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Abstract
Signal transducer and activator of transcription-3 (STAT-3) is one of six members of a family of
transcription factors. It was discovered almost 15 years ago as an acute-phase response factor. This
factor has now been associated with inflammation, cellular transformation, survival, proliferation,
invasion, angiogenesis, and metastasis of cancer. Various types of carcinogens, radiation, viruses,
growth factors, oncogenes, and inflammatory cytokines have been found to activate STAT-3.
STAT-3 is constitutively active in most tumor cells but not in normal cells. Phosphorylation of
STAT-3 at tyrosine 705 leads to its dimerization, nuclear translocation, DNA binding, and gene
transcription. The phosphorylation of STAT-3 at serine 727 may regulate its activity negatively or
positively. STAT-3 regulates the expression of genes that mediate survival (survivin, bcl-xl,
mcl-1, cellular FLICE-like inhibitory protein), proliferation (c-fos, c-myc, cyclin D1), invasion
(matrix metalloproteinase-2), and angiogenesis (vascular endothelial growth factor). STAT-3
activation has also been associated with both chemoresistance and radioresistance. STAT-3
mediates these effects through its collaboration with various other transcription factors, including
nuclear factor-κB, hypoxia-inducible factor-1, and peroxisome proliferator activated receptor-γ.
Because of its critical role in tumorigenesis, inhibitors of this factor’s activation are being sought
for both prevention and therapy of cancer. This has led to identification of small peptides,
oligonucleotides, and small molecules as potential STAT-3 inhibitors. Several of these small
molecules are chemo-preventive agents derived from plants. This review discusses the intimate
relationship between STAT-3, inflammation, and cancer in more detail.
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Introduction
Signal transducer and activator of transcription (STAT)-3 is one of the members of a family
of transcription factors. It was first identified in 1994 as a DNA-binding factor that
selectively binds to the IL-6-responsive element in the promoter of acute-phase genes from
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IL-6-stimulated hepatocytes.1 STAT-3 was also independently identified as a DNA-binding
protein in response to epidermal growth factor.2 The gene that encodes STAT-3 is located
on chromosome 17q21. The 92-kDa protein is 770 amino acids long with sequential N-
terminal coiled-coil domain, DNA-binding domain, a linker, SH2 domain, and C-terminal
transactivation domain. The latter contains a tyrosine residue at position 705 and a serine
residue at position 727, which undergoes phosphorylation when activated (Fig. 1).

STAT-3 is activated by many cytokines and growth factors, including epidermal growth
factor,3 platelet-derived growth factor,4 and IL-61 as well as by oncogenic proteins, such as
Src5 and Ras6 (Table 1). In addition numerous carcinogens, such as cigarette smoke7 and
tumor promoters, have been identified that can activate STAT-3.8,9

The activation of STAT-3 is regulated by phosphorylation of tyrosine 705 by receptor and
nonreceptor protein tyrosine kinases (Table 2). These include epidermal growth factor
receptor (EGFR) kinase,92 Src,5 Janus-activated kinases (JAK),93–95 and extracellular
signal-regulated kinase (ERK).96 The phosphorylation of STAT-3 in the cytoplasm leads to
its dimerization, translocation into the nucleus, and DNA binding; as a result genes that
regulate cell proliferation, differentiation, and apoptosis are expressed. In addition,
numerous serine kinases have been implicated in the phosphorylation of STAT-3 at serine
727. These include protein kinase C (PKC),97 mitogen-activated protein kinases, and
CDK5.98 PKC-ε has been shown to interact with STAT-3 directly and phosphorylate serine
727,99 which maximizes its transcriptional activity.100,101

Besides phosphorylation on tyrosine and serine sites within the carboxyl-terminal region,
STAT-3 is also acetylated on a single lysine residue 685 by histone acetyltransferase
p300142 (Table 2). STAT-3 acetylation is reversible by type I histone deacetylase (HDAC).
The acetylation of STAT-3 was found to be critical for it to form stable dimers, which are
required for cytokine-stimulated DNA binding and transcriptional regulation.

