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ABSTRACT

Gene ontology analysis has become a popular and
important tool in bioinformatics study, and current
ontology analyses are mainly conducted in individ-
ual gene or a gene list. However, recent molecular
network analysis reveals that the same list of genes
with different interactions may perform different
functions. Therefore, it is necessary to consider mo-
lecular interactions to correctly and specifically
annotate biological networks. Here, we propose a
novel Network Ontology Analysis (NOA) method to
perform gene ontology enrichment analysis on bio-
logical networks. Specifically, NOA first defines
link ontology that assigns functions to interactions
based on the known annotations of joint genes
via optimizing two novel indexes ‘Coverage’ and
‘Diversity’. Then, NOA generates two alternative ref-
erence sets to statistically rank the enriched func-
tional terms for a given biological network. We
compare NOA with traditional enrichment analysis
methods in several biological networks, and find
that: (i) NOA can capture the change of functions
not only in dynamic transcription regulatory net-
works but also in rewiring protein interaction
networks while the traditional methods cannot and
(ii) NOA can find more relevant and specific func-
tions than traditional methods in different types of
static networks. Furthermore, a freely accessible
web server for NOA has been developed at http://
www.aporc.org/noa/.

INTRODUCTION

The concept of biological function is fundamental for the
genome research. Gradual accumulation of biological

knowledge inspirits the emergence of Gene Ontology
(GO) project which allows annotating tens of thousands
of genes in various species. Up to 26 October 2010, there
have been more than 2 753 338 annotations in 48 species
available in GO database (1), which provide considerable
knowledge for biologists to understand the behavior of a
specific gene or gene product in a biological system.
These gene annotations provided by GO project

describe the function of a single gene or gene product,
but biologists are more interested in the GO enrichment
analysis of a large gene list since widely applied
high-throughput genomic, proteomic and bioinformatics
scanning technologies, such as DNA microarray and
protein mass spectrometry, usually result in a set of dif-
ferentially expressed genes or proteins under studied bio-
logical conditions; that is, the follow-up functional
analysis of this large gene list becomes important in re-
vealing biological meanings and allowing further experi-
mental validation. To address this challenge, a number of
GO functional enrichment tools have been developed.
Recently, Huang et al. (2) comprehensively reviewed 68
bioinformatics enrichment tools and classified them into
three classes: singular enrichment analysis, gene set enrich-
ment analysis and modular enrichment analysis. Khatri
et al. (3) generally compared the limitations and charac-
teristics of 14 tools in terms of scope of analysis, visual-
ization capabilities, statistical model and correction for
multiple comparisons, etc. Although each tool has
distinct strengths (4–8), the common motivation behind
these tools is to list the associated GO terms for the inter-
esting gene list and then statistically identify the most
enriched or significant biological annotations.
However, an important lesson from network biology is

that molecular interactions in addition to single molecules
can be biologically meaningful (9). To be precise, genes
carry out their specific functions by their temporal inter-
actions and may change function by interacting with dif-
ferent neighbors (10). This implicates that functional
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analysis of gene list (without considering interactions) is
still far from the ‘optimal annotation’. Therefore, there is
a clear need to annotate functions by simultaneously con-
sidering molecules and their interactions (11), i.e. to anno-
tate biological function to biomolecular networks or
biological networks (9,12). A biological network is defined
as a set of nodes and links (edges). Usually, nodes repre-
sent genes or their products and if two nodes have some
type of interactions, there will be a link (an edge) between
them. Currently, many biological networks have been ex-
tensively studied, such as protein interaction networks
(13), gene regulatory networks (14) and metabolic
networks (15). In particular, some condition-specific sub-
networks have been constructed to investigate fundamen-
tally important biological problems, such as the disease-
aging network (16), human liver metabolic network (17)
and B-cell transcriptional regulatory networks (18).
Furthermore, recent studies reveal that biological

network is dynamic with network rewiring under different
external responses and emergence or vanishing of edges
along with temporal or spatial changes. An example for
transcriptional network dynamics in the yeast transcrip-
tional regulatory networks at different conditions is
indicated in ref. 19, and an example for protein–protein
interaction network dynamic in the tissue-specific protein
interaction networks in ref. 20. These examples imply that
the same gene list with different ways of interactions in
different conditions has significantly different biological
meanings or functions. Thus, functional analysis on bio-
logical networks (considering both genes and interactions)
would surpass the ability of current function enrichment
analysis tools on gene list (considering only genes). To
show this, we present several examples in Figure 1. The
first example is that two protein interaction networks,
derived from the same set of proteins, may have different
functions due to different mode of connection. As shown
in Figure 1(A1), a typical example reported in the disease
research is the so-called ‘edgetic’, which finds that many
human inherited disorders are caused not by a gene
removal (node removal) but by an edge removal (21).
Gene networks of patients and healthy people have the
same gene list. But the connections are different, and
therefore they have fundamentally different phenotypes.
In this situation, current gene list methods (GLMs)
clearly cannot tell the difference because the edge infor-
mation is not considered. Another example is from tran-
scription regulatory process. As shown in Figure 1(A2),
TBL1 can be a repressor of RARB when forming a
complex with GPS2, TBLR1, HDAC3 and NCoR, and
it can also be an activator of pS2 cooperating with
others (22). This suggests that the function of a gene
depends on its interacting partners. Furthermore, many
networks are shown to be dynamic. For example in
Figure 1(A3), the regulatory network of yeast can be
very different in different conditions (19). Taken
together, it is in an exigent need to develop new analysis
methods to analyze function of biological networks by
fully exploiting network topological information.
In this paper, we introduce a novel Network Ontology

