
Deformable Image Registration of Sliding Organs Using
Anisotropic Diffusive Regularization

Danielle F. Pace,
Kitware Inc., Clifton Park, NY and Carrboro, NC, USA

Andinet Enquobahrie,
Kitware Inc., Clifton Park, NY and Carrboro, NC, USA

Hua Yang,
Kitware Inc., Clifton Park, NY and Carrboro, NC, USA

Stephen R. Aylward, and
Kitware Inc., Clifton Park, NY and Carrboro, NC, USA

Marc Niethammer
University of North Carolina at Chapel Hill, Department of Computer Science, Chapel Hill, NC,
USA

Abstract
Traditional deformable image registration imposes a uniform smoothness constraint on the
deformation field. This is not appropriate when registering images visualizing organs that slide
relative to each other, and therefore leads to registration inaccuracies. In this paper, we present a
deformation field regularization term that is based on anisotropic diffusion and accommodates the
deformation field discontinuities that are expected when considering sliding motion. The
registration algorithm was assessed first using artificial images of geometric objects. In a second
validation, monomodal chest images depicting both respiratory and cardiac motion were generated
using an anatomically-realistic software phantom and then registered. Registration accuracy was
assessed based on the distances between corresponding segmented organ surfaces. Compared to an
established diffusive regularization approach, the anisotropic diffusive regularization gave
deformation fields that represented more plausible image correspondences, while giving rise to
similar transformed moving images and comparable registration accuracy.
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1. Introduction
Registration problems involving sliding organs are ubiquitous in medical imaging
applications, such as image-guided surgery, image-guided radiation therapy, atlas-based
image segmentation, and longitudinal analysis involving multiple organs. Common
examples of organ slides in these applications includes the brain sliding against the skull due
to intraoperative brain shift, the heart sliding against the lungs throughout the cardiac cycle,
and respiration-induced sliding of the lungs against the chest wall or the abdominal organs
against each other. In these and other examples, mis-registrations will impact clinical
decisions and patient outcomes, causing surgical tools to be ineffectively guided or
incorrectly positioned, or correspondences needed to quantify change to be incorrectly
estimated. Furthermore, other applications rely on the accurate estimation of deformation
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fields, such as when estimating brain morphology changes due to aging or disease
progression. Inappropriate deformation fields can reduce the sensitivity and specificity of
such studies. In this paper, we present and evaluate a novel method for deformable image
registration in which the images contain multiple organs that may have slid with respect to
each other, inducing discontinuities in the inter-image deformation field.

Deformable image registration generates a deformation field u that transforms a moving
image (IM) to better match a fixed image (IF), i.e. if Tu is the transformation associated with
u, then IF ≈ Tu (IM) [1]. This is often performed by iteratively optimizing a cost function
C(u) of the current estimation of u, which typically incorporates an intensity-based distance
measure D (IF, Tu(IM)) that captures the intensity differences between the fixed image and
the transformed moving image. However, for general deformation registration methods,
where dense displacement fields or time-dependent vector fields are estimated, finding the
transformation based on a similarity-measure only is ill-posed. Therefore regularization of
the displacement field (or velocity fields) is necessary [2]. A regularization term S(u) is
introduced into the cost function to penalize unrealistic deformation fields, such that:

(1)

Typical regularizations enforce a smoothly-varying deformation field. For example, one
may penalize gradients in any of the three components of the deformation field u (the
“diffusive regularization”) [3].

However, enforcing a smooth deformation field is not appropriate when registering images
of sliding organs, since discontinuities in the deformation field are expected. If a smooth
motion field is enforced and one object remains stationary while another slides along it, the
moving object's deformation vectors will be incorrectly applied to the stationary organ,
making it appear to move. Similarly, if a smooth motion field is enforced when two
structures slide against each other in opposite directions, the opposing vectors near the
boundary will be averaged and the motion at the interface will not be recovered.

Non-parametric image registration algorithms that accomodate deformation field
discontinuities include that of Risholm et al. [4], who developed models of resection and
retraction to register pre- and intra-operative brain MRI images. Schmidt-Richberg et al. [5]
registered end-inspiration and end-expiration lung CT images by using organ segmentations
to ensure that the component of the deformation field tangential to the organ boundary was
smoothed only within individual organs and not across organ boundaries. Yin et al. [6]
focused on registration accuracy near lung lobe fissures, where deformation field
discontinuities are allowed in any direction. They added an additional weighting term to the
diffusive regularization that increases with distance to the organ boundary, so that
discontinuities near the organ boundary are not penalized.