STAT-3 activation is negatively regulated through numerous mechanisms (Table 2). These
involve the suppressors of cytokine signaling (SOCS),136 protein inhibitor of activated
STAT (PIAS),105 protein phosphatases,173 and ubiquitination-dependent proteosomal
degradation174 (Table 2). The SOCS proteins were shown to bind to the JAK activation loop
as pseudosubstrate inhibitors through their SH2 domain, thereby blocking subsequent
signaling that requires phosphorylation and activation of STAT-3.175 Eight SOCS proteins
with similar structures have been identified so far.176 SOCS-3 negatively regulates the
gp130-STAT-3 pathway in mouse skin wound healing, suggesting that STAT-3 is required
for wound healing.177 Different SOCS family members, however, have distinct mechanisms
of inhibition of JAK/STAT signaling. Recently, the involvement of SOCS-1 in
carcinogenesis has been reported.178 Frequent hypermethylation in CpG islands of the
functional SOCS-3 promoter correlates with its transcription silencing in cell lines (lung
cancer, breast cancer, and mesothelioma) and primary lung cancer tissue samples.179–181

Restoration of SOCS-3 in lung cancer cells where SOCS-3 was silenced by methylation
resulted in the downregulation of active STAT-3, induction of apoptosis, and growth
suppression.181 Methylation silencing of SOCS-3 is an important mechanism of constitutive
activation of the STAT-3 pathway in cancer pathogenesis.178,179

In contrast to SOCS, the PIAS-3 are nuclear factors that are able to interact with phos-
phorylated STAT-3 and block transcription.105 Smad4 has been shown to suppress the
tyrosine phosphorylation of STAT-3 in pancreatic cancer cells.182

STAT-3 activation is also negatively regulated by various protein tyrosine phosphatases,
including CD45,123 PTEN,124 SHP-1,183 SHP-2184 (Table 2).
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The ubiquitin-proteasome pathway is responsible for selective degradation of shortlived
cellular proteins and is critical for the regulation of many cellular processes. STAT-3 has
been shown to undergo degradation through this pathway.174,185,186 In IL-6-dependent KT-3
cells, the transcription factor was found to be conjugated by exogenous biotinylated Ub and
degraded in a proteasome-dependent manner.174 Additionally, caspases have been found to
directly cleave STAT-3.187 STAT-3 cleavage was accompanied by reductions in STAT-3–
DNA binding, STAT-3-driven reporter protein (luciferase) activity, and the expression of
selected STAT-3-dependent genes and correlated with increased sensitivity to apoptotic
stimuli.

The ablation of STAT-3 leads to embryonic lethality,188 and tissue-specific ablation of the
transcription factor yields important defects in hepatocytes,189 macrophages,190

keratinocytes,191 and thymic or mammary epithelial cells.192

STAT-3 is an oncogenic protein that is constitutively activated in many human cancers. For
instance, in 30–60% of primary breast cancers, STAT-3 is constitutively active.193

Constitutive activation of STAT-3 has also been reported in several other primary cancers,
in tumor cell lines, and in many oncogene-transformed cells. Inactivation of STAT-3 in most
of these cell lines leads to inhibition of cell proliferation. The critical role of this factor in
cancer is indicated by the fact that β4 integrin actively contributes to the initiation, growth,
and invasion of ErbB2-induced mammary tumors in transgenic mice by promoting the
activation of STAT-3.194 The evidence below shows that STAT-3 activation is intimately
connected with all aspects of tumorigenesis.

STAT-3 Activation Mediates Inflammation
Several lines of evidence suggest that STAT-3 is a mediator of inflammation.195 First,
STAT-3 was initially discovered as an acute-phase response protein, thus suggesting its link
to inflammation. Second, most proinflammatory agents have been shown to activate this
factor. IL-6 is a major mediator of inflammation and mediates its effects through the
activation of the STAT-3 pathway.2 Similarly, tumor promoters, lipopolysaccharides, and
cigarette smoke can activate the STAT-3 pathway.7,196 Third, the DNA binding for STAT-3
in the promoter of acute-phase proteins was found to compete with that of NF-κB, another
pro-inflammatory transcription factor.139 Fourth, STAT-3 has been shown to regulate NF-
κB recruitment to the IL-12p40 promoter in dendritic cells.197 Fifth, recently it was shown
that IL-11 and its glycoprotein 130 (gp130) receptor in inflammation-associated gastric
epithelial cell oncogenic transformation is mediated by and dependent on increased
activation of STAT-3.198 Sixth, in some cell types IL-6-induced STAT-3 activation has been
shown to be dependent on cyclooxygenase 2, a pro-inflammatory enzyme.199 All this
evidence supports the role of the STAT-3 pathway in inflammation.