Analysis (NOA) method. Given a biological network,
NOA first retrieves all available GO annotations of

individual genes from GO database, and then assigns
GO terms to links between two genes through optimizing
two indexes: ‘Diversity’ and ‘Coverage’. Then two alter-
native strategies, whole-net and sub-net, are applied to
choose the reference set to statistically test which functions
(GO terms) are significantly enriched. In Figure 1(B), we
conceptually compare our method with the existing
methods. We classify ontology analysis methods into
three levels: individual gene, gene set and network.
Individual gene annotation is based on the available
gene information such as DNA sequence, protein struc-
ture and associated phenotype to infer the functions of a
single gene or a gene product. Software, such as Blast2GO
(23) and GoAnnotator (24), helps to annotate genes at this
level. GLMs conduct enrichment analysis in a gene set
based on hypothesis testing. Tools such as FatiGO (4),
DAVID (5), g:profiler (6) and BiNGO (7) belong to this
category. Fundamentally different from the existing
methods, our NOA is the first computational tool to
focus on the functional analysis of link and network. We
will show that NOA can find more relevant and specific
enriched GO functions and, in particular, can capture the
functional change with network rewiring.

METHODS

Link ontology analysis

Links or biomolecular interactions are the building blocks
of a biological network. To analyze the function of a
network, the first step is to investigate the function of
links in the network. As shown in Figure 2, gene
ontology is illustrated in rectangles and represented as a
directed acyclic graph. The annotation of each node in the
network can be obtained from the existing GO annotation
database. As a result, genes are annotated by black terms
in the corresponding directed acyclic graph. Then our task
at hand is to properly define the annotation of link with
GO terms from the nodes.

Mathematically, a given biological network is repre-
sented as N ¼ V,Eð Þ, where V is the set of all genes and
E is all interactions. For each gene gm2V, we first retrieve
all relevant GO annotations on this gene, and propagate
these annotations upward through the GO term hier-
archy, i.e. any gene annotated to a certain term tk
is also explicitly annotated by all the ancestors of tk.
As a result, we have a term list Tm representing
all known terms annotating gene gm. Our task is to
determine the GO term assignments on all link i.e.
T Eð Þ ¼ Tmnj8m,n : emn 2 Ef g, where emn represents an
edge connecting gm and gm in E, and Tmn represents the
set of all terms assigned to the edge emn. Intuitively, rea-
sonable assignment Tmn on emn should be consistent with
the gene assignment Tm and Tn on gm and gm. Given Tmn,
to quantitatively measure the functional inconsistency, we
define the ‘Diversity’ of Tmn as

D Tmnð Þ ¼
X
t2Tmn

I t=2Tmð Þ+I t=2Tnð Þ

2 Tmnj j
ð1Þ
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where I is an indicative function, i.e. I equals to one when
the corresponding event is true and zero otherwise; Tmnj j

represents the number of terms assigned to the edge emn.
We can conclude from the definition that D Tmnð Þ should
be small in an efficient assignment. Furthermore, the
‘Diversity’ of the assignment on network (all links), i.e.
T Eð Þ is defined as the average D Tmnð Þ:

D T Eð Þ½ � ¼
X

8m,n:emn2E

D Tmnð Þ

Ej j
ð2Þ

Similarly, we define the ‘Coverage’ of T Eð Þ, which is
the average C Tmn1 ,Tmn2 , � � � ,Tmnk

� �
, where n1, � � � ,nk are

the indexes of k genes connecting to gene gm.
C Tmn1 ,Tmn2 , � � � ,Tmnk

� �
implies the coverage ratio of all

functions on node gm, covered by the functions of all
edges connecting to gm. Particularly,

C T Eð Þ½ � ¼
X
8m:gm2V

C Tmn1 ,Tmn2 , � � � ,Tmnk

� �
Vj j

ð3Þ

where Tmn1 ,Tmn2 , � � � ,Tmnk represent function assignments
of all edges connecting gm, and