In this paper, we present a regularization approach based on anisotropic diffusion that
enables more accurate registration of images of sliding organs. Our regularization
formulation was validated in the context of monomodal image registration using (1)
artificial images of simple objects and (2) images derived from an anatomically-realistic
software phantom. Both of these assessments demonstrated the advantages of the
regularization presented here compared to the diffusive regularization.
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2. Sliding Organ Registration Algorithm
2.1. Overview

The sliding organ registration algorithm presented here proposes a deformation field
regularization that is appropriate for sliding organs. The regularization is based on
decomposing the deformation field u into normal and tangential components, which are
defined with respect to a given organ boundary along which sliding motion is expected to
occur (Figure 1a). These two components are handled differently to enforce a realistic
deformation field that considers physiological sliding motion:

1. Motion normal to the organ boundary should be smooth both across organ
boundaries and deep within organs. The motion normal to the organ boundary must
be smooth in both the normal and tangential directions. The former condition
enforces coupling between neighboring organs under the assumption that objects
do not pull apart (an appropriate assumption within images of the human body)
(Figure 1b, panel (i)). The later forces smooth motion of individual organs (Figure
1b, panel (ii)).

2. Motion tangential to the organ boundary should be smooth in the tangential
direction within each individual organ, avoiding sharp discontinuities in its motion
(Figure 1b, panel (iii)). However, smoothness is not required across organ
boundaries (Figure 1b, panel (iv)). Thus, the sliding transformations to be captured
are not penalized.

Throughout the remainder of this paper, we use the sum of squared intensity difference for
the intensity-based distance measure D (IF, Tu(IM)), which is appropriate since we are
focusing on monomodal image registration.

2.2. Anisotropic diffusive regularization for sliding organ registration
The diffusive regularization is a good example of typical regularizers that penalize any sharp
discontinuities in the deformation field and are therefore inappropriate when considering
sliding organs. It is equivalent to smoothing the deformation field with a Gaussian kernel
and is defined as follows:

(2)

Ω is the domain of the deformation field and ▽ul(x) is the gradient of the l-th component of
u at position x = (x, y, z), determined by extracting the l-th component of u and calculating
the gradient around x.

Our proposed alternative is to formalize the conditions described in Section 2.1 by applying
separate nonlinear anisotropic smoothing filters to the normal and tangential components of
the deformation field u. Anisotropic diffusion models the diffusion of particles against a
concentration gradient when diffusion in particular directions is favoured [7]. The diffusion
equations are:

(3)
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(4)

(5)

where ▽u(x) is the gradient of the concentration u at the position x, j(x) is the flux that
counteracts the concentration gradient, D is the diffusion tensor that steers the diffusion
process, and div represents the divergence operator. The eigenvectors and eigenvalues of the
diffusion tensor D dictate the magnitude and directionality of the diffusion.

In image processing, concentrations are modeled by voxel intensity, concentration gradients
are caused by intensity discontinuities (i.e. edges), and diffusion results in local image
smoothing. A common application of anisotropic diffusion is anisotropic filtering, in which
D ≠ I and images can be smoothed only in certain directions in order to smooth while
maintaining edges. When D = I, traditional Gaussian smoothing results. The approach
presented in this paper can be thought of as anisotropic filtering performed on deformation
fields rather than intensity images.

The proposed anisotropic diffusive regularizer is as follows:

(6)

where

(7)

and n is the normal of the organ boundary in the vicinity of x, ▽ul(x) is the gradient of the l-
th component of u(x),  is the component of ul (x) in the normal direction, and w is a
weighting term which decays exponentially from 1 to 0 as a function of distance to the organ

boundary. ‖P▽ul(x)‖2 and  both represent the squared magnitude of a flux
(equation 3), where D = P and D = [n, 03, 03]T, respectively (03 = [0, 0, 0]). The
eigenvectors of P specify that diffusion should occur the tangential plane but not in the
normal direction, while nT dictates diffusion in the normal direction only.

Close to organ boundaries, where w is close to 1:

• ‖P▽ul(x)‖2 penalizes any discontinuities within the deformation field that are in the
plane tangential to the organ boundary. This anisotropically smooths the
discontinuities depicted in panels (ii) and (iii) of Figure 1b.

•  penalizes any discontinuities in the normal component of the
deformation field that are in the direction normal to the organ boundary. This
anisotropically smooths the discontinuities depicted in panel (i) of Figure 1b.