STAT-3 Activation Can Transform Cells
The transformation of cells by various oncogenes, protein tyrosine kinases, and viruses
accompanies the activation of STAT-3.200 Yu et al. showed that transformation of cells by
src protein kinase is mediated through the activation of STAT-3.5,201 Similarly the
transformation of T cells by human T-cell lymphotropic virus I was also mediated through
the activation of STAT-3.95 Hepatitis C virus core protein has also been shown to transform
the cells through activation of STAT-3.30 The STAT-3 activation is induced by v-Fps; by
polyoma virus middle T antigen, which activates Src family kinases; and by v-Sis, which
acts as a ligand for the platelet-derived growth factor receptor.92 STAT-3 signaling is also
required for hepatocyte growth factor/scatter factor-Met-mediated tumorigenes.202

Moreover, a constitutively activated form of STAT-3 induces cell transformation, growth in
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soft agar, and tumors in nude mice, further confirming the importance of the activated form
detected in tumors. Thus, STAT-3 is considered an oncogene.203

STAT-3 Activation Can Suppress Apoptosis
Evidence indicates that oncogenic transformation of the cells leads to activation of STAT-3,
which then provides the survival signal. Conditional inactivation of STAT-3 shows that it
has proapoptotic functions during mammary gland involution.192 In most cells, STAT-3
activation can suppress apoptosis. These effects are mediated through the expression of
various cell survival gene products that are regulated by STAT-3. These include bcl-
xl,204,205 bcl-2,206 survivin,207 Mcl-1,208 and cIAP2.209 Additionally, most tumor cells that
exhibit constitutive activation of STAT-3 also express these cell survival gene
products.210,211 Thus, suppression of STAT-3 activation can suppress the expression of all
these cell survival gene products and potentiate apoptosis.212 The downregulation of
STAT-3 also leads to expression of fas protein, which can promote apoptosis.213

STAT-3 Activation Can Lead to Cellular Proliferation
STAT-3 activation has also been linked with proliferation of tumor cells. This effect of
STAT-3 is mediated through its ability to induce the expression of cyclin D1.214 STAT-3
has also been shown to upregulate the expression of several growth-promoting genes, such
as myc215 and pim-1.216 The proapoptotic factors, such as Fas, are downmodulated by
STAT-3 activation.213 There are other reports, however, which suggest that this
transcription factor can activate the expression of the cell cycle inhibitor p21(waf1),217

suggesting that STAT-3 can also block cell cycle progression and prevent abnormal cell
proliferation. During cellular transformation, however, phosphatidylinositol 3-kinase/Akt
pathway was found to inhibit the transcriptional activation of the p21(waf1) gene by
STAT-3 proteins without altering the regulation of the myc promoter.218

STAT-3 Activation Can Mediate Cellular Invasion
Numerous reports indicate STAT-3 activation plays a major role in tumor cell invasion, and
inhibition of STAT-3 reduces invasion.182,219–221 STAT-3 activation regulates the
expression of matrix metalloproteinase (MMP)-2 and MMP-1, which then mediate tumor
invasion and metastasis.222,223 STAT-3 upregulates the transcription of MMP-2 through
direct interaction with the MMP-2 promoter. Furthermore, blockade of activated STAT-3 in
highly metastatic cells significantly suppresses the invasiveness of the tumor cells, inhibits
tumor growth, and prevents metastasis in nude mice. Also, overexpression of
phosphorylated STAT-3 correlates with the invasion and metastasis of cutaneous squamous
cell carcinoma.224 STAT-3, however, is also known to upregulate tissue inhibitors of
metalloproteinase (TIMP)-1, a cytokine known to block metalloproteinases and decrease
invasiveness in certain cancer cell types.225 STAT-3 also controls the expression of the
MUC1 gene, which can mediate tumor invasion.226 Thus, STAT-3 mediates tumor invasion
through numerous mechanisms.

