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Brief Communications

Regulation of NMDA-Receptor Synaptic Transmission by

Wnt Signaling
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Wnatligands are secreted glycoproteins controlling gene expression and cytoskeleton reorganization involved in embryonic development
of the nervous system. However, their role in later stages of brain development, particularly in the regulation of established synaptic
connections, is not known. We found that Wnt-5a acutely and specifically upregulates synaptic NMDAR currents in rat hippocampal
slices, facilitating induction of long-term potentiation, a cellular model of learning and memory. This effect requires an increase in
postsynaptic Ca>* and activation of noncanonical downstream effectors of the Wnt signaling pathway. In contrast, Wnt-7a, an activator
of the canonical Wnt signaling pathway, has no effect on NMDAR-mediated synaptic transmission. Moreover, endogenous Wnt ligands
are necessary to maintain basal NMDAR synaptic transmission, adjusting the threshold for synaptic potentiation. This novel role for Wnt
ligands provides a mechanism for Wnt signaling to acutely modulate synaptic plasticity and brain function in later stages of development

and in the mature organism.

Introduction

In the mammalian brain, fast excitatory neurotransmission is
mediated mainly by glutamate and its ionotropic receptors
AMPAR and NMDAR. Unique properties, including Ca**
permeability, allow the NMDAR to play a critical role in brain
development, neuropathology, and synaptic plasticity, a cellular
model of learning and memory (Bliss et al., 2003; Lau and Zukin,
2007; Cline and Haas, 2008). Not surprisingly, the number, prop-
erties, and subunit composition of NMDARs present at synapses
must be well controlled to regulate calcium influx and different
signaling cascades associated with the receptor activation (Yashiro
and Philpot, 2008).

Wnt ligands are secreted glycoproteins controlling gene ex-
pression and cytoskeleton reorganization with well established
roles in the embryonic development of the nervous system of
vertebrates and invertebrates. They signal through Frizzled and
RoR2 receptors to activate the following: (1) the canonical Wnt/
B-catenin pathway controlling gene transcription and regulating
cytosolic microtubule dynamics; (2) a noncanonical pathway
that activates Rho GTPases and c-Jun N-terminal kinase to in-
duce changes in the cytoskeleton; and (3) a noncanonical Wnt/
calcium pathway that increases intracellular Ca’", activating
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CaMKII and PKC, two enzymes involved in controlling synaptic
function and plasticity (Veeman et al., 2003; Kohn and Moon,
2005; Gordon and Nusse, 2006). Wnt proteins participate in pro-
cesses such as neuronal migration, axon pathfinding, dendritic
morphogenesis, and synaptic differentiation (Ciani and Salinas,
2005; Gordon and Nusse, 2006). Dysfunctional Wnt signaling
has also been implicated in major neuropathologies including
Alzheimer’s disease (Zhang et al., 1998) and schizophrenia (Ema-
mian et al., 2004); nonetheless, its normal function in the adult
brain is unknown. Recent evidence indicates that Wnt ligands
and components of their signaling pathways persist in the adult
brain and can modify synaptic function (Inestrosa and Arenas,
2010). A canonical Wnt ligand, Wnt-3a, has been reported to
modify a major form of synaptic plasticity, long term potentia-
tion (LTP) (Chen et al., 2006), and Wnt-2 has been shown to
induce dendritic arborization (Wayman et al., 2006). Similarly, a
noncanonical Wnt ligand, Wnt-5a, has been recently reported to
stimulate synaptic differentiation in dissociated cultured neurons
in a calcium-dependent manner (Varela-Nallar et al., 2010).
However, the mechanisms leading to these acute modifications of
established synaptic connections are not well understood.

We tested whether Wnt ligands could acutely regulate glutama-
tergic synaptic transmission in the Schaffer collateral/commissural-
CALl pathway in rat hippocampal slices. We found that Wnt-5a via
PKC and JNK rapidly potentiates NMDAR currents, facilitating in-
duction of LTP. In addition, we found that endogenous Wnt signal-
ing is necessary for maintenance of NMDAR basal synaptic
transmission.