Pace et al. Page 4

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2011 July 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Discontinuities in the tangential component of the deformation field that are in the direction
normal to the organ boundary are not penalized in the vicinity of organ boundaries (panel
(iv) of Figure 1b). Therefore sliding motions are preserved.

Further away from organ boundaries, w approximates zero and equation 6 tends to the
diffusive regularization (equation 2). The deformation field u is smoothed isotropically,
enforcing smooth motion in all directions within each individual organ.

The optimal registration cost function C(u) has  and can be found using finite
differences:

(8)

The update term  can be decomposed into the update terms associated with the
intensity-based distance measure and the regularization term:

(9)

The gradient of equation 6 with respect to u can be found using the calculus of variations,
leading to the update term for the anisotropic regularization:

(10)

where el is the lth canonical unit vector, i.e. ex = [1, 0, 0]T.

2.3. Implementation
This effort is part of the Tube Toolkit (TubeTK), a new toolkit providing software for
registration, segmentation, analysis and quantification of images depicting tubular
structures, such as vessels, bronchi and neurons. All software is open-source and freely
available at http://public.kitware.com/Wiki/TubeTK. The sliding organ registration
algorithm was implemented using the iterative finite difference solver framework provided
by the Insight Toolkit (ITK) [8, 9], an open-source software toolkit for image processing,
segmentation and registration (www.itk.org).

Organ boundaries were defined as VTK polydata (The Visualization Toolkit, www.vtk.org.)
[10]. The normal n assigned to each voxel equaled that of the closest boundary point within
this data representation, and the weighting w for each voxel was calculated as a function of
the distance between the voxel and this point. Discrete image gradient and divergence were
calculated within the 3×3×3 neighborhood surrounding each voxel of interest. Image
registration progressed according a user-specified timestep and number of iterations. The
resulting deformation field was applied to the original moving image using linear
interpolation to generate the transformed moving image. Data was visualized using using
ParaView, an open-source application for data analysis and visualization
(www.paraview.org) [11].
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3. Validation
3.1. Demonstration using artificial data

Figure 2 illustrates the properties of the anisotropic diffusive regularization using images of
simple objects sliding against each other. Figure 2a shows a slice through the three-
dimensional fixed image. The image shows two tubes, one bright and one of medium
intensity, that are square in cross section and suspended within a dark background. From left
to right in Figure 2a, each tube's intensity is uniform, then increasing/decreasing, and then
uniform once again. To mimic sliding motion in the moving image (Figure 2b), the subset of
the bright tube with increasing intensity was translated four pixels to the right, and the
subset of the medium-intensity tube with decreasing intensity was translated four pixels to
the left.

The organ boundaries (including the interface between the bright and medium-intensity
tubes and between each tube and the background) and the boundary normal vectors were
determined analytically using geometrical knowledge of the object surfaces (Figure 2c). All
registrations were performed over 500 iterations with a time step of 0.125s.

Figures 2d and 2e show the result of registration using the diffusive regularization. Although
the original fixed image is almost perfectly recreated, the resulting deformation field is
incorrect close to the organ boundaries. This is because the very different motions occurring
on either side of the boundary are averaged together. As shown in Figures 2f and 2g, the
deformation field resulting from the anisotropic diffusive regularization better recreates the
applied transformation. Motion near the surface boundary is better preserved, as are motion
vectors indicating compression and expansion in the regions neighboring the translated
subsets. This is a much more realistic deformation field considering the dynamics of sliding
motion. The RMS absolute intensity difference between the original fixed and moving
images was 1.97 (mean ± standard deviation: 0.34 ± 1.94). Following registration, the RMS
absolute intensity difference was reduced to 0.73 using the diffusive regularization (mean ±
standard deviation: 0.058 ± 0.73) and 0.75 using the anisotropic diffusive regularization
(mean ± standard deviation: 0.069 ± 0.75).

3.2. Validation using the XCAT software phantom
A second validation study involved registering chest images depicting the heart, lungs and
liver that were generated using the 4D extended cardio-torso (XCAT) software phantom
[12]. Based on images from the Visible Human Project, the XCAT phantom is a realistic and
flexible model of human anatomy and physiology. The organ shapes within the phantom are
constructed using a non-uniform rational B-splines (NURBS) surfaces, and the phantom
incorporates cardiac and respiratory motion based on models constructed from gated high-
resolution CT patient datasets.