C Tmn1 ;Tmn2 ; � � � ;Tmnk

� �

¼
X
t2Tm

I t 2 Tmn1 [ Tmn2 [ � � � [ Tmnk

� �
Tmj j

ð4Þ

From the definition of ‘Coverage’, an efficient assign-
ment should maximize ‘Coverage’. Obviously, both
‘Coverage’ and ‘Diversity’ are within 0,1½ �.
Actually, the problem of link ontology analysis is the

process of balance ‘Coverage’ and ‘Diversity’. It can be
easily proved that the simply GO term overlap strategy
Tmn=Tm\Tn is in fact an optimal solution by
maximizing ‘Coverage’ subject to ‘Diversity’ at zero (see
Supplementary Text S1 for detail). As shown in Figure 2,
D Tmnð Þ ¼ D Tnp

� �
¼ 0, C Tmnð Þ ¼ C Tnp

� �
¼ 1, but

C Tmn,Tnp

� �
¼ 5=6 since t6 is not covered by the union of

Tmn and Tnp. Therefore, we have D = 0, and C = 17/18.

BA

Figure 1. Schematic examples to illustrate the motivation of NOA. (A) Schematic examples to illustrate the motivation of considering interactions in
functional enrichment analysis. Here, we list three situations where gene list based methods fail. (A1) illustrates the concept of ‘edgetic’ (21). Many
complex diseases are caused by edge removal instead of node removal from wild type. The red node is an important protein related to some kind of
disease. Although the concentration of the protein does not change, mutation causes an interaction broken, and leads to disease. This cannot be
detected by single gene or gene list based analysis. (A2) shows that TBL1 has fundamentally different functions when joining different transcriptional
complexes by acting as either co-repressor or co-activator (22). The blue line stands for DNA. (A3) is an example for network rewiring of yeast
transcriptional networks (19). We show the yeast transcriptional regulatory network in the left and the corresponding TF co-regulatory network in
the right. Interactions or genes are colored as red if they are active in cell cycle, blue in sporulation, and black in both processes. (B) Three levels of
ontology analysis. Gene ontology is based on the information of sequence, structure, phenotype, etc. to infer the function of single genes or gene
products. Gene list ontology analysis performs enrichment analysis in a gene list based on hypothesis testing. Most tools such as FatiGO, DAVID,
g:profiler and BiNGO are in this level. Our NOA addresses the problem of network ontology analysis and conceptually belongs to the biological
network level.
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Hence, the straightforward way to calculate the overlap
of GO term sets for the interacting nodes, naturally
assigns functions to a link by maximizing ‘Coverage’
meanwhile minimizing ‘Diversity’. Biologically, this
strategy implies that two genes interact with each other
to perform a same biological function together. In this
paper, we use this simple strategy to define the link
ontology in a biological network. Next, we can further
define network ontology via regarding the network as a
set of links.

Network ontology analysis

With the above definition for link ontology, we treat the
biological network as a set of links. Then network
ontology analysis is essentially a statistical test to assess
the enrichment of GO terms in this set of links. The cal-
culation procedure is shown in Figure 3. Given two
networks, one is the input test network to be annotated
and we collect the links in the network as a test set. The
other is the reference network as the control for statistical
test and we collect the links as a reference set. Given a GO
term tk, we count the number of occurrence of tk in the test
and reference set respectively. A Venn diagram shows the
relationship between the frequency of this GO term in the
reference set and the one in the test set. From the diagram,
we will infer whether or not the GO term tk is enriched in
the test set. There are several statistical models to test this,
including but not limited to, hypergeometric test, Fisher’s
exact test, binomial and �2. Here, we introduce one of the
most popular and powerful methods, hypergeometric test.
We suppose there are T links in the test set. Also there are

mg ng
mne

t1

t2 t3

t5t4t6

Tmn

pg
npe

t1

t2 t3

t5t4t6

Tm
t1

t2 t3

t5t4t6

Tn
t1

t2 t3

t5t4t6

Tp

G
en

e
an

no
ta

tio
n

G
en

e
an

no
ta

tio
n

G
en

e
an

no
ta

tio
n

t1

t2 t3

t5t4t6

Tnp

5
( )

6nC g

( ) ( ) 1m pC g C g

( ) ( ) 0mn npD e D e

T =T Tnp n pT =T Tmn m n

Figure 2. The schematic plot of the definition of link ontology. Gene ontology is structured as a directed acyclic graph illustrated in rectangle. The
annotation of each gene in the network is from GO database. For example, gene gm is annotated by black terms t1, t2, t3, t5 in tree Tm. Our task is to
define the function annotation of interactions, e.g. emn based on the annotations of genes. One simple way to annotate links is to calculate the
overlap of GO term sets Tm and Tn of the interacting nodes gm and gn, e.g. Tmn = Tm\Tn.

