Skip to main content
. 2011 Jun 16;5:31. doi: 10.1186/1752-153X-5-31

Table 2.

Iodide-oxidation at different wavelength of illumination and in tubular and immersion reactors*

Oxide Iodine-formation (nM s-1) Iodine-formed (μM)
  254 nm-illuminationa   365 nm- illuminationb   Tubular reactorc   Immersion reactord

TiO2 (anatase)   298   170   9.7   58
TiO2 P25   46   45   1.8   20
TiO2 Hombikat   56   49   2.8   5.4
TiO2 (rutile)   22   2.2   0.11   0.55
BaTiO3   38   2.8   0.24   0.03
ZnO   25   6.3   0.31   0.90
SnO2   21   1.8   0.11   0.28
WO3   30   0.9   0.07   0.17
CuO   24   0.3   0.02   0.01
Fe2O3   27   1.3   0.08   0.30
Fe3O4   25   0.5   0.04   0.01
ZrO2   21   0.6   0.05   0.02
Al2O3   34   6.8   0.40   1.1
SiO2   43   6.8   0.55   1.8
SiO2 (porous)   27   5.9   0.29   0.18

*0.020 g oxide loading, 0.050 M iodide, 7.8 mL s-1 airflow, 22.4 mg L-1 dissolved O2, 30 min illumination.

a6.2 μEinstein L-1 s-1, 10 mL iodide solution.

b18.4 μEinstein L-1 s-1, 10 mL iodide solution.

c365 nm, 25.2 μEinstein L-1 s-1, 25 mL iodide solution.

d365 nm, 33.9 μEinstein L-1 s-1, 250 mL iodide solution