Two “activity” images visualizing each organ's attenuation coefficient were created using
parameters corresponding to a typical healthy patient, including a 5s respiratory period and a
1s cardiac cycle. The images were generated at 0s and 2.5s, representing approximately full-
exhale + end-diastole (the moving image) and full-inhale + end-systole (the fixed image).
Voxels were 3.125mm3. Voxel intensities were adjusted from the eight activity levels
provided by the XCAT phantom to six gray levels approximately matching those of a typical
CT (computed tomography) scan (Figures 3 and 4). The organ boundary was defined by the
lung surface. A surface model of the lungs was extracted from the fixed image using 3D
Slicer (www.slicer.org) [13] using threshold-based segmentation followed by manual
removal of the smaller bronchi, model extraction using Marching Cubes, model smoothing,
and model decimation by 50%. Image registration was performed using the diffusive and
anisotropic diffusive regularizations over 2000 iterations with a time step of 0.125.
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Applying the deformation fields yielded by image registration using the diffusive and
anisotropic diffusive regularizations gives the transformed moving images shown in Figure
5. Many of the substantial deformations between the original moving and fixed images were
recovered, including the expansion of the chest and lungs, the movement of the liver
downwards, and the heart's contraction and anterior/inferior translation. Before registration,
the RMS absolute intensity difference between the fixed and moving images was 62.43
(mean ± standard deviation: 27.61 ± 55.99). This was reduced to 30.69 (mean ± standard
deviation: 10.82 ± 28.72) following registration using the diffusive regularization and to
33.41 (mean ± standard deviation: 12.12 ± 31.13) following registration with the anisotropic
diffusive regularization.

Figure 6 shows a sagittal slice through the registration deformation fields and illustrates the
advantages of the anisotropic diffusion regularization term presented here. The images to be
registered exhibit sliding motion between the lungs and the liver (note that the diaphragm is
not visualized in the XCAT images). This sliding motion is especially noticeable in the
anterior/inferior part of the lung. Figure 6a demonstrates the overall motion field smoothness
that is enforced by the diffusive regularization, which generates improbably complex
deformations throughout the anterior liver. In contrast, the anisotropic regularization
effectively decouples the motion of the lungs and liver in this area (Figure 6b). The resulting
deformation field clearly depicts the liver moving upwards while the lung slides in the
anterior-posterior direction along it.

A quantitative validation was performed by calculating the distances between organ surfaces
extracted from the original fixed image with those from (1) the original moving image; (2)
the transformed moving image under the diffusive regularization; and (3) the transformed
moving image under the anisotropic diffusive regularization. Label maps segmenting “lungs
+ background”, “liver + heart”, “bone” and “muscle” were created for each image using
intensity thresholding (allowing ±15 from the original images' constant gray levels when
segmenting the transformed moving images). Surface models were created using the
Marching Cubes algorithm followed by model smoothing (no decimation). Note that the
image “background” label map created a surface representing the patient's chest, the heart
surface model represents the dark areas within the heart and not the entire cardiac surface,
and that the “muscle” class represents all structures of light intensity in Figures 5, including
the chest wall, heart and stomach. When more than one surface was generated from the same
intensity (ex. lung/chest surface and liver/heart), each structure's surface was extracted using
surface connectivity based on manually-defined fiducial points. This had the beneficial side
effect of removing small floating polydata that survived the threshold criteria but did not
correspond to an organ of interest.

Surface to surface distances were determined using Mesh-Valmet 2.1
(http://www.ia.unc.edu/dev/download/MeshValmet/MeshValmet.html). Summary statistics
of the distance between surface A and surface B were calculated based on the distances from
each point in A to the closest point in B combined with the distances from each point in B to
the closest point in A.

Results are shown in Table 1. The large distance errors between the surfaces segmented
from the original fixed image and those from the original moving images illustrate the
substantial deformations that we are attempting to find here. Following image registration,
error decreased for all organs except for the “bone” and “heart” surfaces. These were the
two smallest and most diffuse tissue types, more likely to be influenced by their
neighborhood than to drive the registration themselves. Distance errors were typically
slightly greater for registration using the anisotropic diffusive regularization compared to
registration with the diffusive regularization.
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4. Discussion and Conclusions
This paper has presented a novel deformation field regularization term based on anisotropic
diffusion for deformable registration between images depicting sliding organs. Anisotropic
regularization is more appropriate than uniform regularization whenever discontinuities in
the deformation field are expected, as is the case whenever objects move independently. Our
validation studies have illustrated that the anisotropic diffusive regularization does allow
sliding motions to be recovered, a step towards effective registration of such images.