Figure 3. Illustration of the network ontology analysis by statistically
testing the function enrichment. Simple Venn diagram is drawn for
statistical test of network ontology analysis. The test set is all links
in the input networks. The reference set is all possible links among
genes in the test network for whole-net method by default, or a given
background network for sub-net method. Given a GO term, the null
hypothesis of the test is that genes with this GO term have the same
probability to fall in the reference set and in the test set. R denotes the
number of elements in the reference set; G means the number of
elements annotated by the given GO term in the reference set; T indi-
cates the number of elements in the test set; O denotes the number of
elements annotated by the given GO term in the test set.
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R links in the reference set, and G links in them are
annotated by term tk,. Here the null hypothesis is that
links with annotation tk have the same probability to fall
in the reference set and in the test set. We then treat the
overlapping number of links X as a random variable.
Under the null hypothesis, X follows a hypergeometric
distribution. Then we can calculate a P-value score,
which is defined as the probability that the overlapping
number would assume a value greater than or equal to the
observed value, O, by chance:

P X � Oð Þ ¼
Xmin G,Tð Þ

k¼O

G
K

� �
R� G
T� K

� �

R
T

� � : ð5Þ

The overlapping number is statistically significant if the
P-value score is smaller than a chosen cutoff. This process
is applied for each GO term to pick out significant ones.

The choice of the reference set is important in the stat-
istical test. We provide two alternative methods in our
implementation: whole-net and sub-net method. In the
whole-net method, the reference set is chosen as all
possible links in the test network, while in the sub-net
method, it is chosen as all links in the pre-given back-
ground network. Therefore, we can perform two types
of NOA, i.e. whole-net NOA and sub-net NOA. As to
the correction for multiple hypothesis testing (25), we
used the frequently used correction methods: Bonferroni
correction.

RESULTS

NOA captures functions in response to network dynamics

One of the important advantages of NOA is that it can
monitor the link dynamics in networks. More and more
evidence shows that the same set of genes may form dif-
ferent networks in response to temporal and spatial con-
ditions (19–21,26,27). In this case, the traditional gene
list-based functional enrichment analysis always reports
the same result when the networks have the same node
set but rewired structures. In contrast, NOA can detect
such function changes caused by network structure
change, and further capture the functional differences by
fully taking advantage of the topology information of
networks. In this section, we will introduce two applica-
tions to illustrate the advantage of NOA.

Example 1: dynamic transcription factor cooperation
networks. Recently, Luscombe et al. (19) developed a
method to uncover the conditional-specific transcription
regulatory network by integrating transcriptional regula-
tory information and gene expression data in yeast.
Particularly, they first constructed a static background
network which contains 7074 regulatory interactions
among 142 transcription factors and 3420 target genes
by assembling known regulatory interactions from the
results of genetic, biochemical and chromatin immunopre-
cipitation (ChIP)–chip experiments, and then integrated

gene expression data of five conditions including cell
cycle, sporulation, diauxic shift, DNA damage and stress
response to reconstruct regulatory networks in each con-
dition. As shown in Figure 1(A3), there are large changes
of the regulatory network architecture in cell cycle and
sporulation processes of Saccharomyces cerevisiae. Their
results provide strong evidence that most gene functions
arise in response to changing conditions and the rewired
network structures.
Here, we study whether or not the change of networks

can be revealed by gene ontology enrichment analysis. Not
surprisingly, both GLM and NOA can capture the differ-
ence between the two types of biological processes (cell
cycle and sporulation) because significantly expressed
genes are different in the two stages [refer to left figure
of Figure 1(A3)]. Particularly, we use NOA and GLM to
test whether GO term ‘cell-cycle process- is enriched in
cell-cycle regulatory network comparing with the back-
ground network. The P-value is 3.6e-27 for NOA and
2.4e-23 for GLM. Similarly, P-values for GO term ‘sporu-
lation’ in sporulation transcription regulatory network is
1.3e-14 for NOA and 3.8e-20 for GLM. Both the methods
work well, because the main differences between the two
networks are basically in nodes.
However, our question is if or not we can judge the

