary Figure S4B), as discussed above.

Formation of intracellular high-molecular-mass
A1 complexes

It was previously reported that hA3G can interact with
cellular mRNAs (44–47) to form high-molecular-mass
(HMM) RNP complexes (46,48) and to associate with
stress granules, staufen granules, or P bodies. However,
it had been reported that the inhibitory activity of human
A3 proteins against L1 retrotransposition does not correl-
ate with intracellular HMM formation or P-body

association (18). To explore A1 proteins are associated
with HMM complexes, the expression plasmids encoding
various A1s carrying C-terminal HA-tag, with hA3G
(which are also C-terminal HA epitope-tagged) serving
as controls, were co-transfected into 293T cells in the
absence or presence of the L1 retrotransposition indicator
construct pL1RP-EGFP. After 24 h, the transfected cells
were lysed and subjected to FPLC analysis. To test
RNase sensitivity, the cell lysates were treated with
RNase A, before fractionation. Each eluted fraction was
subjected to western blotting with HA antibody.
Consistent with previous observations (46,48), hA3G
assembled into HMM complexes that converts to a
low-molecular-mass (LMM) form by RNase treatment
(Figure 10), A1 proteins were found to exist in a HMM
form both in the absence or presence of pL1RP-EGFP
(Figure 10). Notably, and in sharp contrast to hA3G,
A1 distribution was not affected by RNase treatment
(Figure 10), suggesting that this single-domain cytidine
deaminase may be able to interact differently and/or
more strongly with host RNA(s).

Selective interaction of A1 proteins with L1 and
cellular RNAs

To examine the physical association of A1 protein with L1
and cellular RNAs, RNA immunoprecipitation assay was
carried out as previously described (36), with minor

vector hA3GhA3BhA3ANega

Rat A1

Mouse A1

Human A1 Ferret A1 Rabbit A1 Hamster A1

Rat A1 P29T Rabbit A1 P29TRabbit A1 N57ARabbit A1 E63Q

Figure 9. Inhibition of murine IAP LTR retrotransposons by A1 proteins. HeLa cells were co-transfected with the expression plasmids for APOBEC
family proteins and the neomycin-resistant (neor)-based murine IAP reporter vector pGL3-IAP92L23neoTNF along with pIRES-EGFP. Cells were
subjected in G418 and resistant colonies counted 12–14 days after transfection. This experiment is representative of the data compiled in Figure 8.
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modification. 293T cells were co-transfected with the ex-
pression plasmids for APOBEC family proteins carrying
C-terminal HA-tag and the L1 retrotransposition indica-
tor construct pL1RP-EGFP, cross-linked and then
immunoprecipitated with anti-HA antibody conjugated
to Dynabeads. Cell lysates from transfected 293T cell
lysates were also immunoprecipitated side by side with
control IgG as the negative control to determine non-
specific binding of various RNAs in the assay system.
The precipitated RNAs with APOBEC proteins were ex-
tracted from co-precipitated samples and analyzed by
qRT–PCR with primers specific for L1-EGFP, 7SL
RNA, GAPDH and eIF4G2(NAT1; novel APOBEC-1
target no.1). The latter has been identified as a novel trans-
lational repressor mRNA that is extensively edited at
multiple sites in rabbit A1 transgenic mice (37). Copy
numbers of these co-precipitated RNAs with control
IgG were then set as 1, and the graphs indicate RNA
copy numbers relative to the control. An efficient inter-
action of hA3G with L1-EGFP RNA was detected in this
assay system (Figure 11). Furthermore, the efficient inter-
actions between hA3G and Polymerase III (Pol III)-
derived 7SL RNA, Polymerase II (Pol II)-transcribed
GAPDH, and elF4G2 RNA were also detected. A rela-
tively efficient interaction was also detected between A1s
from multiple mammalian species with L1-EGFP RNA
and elF4G2. However, the copy number of L1-EGFP
RNA co-precipitated with rat and rabbit A1s were
23- and 32-fold lower than those seen with hA3G
(Figure 11). It is possible that this weaker interaction
can be explained by the fact that A1s are single-domain
cytidine deaminases, while hA3G have double deamin-
ation domains. Although we show that rat and rabbit

A1s were able to interact with L1 RNA, further studies
will be required to verify the exact step(s) of L1 replication
affected by these APOBEC family proteins.