Fundamentally, the goal of image registration is to establish correspondence. The
transformation resulting from image registration encapsulates this correspondence, and the
deformation field is the entity that is used when deformable image registration is applied to
practical problems in image-guided therapy, physiological modeling and atlas building, and
image-based anatomical studies. Developing regularization terms based on physiological
constraints increases the probability that image registration will yield the correct
deformation field, out of the many deformation fields that map the intensities of the moving
image onto those of the fixed image. In the validation study registering the XCAT images,
the anisotropic diffusive regularization did give slightly greater errors compared to the
diffusive regularization. However, its deformation field was much more realistic and
therefore ultimately more useful. Here, we argue that a slight decrease in registration
accuracy as measured by the similarity between the fixed image and the transformed moving
image is acceptable if it leads to an increase in registration accuracy as measured by the
plausibility of the resulting deformation field.

Within this paper, comparing our method to the diffusive regularization allowed for a
straightforward assessment of the benefits of anisotropic regularization. However, the
concept itself is more general, and can be applied in future to regularize velocities in fluid-
based deformable registration.

In future, we would like to investigate alternatives to segmented organ surface models for
determination of the organ boundary normals and the weightings between the anisotropic
diffusive and diffusive regularizations. These values could be derived from local intensity
information within the fixed image, for example using the structure tensor or a local edge
detector. Future work also includes determining the ideal weighting between the intensity-
based distance measure and the regularization term in equation 9.

Finally, the XCAT software phantom provided idealized yet anatomically-realistic imagery
with which to evaluate our registration algorithm, and a quantitative assessment must be
performed using clinical images. Validation based on segmented organ boundaries gives one
measure of registration accuracy, but does not evaluate the accuracy with which internal
structures are related. This will be addressed in future by determining target registration
error in clinical images.
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Fig. 1.
Schematic illustrating the underlying concepts of the anisotropic diffusive regularization.
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Fig. 2.
Demonstration of sliding organ registration with artificial data using the diffusive
regularization and the anisotropic diffusive regularization. Deformation fields visualize the
registration results, with intensity proportional to vector magnitude, and show deformations
from the fixed image to the moving image. The transformed moving images ideally match
the original fixed image.
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Fig. 3.
Surfaces extracted from the fixed and moving XCAT phantom images. The 3D box outline
indicates the domain of the fixed and moving images to be registered.
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Fig. 4.
Slices through the original fixed (a-d) and moving (e-h) images created using the XCAT
software phantom.
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Fig. 5.
Slices through the transformed moving images following registration using the diffusive (a-
d) and anisotropic diffusive (e-h) regularizations. The transformed moving images ideally
match the original fixed images in Figure 4.
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Fig. 6.
Sagittal slice through the deformation field resulting from registering the XCAT phantom
images, overlaid onto an outline of the original fixed image. Motion vectors indicate
deformations from the fixed image (full-inhale, shown by outlines) to the moving image
(full-exhale).
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Table 1

Surface to surface distances between surfaces segmented from the original fixed image with those from the
original moving image and from the transformed moving images. All values in millimetres (mm).

Organ Before Registration Registered
(Anisotropic)

Registered
(Diffusive)

Signed vertex distance (mean ± standard deviation):

 Lungs 1.69 ± 8.34 0.35 ± 5.95 -0.03 ± 4.86

 Liver 1.38 ± 13.05 0.15 ± 8.41 -0.51 ± 7.47

 Chest 0.01 ± 9.02 0.25 ± 1.65 0.25 ± 1.65

 Muscle -0.27 ± 5.19 -0.19 ± 3.28 -0.17 ± 3.23

 Bone 1.68 ± 3.88 -0.00 ± 5.08 0.05 ± 4.92

 Heart 5.75 ± 8.24 7.00 ± 11.14 6.79 ± 11.00

Absolute vertex distance (mean):

 Lungs 6.63 3.71 2.94

 Liver 10.87 5.03 3.79

 Chest 8.82 0.72 0.73

 Muscle 3.44 1.86 1.81

 Bone 2.43 3.34 3.28

 Heart 8.24 8.87 8.60

Absolute vertex distance (histogram central 68th percentile):

 Lungs [3.29, 7.84] [0.52, 4.08] [0.45, 2.95]

 Liver [9.52, 19.48] [1.77, 8.64] [0.89, 5.76]

 Chest [9.08, 12.33] [0.08, 0.61] [0.08, 0.68]

 Muscle [0.70, 5.56] [0.35, 2.09] [0.35, 2.09]

 Bone [0.08, 2.55] [0.50, 4.40] [0.69, 4.42]

 Heart [4.57, 10.91] [4.36, 14.11] [4.33, 14.95]
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