STAT-3 Activation Can Mediate Angiogenesis and Metastasis
One of the first pieces of evidence to suggest that STAT-3 is linked with angiogenesis was
from granulocyte-macrophage colony-stimulating factor-induced angiogenetic activity in
chick chorioallantoic membrane.227 It was shown that constitutive STAT-3 activity
upregulates vascular endothelial growth factor (VEGF) expression and tumor
angiogenesis.228 Most tumor cells that exhibit constitutively active STAT-3 also express
VEGF.229,230 Thus, downmodulation of STAT-3 activation can suppress the expression of
VEGF and inhibit angiogenesis. Indeed, Li et al. found an inhibition of growth and
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metastasis of human hepatocellular carcinoma by antisense oligonucleotide targeting of
STAT-3.231 The metastasis of human melanoma to brain was also linked to STAT-3
activation.232 Besides VEGF, it has been shown that TWIST, another mediator of tumor
metastasis, is regulated by STAT-3.233

Role of STAT-3 in Carcinogenesis
STAT-3 can mediate both the tumor initiation and the tumor promotion phases of
carcinogenesis. While deletion of STAT-3 suppressed skin carcinogenesis,9 forced
expression enhanced malignant progression.234,235 STAT-3-deficient mice were completely
resistant to skin tumor development when 9,10-dimethylbenz-[a-]anthracene was used as the
initiator and 12-O-tetradecanolyphorbol-13-acetate as the promoter.9 Activation of STAT-3
has also been shown to be an early event in tobacco-chewing-mediated oral carcinogenesis
in human samples.32 The activation of STAT-3 has also been linked with hepatocarcino-
genesis, as suggested by SOCS-3 deficiency in mice.236

Role of STAT-3 in Chemoresistance and Radioresistance
Activation of STAT-3 has been linked with resistance of tumor cells to chemotherapeutic
agents.80,237 Work from our laboratory and others have shown constitutive activation of
STAT-3 in multiple myeloma can mediate chemoresistance.238 This is mediated through the
upregulation of antiapoptotic gene products regulated by STAT-3, as shown in metastatic
breast cancer cells.239 Thus, downmodulation of STAT-3 can overcome chemoresistance.85

The resistance of tumor cells to γ radiation has also been associated with STAT-3 activation.
STAT-3-deleted B cells are highly susceptible to irradiation.240 In vivo experiments with
gene-targeted mice showed that IL-6 and, to a lesser extent, IL-10 are the relevant stimuli
that combine with B-cell receptor (BCR) ligands to promote B-1 cell radioresistance.
STAT-3 promotes cell survival in response to selected growth factors and is activated by
combined BCR cross-linking and IL-6 (IL-10). Importantly, STAT-3−/− B-1 cells become
susceptible to irradiation, indicating that STAT-3 activation by BCR accounts for the
inherent radioresistance of peritoneal B-1 B cells. Kim et al. showed that DN-STAT-3 and
DN-survivin together result in the greatest radiosensitization of MDA-MB-231 (breast
cancer cell line), decreasing angiogenesis, and cell survival.241

Chemopreventive Agents Inhibit STAT-3 Activation
Several natural agents known to be chemo-preventive are quite effective in suppressing
STAT-3 activation (Table 1). These include curcumin,73,242 resveratrol,85 ursolic acid,87

guggulsterone,80 capsaicin,69 cucurbitacin,72 indirubin,81 flavopiridol,77 epigallocatechin
gallate,75 CDDO-Me (methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate),70 emodin,76

silibinin,86 and chalcone.71 How these phytochemicals suppress STAT-3 activation has been
investigated. For instance, guggulsterone, ursolic acid, and capsaicin have been shown to
transcriptionally upregulate the expression of SHP2, which leads to inactivation of
STAT-3.69,80,87 Other mechanisms have also been described. For instance, luteolin has been
shown to promote the degradation in STAT-3 in human hepatoma cells.243 Indirubin was
found to inhibit STAT-3 activation through inhibition of Src kinase activity.81

Conclusions
This description, overall, shows that STAT-3 activation plays a very intimate role in
tumorigenesis. Inhibitors of the STAT-3 pathway thus have enormous potential in the
treatment of cancer. Whether STAT-3 can be exploited as a prognostic factor in human
cancers remains to be examined.
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Figure 1.
Signaling pathway leading to signal transducer and activator of transcription (STAT)-3
activation (see text for definitions of abbreviations).