stage of a cell with relatively incomplete information,
e.g. without the information of target genes. We further
construct transcription factor (TF) co-regulatory networks
(28) via adding an edge between two TFs if they have
at least one common target gene. This process is carried
out in cell cycle, sporulation and background tran-
scription regulatory networks, and correspondingly
results in the three TF co-regulatory networks, i.e. cell
cycle co-regulatory network [Figure 4(A1)], sporulation
co-regulatory network [Figure 4(B1)], and background
co-regulatory network [right figure of Figure 1(A3)]. As
shown in Figure 4(A1) and (B1), cell-cycle TF co-regu-
latory network contains 67 TFs and 319 co-regulations,
while sporulation TF co-regulatory network contains
70 TFs and 302 cooperations (refer to Supplementary
Table S1 for detail). Most of the nodes in the two
networks are the same (black nodes). Given this, we
compare results of four methods, i.e. whole-net NOA,
sub-net NOA, whole-net GLM and sub-net GLM, in TF
co-regulatory networks in response to both cell cycle and
sporulation. As shown in Table 1, the four methods are
different in terms of the choice of test set and reference set.
Here, the test set is chosen as all links in NOA, and all
genes with links in GLM. Sub-net means choosing back-
ground network (union of all possible co-regulatory
networks) as the reference set in NOA, and choosing all
TFs in the background network in GLM. Whole-net
means choosing clique (there is a link between every two
nodes) as the reference set in NOA, and choosing all yeast
genes in GLM. The comparison results are shown in
Figure 4 (refer to Supplementary Table 2S for detailed
results). Figure 4(A2) shows the rank of all related terms
by different methods in cell-cycle co-regulatory network.
Pink bar stands for significant terms with P-value less
than 0.05, and red horizontal bar shows the position of
GO:0022402 (cell-cycle process). We can find that
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whole-net NOA, whole-net GLM and sub-net NOA
report this term as significant term, but sub-net GLM
fails. The corresponding P-value of this term is shown in
Figure 4(A3). Additionally, whole-net NOA ranks
GO:0022402 as top 5% which is much better than
whole-net GLM 20%, although both of them report
GO:0022402 as significant. Similarly, Figure 4(B2) and
(B3) shows the significant tendency that NOA methods
are better than GLM methods in identifying biologically
reasonable functions of rewiring regulatory networks. To
further prove the efficiency of NOA in rewiring networks,
we compare NOA and GLM in a rewiring protein inter-
action network as follows.

Example 2: rewiring protein interaction networks. We
identified the rewired protein interaction networks during
the progression of Alzheimer’s disease (AD), which is a
complex genetic disorder on nervous system affecting
millions of elderly individuals worldwide (29). Clinically,
AD is categorized into three stages: incipient, moderate
and severe stages. More and more evidence indicates
that the three stages have different features in molecular
level (30,31). In our previous research work, we identified
the different protein interaction networks in the three
development stages via an edge-expansion scheme by
combining protein interaction and microarray data (26).
Traditional gene list-based methods can give enriched GO
terms, such as regulation of transcription and DNA-
dependent (refer to Table 2), which are, however, identical
on all of the three stages, i.e. they cannot distinguish the
dysfunctional differences among the three stages. By com-
parison, we use whole-net NOA to analyze the three

networks respectively. The results show different enriched
biological processes for the protein interaction networks
in three different stages. For instance, in the incipient
stage, the protein interactions are annotated to perform
the processes of vesicle-medicated transport and regula-
tion of phosphorylation, etc., which implies AD dysfunc-
tional progression of peptide cleavage and deposition (32).
Regulation of kinase activity becomes the most enriched
GO function which indicates the importance of regulation
of phosphorylation in neurons during the AD develop-
ment stage (33). Sterol transport, apoptosis and proteoly-
sis are identified as the top-three ranked terms for the
protein network in the severe stage. This provides evidence
for neuron cell death and protein degradation in the
serious disease stage of AD (30). Collectively, we can
monitor the function change in various disease stages by
NOA, which outperforms GLM.

A B

Figure 4. Applications of NOA on yeast TF co-regulatory networks. (A) NOA results on the yeast TF co-regulatory network in response to
cell-cycle condition. (A1) illustrates the TF co-regulatory network. We construct TF co-regulatory networks by defining the TF co-regulation
relationship if two TFs regulate at least one common target. (A2, A3) shows the comparison between NOA and gene list methods (GLM). (A2)
presents the rank of all related GO terms in the four methods. Pink part represents significant terms with P-value less than 0.05, and the position of
GO:0022402 (cell-cycle process) is shown by a red horizontal bar. (A3) shows P-values of GO:0022402 reported by the four methods. (B) NOA
results on the yeast TF co-regulatory network in response to sporulation condition. (B2) The position of GO:0043934 (sporulation) is shown by a
blue horizontal bar. (B3) shows P-values of GO:0043934 reported by four methods. The red dash line is the base line of –log(0.05).

Table 1. Test set and reference set of the four types of GO analysis

methods: whole-net NOA, sub-net NOA, whole-net gene list method

and sub-net gene list method

Whole-net Sub-net

NOA
Test set Link list Link list
Reference set Clique Background network

GLM
Test set Gene list Gene list
Reference set Yeast gene Gene in background network

NOA denotes the method we proposed in this article and GLM means
gene list-based method.
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NOA identifies specific functions

In addition to capture the function difference due to
network rewiring, NOA can also be used in traditional
static networks to find more specific GO annotations.
The rationale is that NOA considers the interactions
among the genes to allow the biological interpretation to
be focused at the ‘biological network’ level. In this section,
we will introduce two applications to demonstrate such an
advantage of NOA.