Materials and Methods

Electrophysiology. Organotypic hippocampal slices were prepared ac-
cording to standard procedures from postnatal day (P)6 male and female
Sprague Dawley rats and maintained in culture for 4—11 d (Opitz-Araya
and Barria, 2011). Acute slices were prepared from P17-21 animals
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Results

Potentiation of NMDAR-mediated
currents by Wnt ligands

We recorded isolated EPSCs mediated by
NMDARs or AMPARs in cultured orga-
notypic hippocampal slices. After a 5 min
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baseline period, we bath applied condi-
tioned medium containing various Wnt
ligands. Wnt-5a, a noncanonical ligand
(Gordon and Nusse, 2006), produced a

L

two-step increase in the amplitude of
NMDAR responses, suggesting two dif-
ferent mechanisms involved in the poten-
tiation of NMDAR function. In contrast,
application of Wnt-7a, a canonical Wnt

0 sy T T

0 10 20 3

Time to half decay (m
Normalized AMPAR EPSC Amplitude

BL Wnt5a
20m

Wnt5a
50m

Figure 1.

was added to the bath (n = 4). Inset shows representative traces as indicated.

(Gambrill et al., 2011). Animals were handled in accordance with Uni-
versity of Washington (Seattle, WA) guidelines. Whole-cell recordings of
CA1 pyramidal cells were obtained under visual guidance. The recording
chamber was constantly perfused with artificial CSF (ACSF) containing
119 mm NaCl, 2.5 mm KCl, 4 mm CaCl,, 4 mm MgCl,, 26 mm NaHCO;,
1 mMm NaH,PO,, 11 mwm glucose, 0.1 mMm picrotoxin, 2 um
2-chloroadenosine, pH 7.4, and gassed with 5% CO,/95% O,. Record-
ings were made at room temperature (22-24°C). Patch recording pi-
pettes (~4 MQ) were filled with intracellular solution containing 115
mM cesium methanesulfonate, 20 mm CsCl, 10 mm HEPES, 2.5 mm
MgCl,, 4 mM Na,ATP, 0.4 mm Na;GTP, 10 mm sodium phosphocreatine,
and 0.6 mm EGTA (pH 7.25). Synaptic responses were evoked by a bipo-
lar electrode placed over Schaffer collateral fibers ~200-400 um from
the targeted CA1 cell. Evoked NMDAR responses were recorded at a
holding potential of +40 mV in the presence of NBQX (2 um). Sponta-
neous miniature events (mEPSCs) were recorded at a holding potential
of —60 mV in the presence of TTX (1 um). Conditioned medium con-
taining Wnt proteins was obtained by expression of the desired Wnt
protein in HEK-293 as reported previously (Hall et al., 2000) and bath
applied.

Imaging. Organotypic hippocampal slices were transfected with EGFP
using biolistics (Woods and Zito, 2008). Transfected CA1 pyramidal
neurons were live imaged on an Olympus FV confocal laser scanning
microscope at 32—-34°C. Dendrites were imaged with 0.5 uM steps in the
z-axis. Each optical plane was averaged two or three times (Kalman fil-
ter). Images were analyzed with ImageJ (NIH, version 1.4). Spines were

Time (min)

Specific upregulation of NMDAR currents by a noncanonical Wnt-ligand. 4, Normalized peak amplitude of isolated
NMDAR currents recorded at +40 mV. After a period of baseline (BL), conditioned medium containing Wnt-5a (black circles; n =
13), Wnt-5a and sFRP (gray circles; n = 3), or Wnt-7a (white squares; n = 5) was added to the bath. Here and in all figures, error
bars represent standard error. Inset shows example traces as indicated. B, Quantification of the potentiation induced by Wnt-5a on
the amplitude of NMDAR currents after 20 min (n = 16) and 50 min (n = 8) of treatment in cultured and acute slices (n = 4).
Asterisk (*) indicates p << 0.05 Student's ¢ test compared to baseline. C, Time to half-decay of NMDAR EPSCs during baseline and
after 20 and 50 min of Wnt-5a treatment for each cell. Average in bold (n = 8). Asterisk indicates p << 0.05 Student’s ¢ test
compared to baseline and 20 min. Inset shows representative traces of normalized NMDAR EPSCs to visualize differences in the
decay kinetics. D, Normalized peak amplitude of AMPAR EPSCs. After a period of baseline, conditioned medium containing Wnt-5a
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ligand, did not affect NMDAR currents
(Fig. 1A). In cultured slices, Wnt-5a in-
creased NMDAR currents significantly af-
ter 20 min (40% over baseline) and
twofold after 50 min (Fig. 1B, left). Simi-
larly, in acute slices 20 min of Wnt-5a
treatment produced a 37% increase that
was not statistically significant; this in-
creased to 80%, which was statistically sig-
nificant, after 50 min of treatment (Fig.
1B, right). Control experiments with
heat-inactivated conditioned medium or
conditioned medium from cells express-
ing empty vector produced no potentia-
tion (data not shown). Simultaneous
application of Wnt-5a and the secreted frizzled-related protein 1
(sFRP1) prevented potentiation of NMDAR currents (Fig. 1A).
Physical interaction between sFRP1 and Wnt-5a allows sFRP1 to
act as an effective Wnt scavenger that can inhibit Wnt-5a signal-
ing (Rattner et al., 1997; Matsuyama et al., 2009).