Aggarwal et al. Page 18

Ann N Y Acad Sci. Author manuscript; available in PMC 2011 July 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Aggarwal et al. Page 19

TABLE 1

Activators and Inhibitors of Signal Transducer and Activator of Transcription (STAT)-3

Activators Others       • Sodium salicylate64

    Cytokines       • Bile acids34       • Statin65

      • Cardiotrophin-110       • Black soy peptides35       • T4021466

      • CNTF11       • CaMKIIg36       • UCN-0167

      • IFN-γ12       • Diazoxide37       • WP-103468

      • IL-513       • Genistein38     Natural

      • IL-62       • Isoliquiritigenin39       • Caffeic acid49

      • IL-914       • Leptin40       • Capsaicin69

      • IL-1015       • Morphine sulfate41       • CDDO-Me70

      • IL-1116       • Olanzapine42       • Chalcone71

      • IL-1217       • Osmotic shock43       • Cucurbitacin72

      • IL-2118 Inhibitors       • Curcumin73

      • IL-2219     Synthetic       • Deoxytetrangiomycin74

      • IL-2720       • AG 49044       • EGCG75

      • LIGHT21       • Atiprimod45       • Emodin76

      • MCP-122       • Auranofin46       • Flavopiridol77

      • MIP-1α23       • Aurothiomalate47       • Galiellalactone78

      • Oncostatin M24       • BMS-35482548       • Genistein79

      • RANTES23       • CADPE49       • Guggulsterone80

      • SLF25       • Stattic50       • Indirubin81

      • TNF-α26       • Dobesilate51       • Magnolol82

    Growth Factors       • Ethanol52       • Parthenolide83

      • EGF2       • NCX-401653       • Piceatannol84

      • G-CSF27       • Nelfinavir54       • Resveratrol85

      • GM-CSF13       • PDP55       • Silibinin86

      • PDGF4       • Platinum compounds56       • Ursolic acid87

      • TGF-α28       • PS-34157     Others

    Carcinogens       • Y(p)LPQTV58       • EKB56988

      • Diesel exhaust particles29       • R11577759       • GQ-ODN66

      • HCV30       • S31-M200160       • Retinoic acid89

      • LPS31       • S-3I-20161       • Rituximab90

      • Tobacco32       • SCH6633662       • STA-2191

      • UVB33       • SD-102963       • TKS 05079

CaMKII, calmodulin-dependent protein kinase II; CAPDE, caffeic acid phenyl ethyl ester; CDDO-Me, methyl-2-cyano-3,12-dioxooleana-1,9-
dien-28-oate; CNTF, ciliary neurotrophic factor; EGCG, (−)-epigallocatechin-3-gallate; EGF, epidermal growth factor; G-CSF, granulocyte
colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; GQ-ODN, G-quartet oligodeoxynucleotide; HCV,
hepatitis C virus; IFN-γ, interferon gamma; IL, interleukin; LIGHT, lymphotoxin homologue, inducible and competes with HSV glycoprotein D
for HveA and is expressed on T lymphocytes; LPS, lipopolysaccharide; MCP-1, monocyte chemoattractant protein 1; MIP-1α, macrophage
inflammatory protein-1-α; PDGF, platelet-derived growth factor; PDP, phosphododecapeptides; PS-341, bortezomib; RANTES, regulated on
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activation normal T cell expressed and presumably secreted; SLF, steel factor; TGF-α, transforming growth factor α; TKS 050, N-{4-[(3,4-
dichloro-6-fluoro-phenyl)amino]-quinazoline-6-yl}-2-chloroacetamide; TNF-α, tumor necrosis factor α; UVB, ultraviolet B radiation.
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TABLE 2