DISCUSSION

A large portion of the mammalian genome is composed of
endogenous retrotransposons, with L1 elements
contributing to over 35% of the mass of the human and
mouse genomes (49,50). Around 100 copies of L1 elements
in humans and 3000 copies in mice appear to be active
(29,51,52). These elements modified mammalian genomes
not only by creating insertions, but also by indirect repli-
cation of short interspersed elements (SINEs) and pro-
cessed pseudogenes. L1 retrotransposition results in
human diseases such as Haemophiliae VIII/IX and
Duchene muscular dystrophy, and in the generation of
novel polymorphisms (53,54). Obviously, cellular
machineries have evolved to support a balance between
new L1 insertions that cause deleterious gene disruptions
and those that confer beneficial genetic diversity.
Members of the A3 cytidine deaminases are almost cer-

tainly one class of the cellular machineries that play roles
as innate restriction factors against endogenous retroele-
ments (1,2). Here, we demonstrate that mammalian A1s
from multiple species are also capable of inhibiting the
replication of the autonomous non-LTR and LTR retro-
transposons in cell culture-based retrotransposition
assays.
It has been indicated that A3 gene(s) arose from an

AID-like ancestral gene through a series of gene duplica-
tion and diversification (5,10,55,56). The A3 genes are
specific to placental mammals and non-placental
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mammals such as opossum and platypus genomic se-
quences appear to lack A3 genes (55). However, marsupial
opossum has been reported to express functional A1 gene
(57). Thus, the studies of the restriction activities of A1
proteins against retroelements should be required to fully
understand the complex evolutionary history of APOBEC
genes in intrinsic immunity.
Human APOBEC3A (hA3A) and APOBEC3B (hA3B)

were found to be the most potent inhibitors of the L1
retrotransposon, whereas only hA3B inhibits HIV-1 rep-
lication. The mechanism of anti-retroviral and anti-
retrotransposon potency differ and the latter appears to
be independent of the enzymatic activity (14). Whether
these A3 proteins bind to L1 encoded open reading
frames ORFs and/or specific sequences in L1 RNA
remains open. A �6 kb L1 element contains an internal
promoter in the 50 UTR (58), followed by ORF1 and
ORF2 (59–62). ORF1 encodes RNA-binding protein
that has nucleic acid chaperone activity (63–65) and is
required for cytoplasmic RNP particle formation and
for downstream steps in L1 retrotransposition (66).
ORF2 encodes protein with endonuclease and reverse
transcriptase activities, both ORF1 and ORF2 are
critical for retrotransposition by a ‘copy and paste’ mech-
anism (59,60). L1 DNA synthesis in the nucleus is based

on ‘target-primed reverse transcription (TPRT)’ in which
ORF2p nicks target chromosomal DNA, using the result-
ant 30-OH to prime the reverse transcription of L1 RNA
as a template (67,68). At an early phase before TPRT, L1
encoding polyadenylated RNA forms a RNP complex as a
retrotransposition intermediate by associating with
ORF1p and ORF2p in the cytoplasm (61,62,69,70). It
was recently reported that A3s do not require direct inter-
actions with ORF1p for inhibiting the L1 retrotran-
sposition (71). On the other hand, the interactions of
ORF2p with A3 proteins have not been addressed, thus
far, since ORF2p was shown to be difficult to detect
within the cells (72). Thus, the exact step of L1 retrotran-
sposition affected by A3 molecules is still unknown.

It is possible that A1 proteins interact with L1 encoded
ORFs, specific sequences in L1 RNA and/or host proteins
that facilitate retrotransposition important for initial steps
in TPRT. A1 proteins might be able to interact with the
cytoplasmic RNPs and interfere with subsequent RNP
transport and/or nuclear import. Alternatively, A1 may
function at other steps downstream in the L1 retrotran-
sposition pathway; A1 in the nucleus might be able to
access to L1 RNA and block the generating nick or sub-
sequent priming of reverse transcription of the first strand.
Furthermore, subsequent step(s) of TPRT such as the
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Figure 11. Selective interaction of APOBEC family proteins with L1 and cellular RNAs. 293T cells were co-transfected with the expression plasmids
for APOBEC family proteins and the L1 retrotransposition indicator construct pL1RP-EGFP, cross-linked and then immunoprecipitated with control
IgG or anti-HA antibody conjugated to Dynabeads. The precipitated RNAs with APOBEC proteins were extracted from co-precipitated samples and
analyzed by qRT-PCR with primers specific for L1-EGFP, 7SL RNA, GAPDH and eIF4G2. The graphs indicate RNA binding relative to IgG
control. The histogram bars represent the mean of three independent experiments, and the standard deviation is shown. *P< 0.05.
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second (+) strand DNA synthesis or target site duplication
formation might be blocked. We show in this study that
the anti-L1 activity of A1 was not largely affected by
subcellular localization of the proteins. A1 protein without
nuclear localizing signal might be able to enter the nucleus
with the RNP complex in which ORF2p harbors a
putative NLS (72,73). The exact step(s) of L1 replication
affected by these APOBEC cytidine deaminases remains
to be verified, in order to clarify the molecular mechanism
through which L1 retrotranspositions are inhibited,
mainly by the deamination-independent manner.