Following Wnt-5a-induced potentiation, NMDAR currents
became significantly slower after 50 min compared to responses
before treatment. Also, responses after 50 min are significantly
slower that responses after 20 min of treatment (Fig. 1C). Kinetics
of NMDARSs are determined by the NR2 subunit, with NR2B-
containing receptors exhibiting slower decaying currents than
NR2A-containing receptors (Traynelis et al., 2010). Using Ro25-
6981, a noncompetitive NR2B selective blocker (Fischer et al.,
1997), we confirmed that Wnt-5a increases the proportion of
synaptic NR2B-containing receptors. In neurons from control
untreated slices, 1 uM Ro25-6981 blocked 46% = 8.04 of
NMDAR EPSCs (n = 5). In contrast, in neurons treated with
Wnt-5a for 1 h, Ro25-6981 blocked 73% = 6.05 of NMDAR
currents (n = 3; p < 0.05 compared to control cells). These
experiments suggest that Wnt-5a increases the synaptic content
of NR2B-containing receptors.

Importantly, the effect of Wnt-5a on glutamatergic synaptic
transmission is specific for NMDAR-mediated currents. Bath ap-
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treatment of the slice. Paired pulse facili-
tation of AMPAR-mediated EPSCs was
not different before or after 20 or 50 min
of Wnt-5a treatment (Fig. 2A). We also
determined the frequency of AMPAR-
mediated spontaneous mEPSCs and the
density of dendritic spines as measure-
ments of number of synapses (Gambrill
and Barria, 2011). Neither the frequency
nor the amplitude of AMPAR-mediated
mEPSCs changed after 45-55 min of
Wnt-5a treatment compared to the base-
line period before treatment (Fig. 2B). In
addition, spine density in CA1 pyramidal
neurons did not change before and after a
1 h Wnt-5a treatment (Fig. 2C,D).
Together, these results indicate that
Wnt-5a neither alters presynaptic func-
tion nor increases the number of synaptic
contacts. However, Wnt-5a can potenti-
ate NMDAR function within 20 min
and increase the proportion of NR2B-
containing NMDARSs present at the synapse.
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PKC and JNK are biochemical mediators of NMDAR
potentiation

To investigate the signaling pathways involved in the upregula-
tion of NMDAR function, we delivered a calcium chelator or
specific protein kinase inhibitors via the recording pipette. This
allowed us to target potential postsynaptic elements of the
noncanonical pathway activated by Wnt-5a that could regu-
late NMDAR function.

First we monitored NMDAR-mediated synaptic transmission
with a recording pipette containing BAPTA, a calcium chelator.
After a 5 min baseline period, Wnt-5a was bath applied as in
Figure 1. The presence of BAPTA in the pipette completely elim-
inated the potentiation of NMDAR currents induced by Wnt-5a
(Fig. 3A,D). Next, we targeted PKC and JNK, two known down-
stream signaling kinases of the noncanonical pathway (Ciani and
Salinas, 2005). Inhibition of Caz+—dependent PKC isoforms with
G06976 or the more general PKC inhibitor calphostin C eliminated
the potentiation of NMDAR currents at 20 min compared to their
baseline (Fig. 3 B,D). However, inhibition of PKC left intact the
slow increase in NMDAR current amplitude that developed
over 50 min, producing a significant potentiation of NMDAR
currents over their baseline (Fig. 3 B, D). The level of potenti-
ation after 50 min in the presence of PKC inhibitors is not
significantly different from the level of potentiation in control
cells ( p < 0.05 Bonferroni’s multiple-comparison test).