Intracellular Modulators of STAT-3 Activity

Protein kinases

    • JAK1 and JAK2 phosphorylate STAT-3.2,93,94

    • Src kinase family of kinases (Src, Hck, Lyn, Fyn, and Fgr) binds STAT-3 and induces tyrosine
      phosphorylation.5,102

    • Bcr-Abl induces tyrosine phosphorylation and DNA-binding activity of STAT-3.103

    • JAK3 binds CD40 and phopshorylates STAT-3.104

    • ERK binds STAT-3 and phosphorylates at ser 727, which negatively regulates Tyr 702 phosphorylation.105

    • Fes binds and induces tyrosine phosphorylation of STAT-3.106,107

    • PKCδ binds STAT-3, induces Ser727 phosphorylation, and inhibits its activity.97,108,109

    • p94 (fer) binds and causes the tyrosine phosphorylation of STAT-3.110

    • mTOR or p70 S6 kinase activated by PI3K/AKT mediates the serine 727 phosphorylation of STAT-3 by
      CNTF.101

    • IRAK1 binds and causes the Ser 727 phosphorylation of STAT-3.111

    • CDK9 binds STAT-3 and leads to human γ-fibrinogen gene expression.77,112

    • ZIP kinase binds STAT-3 in the nucleus and enhances its transcriptional activity via phosphorylation of
      Ser727.113

    • TGF-β-activated kinase 1 (TAK1) binds STAT-3 and increases ser 727 phosphorylation.114

    • NIK binds STAT-3 in response to LIGHT.21

    • Protein kinase C-ε binds and phosphorylates STAT-3 at Ser727.99

    • Bruton’s tyrosine kinase binds STAT-3 and prevents its activation.115

    • Peptidyl-prolyl cis/trans isomerase 1 (Pin1) binds STAT-3, induces ser 727 phosphorylation, and enhances its
      activity.116

Protein phosphatases

    • SHP-1 and SHP-2 prevents the phoshporylation of STAT-3 by negatively regulating JAK activity.117

    • LMW-PTPase is negative regulator of STAT-3 phosphorylation.118

    • Protein phosphatase 2 A translocates to nucleus and dephosphorylates STAT-3 at serine 727.119,120

    • Protein-tyrosine phosphatase D1 activates STAT-3 through interaction with Etk.121

    • Cytosolic isoform of PTPε inhibits STAT-3 activation by inactivating JAKs.122

    • CD45 directly dephosphorylates and binds to JAKs.123

    • PTEN is a negative regulator of STAT-3 activation through inhibition of PI3K/AKT pathway.124,125

    • PTP1 B is a negative regulator of JAK2.126

    • T-cell PTP inhibits IL-6-induced tyrosine phosphorylation and activation of STAT-3.127

    • LMW-DSP2 regulates IL-6/LIF-mediated signaling through dephosphorylation of Jaks and STAT-3.128

    • Receptor protein tyrosine phosphatase T dephosphorylates STAT-3.129

Viral proteins

    • EZI, a novel nuclear zinc finger protein, binds nuclear STAT-3 and augments its activity.130

    • Kaposi sarcoma-associated viral cyclin K binds nuclear STAT-3 and inhibits its activity.131

    • Herpes virus saimiri subgroup A strain 11 (STP-A11) binds STAT-3 and increases its transcriptional activity.132

    • Kaposi’s sarcoma-associated herpes virus (KSHV)-encoded latency-associated nuclear antigen (LANA) binds
      STAT-3 and enhances its transcriptional activity.133
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Others

    • c-Jun binds STAT-3 β and enhances promoter activity.134

    • IFNAR-1 chain binds to STAT-3 directly and enhances its activity.135

    • SOCS family of proteins binds JAK and negatively regulates JAK-STAT pathway.136

    • Glucocorticoid receptor binds to STAT-3 and forms a transactivating/signaling complex.137

    • Protein inhibitor of activated STAT (PIAS)-3, an E3 ligase, binds STAT-3 and blocks its DNA-binding and gene
      expression.105

    • SSI-1 [(for STAT-induced STAT inhibitor/SOCS)-1] binds Jak2 and Tyk2, and negatively regulates STAT-3
      activation.138