In this study, the anti-L1 activity of A1 from multiple
species was found to be variable, despite similar expres-
sion levels. These inter-species variations may be
attributed to multiple factors such as interaction with co-
factors and protein stability.

Despite the impact of L1 insertion on mammalian
genome evolution, much of the process of L1 retrotran-
sposition, especially in vivo remains unexplored.
Previously, L1 mRNA expression has been documented
infrequently in differentiated tissues and predominantly
in germ cells (74,75), consistently L1 retrotransposition
in vivo was thought to occur mainly in germ cells
(76,77). The L1 transcription has been shown to be
activated by the binding of the transcriptional factors
such as YY1, SOX-11 and RUNX3 to the 50 UTR (78–
80). This L1 promoter-driven transcription appears to be
repressed by the binding of the methyl-CpG-binding
protein 2 (MeCP2) and the CpG methylation, followed
by the heterochromatination, in differentiated somatic
tissues (81). However, more recent studies suggested
the de novo L1 retrotransposition may usually occur
early in embryogenesis, not in germ cells, and be essential
for early embryo preimplantation developement. L1 RNA
assembled into its RNP complex appears to be stable and
play a role in creating genome diversity by being carried
over through fertilization and integrate during embryo-
genesis (82,83). This scenario indicated that the germ
cells should have evolved several post-transcriptional
defense mechanisms that strictly prevent L1 integra-
tion into the genome. These might include the post-
transcriptional silencing via RNA interference (RNAi)
(84,85) and cytidine deamination via the A3 family-
mediated machinery (13,33,86) as well. Combined with
these formally documented defense mechanisms, our
data in this study indicate that the A1-mediated machin-
ery may contribute to control L1 retrotransposition in
germ cells.

Although the expressions of A1 in human have been
formally documented only in gastrointestinal tissue thus
far, there is a much larger tissue distribution for the
mouse, rat and rabbit A1s, including tissues such as liver
and spleen which were assumed to have little apoB mRNA
(87–91). Accordingly, there are two promoters for distinct
transcripts for the mouse, whereas there is a single
promoter in humans (89,92,93). We confirmed that A1
mRNA is expressed in ovary and testis in mouse and
rabbit (Supplementary Figure S7), placing A1 in a com-
partment where L1 retrotransposition may have the
greatest impact in vivo (25,94,95).

The replication cycle of the endogenous retroviruses
IAP and MusD is different from that of non-LTR retro-
transposon L1s, in which reverse transcription occurs
within the nucleus based on TPRT. We found that the
retrotransposition of these endogenous retroviruses were
also sensitive to A1s from multiple mammalian species.
Similar to L1 expression profiles as discussed above, it
has been documented that the genome of endogenous
retrovirus is expressed predominantly in germ cells and
generally methylated in most differentiated somatic
tissues (96,97). It was suggested that the de novo IAP
and MusD retrotransposition may usually occur in both
germ cells and early in embryogenesis (77,98). Collectively,
our functional data in this study, together with evidence
for A1 expression in these tissues, combined to suggest
that A1 plays role in the intrinsic immune mechanisms
for preventing the spread of foreign and endogenous
nucleic acids in addition to its integral roles in apoB
mRNA editing. Obviously, uncontrolled expression or
transposition of these autonomous retrotransposons is
deleterious for the host by causing deleterious gene dis-
ruptions. In contrast, appropriate levels of retrotran-
sposition in germ-line cells or early in embryogenesis
might contribute to beneficial genetic diversity and host
genome evolution.
Overall the spectrum of biological function of the AID/

APOBEC family (comprising AID, A1, A2, A3 sub-
groups, A4 and more) of DNA/RNA cytidine deaminases
in vertebrates is expanding. The several members of AID/
APOBEC family inhibit the mobility of endogenous retro-
elements as well as the retroviral infectivity through both
editing and non-editing mechanisms. These antiviral
activities of A1s from several mammalian species
provide insights into the evolution and diversification of
AID/APOBEC family in mammalian species. Elucidation
of the multitude of activities and viruses targeted by these
AID/APOBEC family proteins will contribute to the
understanding of how these DNA/RNA cytidine
deaminases protect host genomes from invading nucleic
acids.
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