The slower developing increase in NMDAR currents was
blocked by two different JNK inhibitors, TI-JIP153-163 and
SP600125. However, inhibition of JNK did not block the early
PKC-dependent potentiation. TI-JIP153-163 allowed a significant
34% potentiation at 20 min and SP600125 allowed a nonsignificant
potentiation of 18% compared to baseline (Fig. 3C,D). This level of
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Wnt-5a does not increase the number of synapses. A, Paired-pulse facilitation (peak2-peak1)/peak1) measured
during baseline (BL) and after 20 or 50 min of adding Wnt-5a (n = 3). AMPAR-mediated EPSCs were evoked 50 ms apart. Inset
shows representative traces. B, Cumulative fraction of all inter-event intervals of AMPAR-mediated mEPSCs during a 10 min
baseline period (gray circles) or a 10 min period after 50 min of adding Wnt-5a to the bath (black circles; n = 5). Inset shows
average of AMPAR mEPSCs at peak amplitude. C, Representative images of dendrites from CA1 pyramidal cells expressing EGFP.
Liveimages were acquired from cultured slices before (baseline) or after 50 min of adding conditioned medium from cells express-
ing an empty vector (pcDNA) or Wnt-5a. Scale bar, 5 pum. D, Quantification of dendritic spine density in CA1 pyramidal cells from
slices treated as indicated. Control, n = 3; Wnt-5a-treated slices, n = 3.

potentiation in the presence of these two inhibitors was not different
from the level of potentiation in control cells (Fig. 3D; p < 0.05
Bonferroni’s multiple comparison test). Interestingly, this potentia-
tion at 20 min was transient and NMDAR currents returned to base-
line values after 50 min (Fig. 3C,D).

These experiments indicate that Wnt-5a triggers a transient
PKC-dependent potentiation of NMDAR currents and a slower
JNK-dependent potentiation that does not require previous acti-
vation of PKC, suggesting independent mechanisms.

Endogenous Wnt ligands regulate basal NMDAR-dependent
synaptic transmission
To investigate the physiological relevance of NMDAR regulation
by the noncanonical Wnt pathway, we tested whether endoge-
nous Wnt regulates glutamatergic transmission. We monitored
NMDAR-mediated synaptic transmission and, after a 5 min
baseline period, bath applied the Wnt scavenger sFRP1. Remov-
ing endogenous Wnt via application of sFRP1 acutely decreased
the amplitude of NMDAR currents (Fig. 4A). AMPAR-mediated
EPSCs were not affected by sFRP1 treatment (Fig. 4 B), indicating
that endogenous Wnt specifically regulates NMDAR function.
After treatment of the slices with sFRP1, the decay kinetics of
NMDAR EPSCs did not change significantly; however, a trend
toward faster kinetics was observed (Fig. 4C). Similarly, sensitiv-
ity to 1 uM Ro25-6982 did not change significantly, but the
blockade of NMDAR currents is reduced from 48% = 1.44 in
control cells to 44% = 2.03 in cells treated with sFRP1 for 1 h.
This suggests that sFRP1 either affects NR2A and NR2B equally,
or that the change in NR2B/NR2A ratio is small and not detected
by these techniques.

If a continuous Wnt signal is necessary to maintain NMDAR
basal transmission, blockade of downstream signaling should
also diminish basal NMDAR transmission. We monitored basal
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t test compared to baseline.

NMDAR synaptic transmission with recording pipettes con-
taining PKC or JNK inhibitors. We normalized the peak ampli-
tudes to the peak values obtained shortly after acquiring whole-
cell configuration before the inhibitors dialyze into the cell. Delivery
of a PKC inhibitor via the recording pipette diminishes basal
NMDAR transmission. Blockade of JNK also caused a small decrease
in basal NMDAR transmission (Fig. 4 D).

Our results indicate that endogenous Wnt ligands are present
in the slice and are required for the maintenance of basal
NMDAR synaptic transmission.