Example 1: KEGG pathway. The first example is the com-
parison of NOA and GLM in Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway (34,35). KEGG
aims to uncover higher-order systemic behaviors of the
cell by collecting reliable pathways, which is a valuable
material for assessing NOA because the functions of the
pathways have been well studied (34,35).

As a proof-of-concept example, we focus on a specific
pathway hsa05212, which is related to pancreatic cancer in
Homo sapiens, and consists of 33 interactions. It is well
known that tumor-related genes are important and tend to
have many functions (36). So, we use this example to show
that NOA can capture specified functions of the cancer
by considering links among genes. Since one interactor

in KEGG pathway may consist of multiple genes (in
total there are 70 genes involved), we define the functions
of an interactor by uniting functions of all related genes,
and then apply whole-net NOA to analyze the function
of the pathway. For comparison, we use g:profiler (6) to
annotate the genes involved in this pathway. Top 20
significant biological processes terms of the two
approaches are extracted and listed in Supplementary
Table S3. NOA captures the main feature of cancer, regu-
lation of signal transduction, regulation of signaling
process and anti-apoptosis (37), while g:profiler annotates
these cancer genes by terms such as intracellular signaling
cascade, positive regulation of cellular process and
signaling.
To quantitatively show the difference of the results

generated by the two methods, we define ‘specificity’ for
each GO term as the distance between the given term and
the top term (biological process) in the GO hierarchy, i.e.
in which level the term locates in GO directed acyclic
graph. As shown in Figure 5(A), clearly NOA can
identify the term which has much deeper level than
GLMs (P-value=0.0028 by rank-sum test). To visualize
the comparison, we pick out and side by side compare the
top five significant GO terms by NOA and by GLM, re-
spectively, in the subgraph of GO-directed acyclic struc-
ture (refer to Figure 6). Specifically, we first retrieve all
ancestors of the 10 terms according to GO structure, and
add relationships among these terms by directed edges.
Then we highlight the top five terms of NOA, top five
terms of GLM, top 20 terms of NOA (without top five)
and top 20 terms of GLM (without top five) with dark
yellow, dark green, buff and light green, respectively.
Figure 6 clearly shows that NOA tends to give more
specific annotations than GLM. For example, tumor is
related to apoptosis, GLM ranks the term ‘regulation of
apoptosis’ as top 20, but GLM cannot tell whether the
pathway promotes apoptosis or represses apoptosis.
NOA can be more specific according to rank ‘anti-
apoptosis’ as top 5.
Furthermore, to check whether NOA is better than

GLM in other KEGG pathways, we try these two methods
in all human KEGG pathways to evaluate the statistical
efficiency of the methods. There are totally 226 human
pathways collected in KEGG by now, during which 91
contain more than 30 interactions. Both NOA and
GLM are applied on these 91 pathways to rank related
GO terms. All top 10 terms reported by NOA for these
pathways are extracted and compared with that reported
by GLM in specificity. Supplementary Figure S1 shows
that results of NOA have a significantly higher specificity
than GLM, and the corresponding P-value is <2.7e-6 by
Wilcoxon rank-sum test. This large-scale study strongly
supports our conclusion that NOA outperforms GLM
by revealing more specific functions for biological
networks.

Example 2: aging network. Another example is the analysis
of aging network (refer to Supplementary Table S4). We
assembly the aging network by identifying the genes
related to aging then add a link if two genes interact with
each other (16). In our previous work, we have shown that

Table 2. The functional characterization of protein interaction

networks during Alzheimer’s disease progression revealed by NOA

and GLM

Network type GO term (BP) Description

Incipient
NOA GO:0016192 Vesicle-mediated transport

GO:0042325 Regulation of phosphorylation
GO:0005979 Regulation of glycogen biosynthetic

process
GLM GO:0006355 Regulation of transcription, DNA

dependent
GO:0045944 Positive regulation of transcription

from RNA polymerase II
promoter

GO:0007242 Intracellular signaling cascade
Moderate

NOA GO:0043549 Regulation of kinase activity
GO:0048589 Developmental growth
GO:0006897 Endocytosis

GLM GO:0006916 Anti-apoptosis
GO:0007165 Signal transduction
GO:0006355 Regulation of transcription, DNA

dependent
Severe

NOA GO:0015918 Sterol transport
GO:0006915 Apoptosis
GO:0006509 Membrane protein ectodomain

proteolysis
GLM GO:0006355 Regulation of transcription, DNA

dependent
GO:0006629 Lipid metabolic process
GO:0045944 Positive regulation of transcription

from RNA polymerase II
promoter

We manually choose top three non-reduplicated terms in the results by
these two methods. Here, AD means Alzheimer’s disease and BP means
biological process.
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Figure 6. Comparison of results by NOA and GLM in pancreatic cancer pathway. Specifically we pick out the top five GO terms revealed by NOA
and GLM [g:profiler (6)] and then side by side compare them in the GO-directed acyclic structure. Top five terms of NOA are highlighted by dark
yellow, while top five by GLM are colored in dark green. Besides, terms labeled as buff are within top 20 in NOA results, and light green ones are
within top 20 by GLM. The results show that NOA identifies more specific annotations in deeper levels of the GO hierarchy.