    • STAT-3 binds NF-κB p65 and inactivates its transcriptional activity.139–141

    • CREB-binding protein (CBP)/P300 binds STAT-3, induces acetylation at Lys 685, and induces
      dimerization.142–145

    • STAT-3-interacting protein, StIP1, binds STAT-3 and prevents nuclear translocation.146

    • EGFR binds STAT-3 and stimulates its activity.92,147

    • IL-2 receptor β chain binds to STAT-3.148

    • Cyclin-dependent kinase inhibitor p21 binds to STAT-3 and inhibits its activity.149

    • Cyclin D1 binds to nuclear STAT-3 and inhibits its activity.150

    • Co-activator NcoA/SRC1a binds to STAT-3 through 752–761 region, phosphorylates ser 727, and enhances
      its activity.151,152

    • Grb2 binds STAT-3 and inhibits its interaction with EGFR.55,147,153

    • Rac1 GTPase binds and stimulates STAT-3 phosphorylation at tyrosine and serine residues.154

    • MyoD binds STAT-3 and inhibits its activity.155

    • Promyelocytic leukemia protein (PML) binds STAT-3 and inhibits cell proliferation.156

    • GRIM-19 binds STAT-3 and negatively regulates its activity.157

    • Prothymosine-α binds STAT-3 and enhances its activity.158

    • PPARγ binds STAT-3 and inactivates its transcriptional activity.159

    • Osteospecific transcription factor Runx2 binds nuclear STAT-3 and inhibits its activity.160

    • Proline-, glutamic acid-, and leucine-rich protein-1 (PELP1) is a novel estrogen receptor co-activator that binds
      to STAT-3 in the nucleus and increases its activity.161

    • PAX3-FKHR binds STAT-3 and its transcriptional activity.162

    • A Ras homologue member I (ARHI) binds STAT-3 and inhibits its activity.163

    • Histone deacetylase (HDAC)-1 binds STAT-3 and induces deacetylation.142

    • SP1 binds STAT-3 and increases its transcriptional activity.164

    • HIF-1α and p300 binds to STAT-3 and leads to VEGF expression.165

    • Importin α5 and α7 bind to STAT-3 and enhance its activity.166

    • G-CSFR phosphotyrosine peptide ligands pY704VLQ and pY744LRC bind to STAT-3.167

    • Duplin, a negative regulator of Wnt signaling, binds STAT-3 and inhibits its DNA-binding activity.168

    • Daxx binds STAT-3 in the nucleus and downregulates its transcriptional activation.133

    • Unphosphorylated STAT-3 accumulates in response to IL-6 and activates transcription by binding to NF-κB.169

    • Nescient helix-loop-helix 2 interacts with STAT-3 to regulate transcription of prohormone convertase 1/3.170

    • Kruppel-associated box zinc-finger protein (KAP) 1 binds STAT-3 and regulates its transcriptional activity.171

    • Binder of ADP-ribosylation factor-like two (BART) augments STAT-3 activity by keeping it in the nucleus.172
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CDK9, cyclin-dependent kinase 9; CNTF, ciliary neurotrophic factor; DSP, dual specificity phosphatase; EGFR, epidermal growth factor receptor;
G-CSFR, granulocyte colony-stimulating factor receptor; HIF-1α, hypoxia-inducible factor 1 subunit α; IFNAR-1, interferon (α, β, and ω) receptor
1; IRAK1, interleukin-1 receptor-associated kinase 1; JAK, Janus kinase; LMW, low molecular weight; PKC, protein kinase C; mTOR,
mammalian target of rapamycin; PI3K, phosphatidylinositol 3-kinase; NIK, NF-κB-inducing kinase; PPARγ, peroxisome proliferator-activated
receptor γ; PTEN, phosphatase and tensin homologue; PTP, protein tyrosine phosphatase; SOCS, suppressors of cytokine signaling; STAT, signal
transducers and activators of transcription; EZI, endothelial cell-derived zinc finger protein; ZIP, leucine zipper kinase; GRIM-19, gene associated
with retinoid-IFN-induced mortality-19; MyoD, myogenic differentiation; PAX3-FKHR, paired box 3-FKHR-Forkhead (Drosophila) homolog 1
(rhabdomyosarcoma).
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