Regulation of NMDAR synaptic transmission by Wnt ligands
affects the threshold for LTP induction

The level of postsynaptic responses required to induce plasticity
and determine its direction, the threshold function, varies as a
function of the history of synaptic activity (Abraham, 2008) and
depends on the level of NMDAR function (Cummings et al.,
1996). Wnt-5a increases NMDAR currents and the NR2B/NR2A
synaptic ratio. This change in subunit composition changes the
charge transfer and kinetics of synaptic NMDAR EPSCs (Trayne-
lis et al., 2010) as well as the interaction with CaMKII, an inter-
action required for LTP (Barria and Malinow, 2005). These

and activation of PKCand JNK. A, Normalized peak amplitude
of isolated NMDAR currents recorded at +40 mV with internal solution containing 10 mm BAPTA (n = 4). After baseline (BL),
conditioned medium containing Wnt-5a was added to the bath. Insets show representative traces as indicated. Traces from control
cells (no inhibitors in the pipette) are superimposed for comparison. B, Normalized peak amplitude of isolated NMDAR currents
recorded at +40 mV with internal solution containing 200 nm Go6976 (n = 4). Insets are as in A. €, Normalized peak amplitude of
isolated NMDAR currents recorded at +40 mV with internal solution containing 1.7 M TI-JIP153-163 (n = 4). Insets are asin A.
D, Quantification of the potentiation induced by Wnt-5a on the amplitude of NMDAR currents after 20 or 50 min of treatment in
control cells or cells recorded in the presence of BAPTA, PKCinhibitors, or INK inhibitors. Asterisk (*) indicates p << 0.05 Student’s

Wnt-5a 50m pocampal slices is a novel role for Wnt
ligands that are normally associated with
embryonic development and maturation
of the nervous system.

Our experiments identify postsynaptic
PKC and JNK as biochemical mediators of
NMDAR potentiation. It has been shown
that PKC increases the channel opening
rate (Lan et al., 2001) and surface expres-
sion of NMDARs, the later via phosphor-
ylation of SNAP-25, a membrane fusion
protein of the SNARE family (Lau et al,,
2010). Interestingly, the PKC-dependent
potentiation that occurs within the first 20 min returns to basal
levels if JNK is inhibited. This suggests that JNK is necessary to
stabilize the effects induced by PKC. JNK has been shown to
slowly rearrange postsynaptic components, such as PSD95, nec-
essary to anchor NMDARSs at synaptic sites (Farias et al., 2009).
The JNK pathway is also involved in cytoskeleton dynamics reg-
ulating the phosphorylation state of microtubule-associated pro-
teins such as MAP-2 (Bjorkblom et al., 2005). During the time
window of our experiments, we did not find evidence of struc-
tural changes such as changes in dendritic spine morphology or
density, in contrast to what has been observed in dissociated
cultured neurons (Varela-Nallar et al., 2010). Different prepara-
tions presumably account for the difference. Our data in hip-
pocampal slices argue in favor of local and acute modification of
proteins such as PSD-95, which is phosphorylated by JNK, in-
creasing its synaptic stability (Kim et al., 2007), but do not rule
out a more general and slower cell-wide effect that could involve
remodeling of synaptic and/or dendritic structures.

A previous report indicates that Wnt-5a also increases
AMPAR-mediated EPSCs (Cerpa et al., 2010). We did not ob-
serve any effect of Wnt-5a on AMPAR currents in cultured or
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Wnt signaling is necessary to maintain NMDAR basal transmission and modulates synaptic plasticity. A, Normalized
peak amplitude of isolated NMDAR currents recorded at +40 mV. After baseline (BL) period, conditioned medium from cells
expressing an empty vector (n = 4) or cells expressing the Wnt scavenger sFRP1 (n = 6) were added to the bath. Inset shows
representative traces as indicated. B, Peak amplitude of AMPAR currents recorded at —60 mV. After baseline period, Wnt scav-
enger sFRP was added to the bath (n = 4). Inset shows representative traces as indicated. €, Time to half-decay of NMDAR EPSCs
during baseline and after 20 and 50 min of sFRP1 treatment for each cell. Average is in bold (n = 8). D, Effect of kinase inhibitors
on basal NMDAR transmission. NMDAR currents were recorded with internal solution containing 200 nm G06976 (n = 7) or 1.7 um
TI-JIP153-163 (n = 7). Peak amplitudes were normalized to the average amplitude of the first 3 min of recording. Inset shows
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