Figure 5. Box plot to compare the specificity of the functional annotations revealed by NOA and gene list method. (A) Top 20 functional terms
revealed by NOA and gene list method for pancreatic cancer pathway. (B) Top 20 functional terms identified by NOA and gene list method for aging
network. The y-axis means the distance from a given term to the top term in GO structure, i.e. in which level the term locates to indicate the
specificity of the functional term. Terms in deeper level are considered more specific.
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aging networks have close relationship with disease
networks (16). Here, perform ontology enrichment ana-
lysis with NOA and traditional GLM, respectively, and
compare them. We find that two methods give different
rank of GO terms (detailed results can be found in
Supplementary Table S5). For instance, GLM prioritizes
cell death, while NOA prioritizes metabolic process, which
is biologically more reasonable. Furthermore, we compare
the specificity of the function annotations revealed by the
two methods. As shown in Figure 5(B), GO terms ident-
ified by NOA are averagely more specific than GLM, i.e.
these terms are in much deeper levels in GO hierarchy
(P-value=0.0051 by rank-sum test).

Web server for NOA

Based on the above result, we believe that NOA is a po-
tential powerful tool to study the condition-specific func-
tion of subnetworks and capture the function dynamics by
network rewiring. Given the rapid advances of network
biology studies, it is in pressing need for network ontology
analysis. Thus, we implement NOA as a freely accessible
web server, which is a collection of tools for whole-net
NOA, sub-net NOA, whole-net GLM and subnet GLM.
For whole-net methods, users can input either a gene list
or a gene network, i.e. a link list by pasting in the text box
or uploading a data file from their local disk, and then the
web server will return the resulting rank of GO terms.
Differently, for sub-net methods, reference gene list or ref-
erence network is also necessary in addition to the input of
test gene list or test gene network.

It is worth mentioning that reference set is required to
contain test set to make the Equation (5) valid to ensure
biologically meaningful results. The default reference set is
the fully connected network. Two parameters, species and
cutoff for P-value, should be specified by users according
to their own needs. Currently, NOA supports four types
of species including H. sapiens, Mus musculus, Rattus
norvegicus and Saccharomyces cerevisiae.

As shown in Figure 7, the output of NOA is a ranked
GO term list of biological processes (BP), cellular compo-
nents (CC) and molecular functions (MF), additional
with corresponding value of G, R, T, O in Formula (1),
P-values, corrected P-values and related genes or
links. Top 10 GO terms are highlighted in the resulting
table. In addition, the rank of the significant GO terms
can be downloaded via a hyperlink provided in the web
page.

DISCUSSION

In this paper, we propose a novel function annotation
tool for biological network, which is able to provide
specific function annotations for the corresponding bio-
logical system. One of the main contributions of our
new method is to alleviate the nonspecificity problem
due to the redundant nature of functional annotations.
Usually when we obtain a large ‘interesting’ gene list by
high-throughput techniques, the real biological insights
are hidden in the large amount of general, redundant
and nonspecific GO function annotations. We note that

there are a lot of efforts to deal with this problem. For
example, the newly developed Functional Annotation
Clustering of DAVID (5) groups similar annotations
together to reduce the redundancy. Here, our NOA
adopts a very different strategy by highlighting the inter-
actions among the genes (edges) for a given large gene list.
We believe that the interactions among genes are biologic-
al meaningful and make the biology insights clearer and
more focused in a specific condition.
NOA is also helpful to reveal more specific function an-

notation. In many cases, one single gene can be annotated
by multiple functions. There is plenty of evidence to show
that interactions play important biological roles to further
make a distinction between the functions of single genes.
For example, Cmd1 in ref. 38 is a date hub and connecting
with four modules, homeostasis of other cations, cell
polarity and filament formation, endoplasmic reticulum
and protein folding and stabilization in four different con-
ditions. We do not know precisely the biological function
of Cmd1 if we only check individual gene. To overcome
such difficulty, NOA infers specific functions by consider-
ing these neighbor genes interacting with Cmd1 in differ-
ent conditions. Another example is that gene or protein
may take several part-time jobs. For instance, eIF3f is an
important housekeeping gene and is necessary for initi-
ation of translation. Recent study shows that eIF3f has
also dual role acting positively on Notch signal transduc-
tion by interacting with other genes (39). NOA can recog-
nize its correct function by examining its neighbor
molecules in different working environment.
The link ontology is important in the concept of our net-

work ontology analysis. Therefore, it is crucial to well
define functions of links. In fact, a similar concept ‘edge
ontology’ or ‘arrow ontology’ has been suggested by a
forward-looking work (40). Inspired by the gene ontology,
Lu et al. aim to build a similar hierarchical term structure
for edges. In their prototype of edge ontology, edges are
partitioned in four levels: direction, type, sub-type and

Figure 7. The interface of web server for NOA. NOA is designed as a
web tool to provide public service for network ontology analysis. Users
can input networks via either directly pasting link list or uploading files.
The web server will output all significant GO terms of biological
processes (BP), cellular components (CC) and molecular functions
(MF).
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specification. The complete edge ontology will provide a
relatively explicit representation of the connections among
genes in addition to revealing relationships among edges.
However, edge ontology is still far from complete to
describe the functional relationship in the network. In
contrast, we note that gene ontology has contained 32 862
terms and 2 753 338 annotations up to now. Therefore,
NOA takes different strategy to define the function
of edges based on existing rich GO terms instead of
making a fresh start. To distinguish with previous edge
ontology definition, we name the ontology defined in
this paper as ‘link ontology’. Here, we simply take the
overlap of the GO term set of the two nodes to define the
GO annotation of a link. This strategy is simple, easy to
implement and accurate. The possible disadvantage is that
the ‘Coverage’ may be low. In fact, we can also build a
general integer programming model to define link ontology
by optimizing both D and C and considering the GO hier-
archical structure (41,42) (refer to the Supplementary
Text S2 for detail). Importantly, our new model can inte-
grate more information to predict link ontology in a larger
‘Coverage’ without a significant increase of computational
cost. Given the fact that the annotations of gene function
are far from complete (43), NOA is an important step
toward annotating functions on a biological system
since it actually offers a novel way to infer edge function
additional with gene function.
The choice of reference set allows NOA to report

specific significant terms in different levels according to
the users’ need. Choosing all possible links within given
nodes as the background is to avoid possible bias. For
example, some genes such as P53 and c-Myc are very im-
portant; so, many studies focus on these kinds of genes
(44). Accordingly, many functions are annotated on these
genes. On the other hand, functions of other genes are
barely characterized. To our knowledge some methods,
such as BiNGO, try to reduce this bias via choosing an
appropriate subnetwork. The choice of a reference set is
still an open problem in the functional enrichment ana-
lysis. Currently, the computational complexity of NOA is
O(n2), where n is the number of genes in the input
network. There is still room for further improvement
by sampling random networks, which seem to be more
reasonable since the random process has no bias.
In our paper, we showed that NOA is helpful to capture

the function change by network rewiring. Here, network
rewiring means the change of existence for the links.
However, in many cases, biological networks change by
the weights of links instead of their existence; so it is
necessary to further extend NOA to handle weighted
networks. An intuitive idea is to enhance the role of
links with larger weights by duplicating the GO terms
annotated on them. As a result, the numbers in
Equation (5) can be recounted accordingly for the statis-
tical test. In addition to weighted networks, we note that
directed networks are also important in many biological
systems. In the current NOA, we handle directed networks
by treating them as its corresponding undirected network.
This will not fully utilize the edge information, and we will
introduce more precise model to functionally annotate
directed network in our further work.

Another direction of improvement is to consider more
about the relationships or correlations among GO terms.
This is important because relationships among GO terms
are represented by an acyclic digraph, and simply
propagating these annotations upward through the GO
term hierarchy or treating the GO terms independently
in statistical test will lose certain information. If more in-
formation can be added in the analysis process, the results
will be more meaningful. Besides, the concept of network
ontology on edge can be extended to super-graph whose
edge may be consisted of more than two nodes. If we
consider a module as a basic element to carry out func-
tions, it will be plausible to define ‘module ontology’
rather than ‘link ontology’ to do supergraph ontology
analysis. Lastly, in our model, we consider a network as
a collection of links. It may also be meaningful to consider
node and edge at the same time. In summary, there is still
much room to extent the current network ontology
analysis framework.

CONCLUSIONS

We proposed a novel GO functional enrichment analysis
method for biological network analysis. Our method is
different from the traditional methods by considering
the additional biological significance of molecular inter-
actions. First, we proposed a novel scheme to infer link
ontology from gene ontology by optimizing two indexes
‘Diversity’ and ‘Coverage’. Based on the link ontology, we
gave two alternative approaches to implement network
ontology analysis, i.e. whole-net and sub-net NOA. To
prove the effectiveness of NOA, we applied it in several
real biological networks. The results show that NOA can
reveal much reasonable biological meanings than GLM in
both dynamic networks and static networks. Furthermore,
we developed a freely accessible web server for NOA,
which allows network ontology analysis online and can
help researchers to identify specific and efficient GO
terms in their practical usage.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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