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Plasticity in connections between neurons allows learning and
adaptation, but it also allows noise to degrade the function of a
network. Ongoing network self-repair is thus necessary. We de-
scribe a method to derive spike-timing-dependent plasticity rules
for self-repair, based on the firing patterns of a functioning
network. These plasticity rules for self-repair also provide the basis
for unsupervised learning of new tasks. The particular plasticity
rule derived for a network depends on the network and task. Here,
self-repair is illustrated for a model of the mammalian olfactory
system in which the computational task is that of odor recognition.
In this olfactory example, the derived rule has qualitative similarity
with experimental results seen in spike-timing-dependent plastic-
ity. Unsupervised learning of new tasks by using the derived
self-repair rule is demonstrated by learning to recognize new
odors.

Networks of neurons with modifiable synapses have an im-
plicit self-repair problem. Synapses are constantly made and

unmade, with a high turnover rate (ref. 1, but see also ref. 2). This
high rate of turnover allows a network to learn and adapt to its
environment, but it also allows noise to degrade a connectivity
pattern that implements a useful behavioral competency. Sup-
pose a connection that should be present for network operation
disappears. How can an appropriate equivalent replacement
connection be chosen on the basis of the activity of the network?
We show here that time-dependent synaptic plasticity rules for
self-repair of a network of spiking neurons may be derived from
the firing times of a correctly working system.

In principle, plasticity rules for self-repair of a working system
could be different from rules for learning of new functions.
However, we show here that rules for self-repair also can be used
as the basis of unsupervised learning of new tasks.

A Functioning Network for Studying the Repair Problem
As a test bed to explore the self-repair and de novo learning
problems, we will use a network recently proposed as a model of
the olfactory bulb (3). The approach is nevertheless a general
one and can be directly applied elsewhere. For completeness, we
will briefly describe the olfactory model itself, although the
derivation and use of the plasticity rules, not being specific to the
olfactory network, do not require an understanding of the overall
design of the network.

The task performed by this network is that of stimulus
recognition; the output neurons of the olfactory model are highly
selective for specific odors. We will consider here a reduced
network, adequate for the recognition of a single stimulus, that
has a single postsynaptic cell and a multiplicity of presynaptic
cells. Olfactory stimuli are encoded as a set of currents injected
into the presynaptic cells, and a robust firing response from the
postsynaptic cell signals recognition of its target stimulus. This
recognition is highly selective, is robust to changes in odor
concentration over a 50-fold range, and is robust to the presence
of strong background odors. The principles behind these robust-
ness features of the olfactory model are described elsewhere (3).

All presynaptic cells produce action potentials at comparable
rates in the presence of any stimulus, and all could potentially be

connected to the postsynaptic cell. To recognize a given odor, a
particular subset of the presynaptic cells is chosen to make
functional connections to the postsynaptic cell, with equal-
strength synapses. It is the identity of the connected cells that
defines the odor to be recognized. We thus focus on the presence
or absence of functional connections and assume that all func-
tional connections are of equal strength. We seek an automatic
self-repair process. Based only on the pre- and postsynaptic cell
firing patterns, this process should maintain, in the face of
random synapse addition or deletion, connections from an
appropriate set of presynaptic cells, such that the recognized
odor remains fixed. The issue is illustrated in Fig. 1.

In general, the only information available to an automatic
repair rule will be the spike times of presynaptic cells, both
connected and unconnected, and the spike times of the postsyn-
aptic cell. How can this information be used to derive a self-
repair rule?

Given the nature of the information available, we will assume
that the self-repair rule depends on the relative timing of pre-
and postsynaptic spikes. When the system is sequentially exposed
to a diversity of stimuli, nontarget stimuli produce no (or very
few) spikes in the postsynaptic cell, so no repair of synapses to
the postsynaptic cell will take place after a nontarget stimulus
presentation. Repair will take place only when the target stim-
ulus occurs, generating a significant number of postsynaptic
spikes. Due to noise, some functional connections are lost
between presentations of the target stimulus. We ask that a set
of connections functionally equivalent to the original engineered
set be relearned. That is, after a long time during which the
system has been exposed many times to many stimuli, and most
of the original connections have been lost and replaced, the
postsynaptic cell should preserve its ability to recognize and
discriminate the same stimulus that it initially recognized.

Another description of the idea would allow each exposure to
the target stimulus to remodel all the synapses, making strong
synapses of some of the previously silent ones (or vice versa)
according to a repair rule. Again, the functionality of the
postsynaptic cell should be preserved. This complete remodeling
formulation leads to the same plasticity rule.

We will make the assumption of pairwise additivity: we
assume that the effects of all presynaptic–postsynaptic spike
pairs that occur during a time window of relevance to a single-
trial learning protocol (in our case �0.5 s) are additive. Devi-
ations from additivity in spike-timing-dependent plasticity
(STDP) have been reported, but, for the simple task we have
chosen, the particular kind of deviation observed (4, 5) has little
effect.

Deriving the Repair Rule
The problem the repair rule must solve is that of taking a pre-
and a postsynaptic spike train and correctly classifying the
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presynaptic train as from a cell that would be ‘‘appropriate’’ (vs.
‘‘inappropriate’’) to connect functionally to the postsynaptic cell.
Due to noise, this classification cannot be completely precise, but
a substantial majority of such classifications need to be correct.

Consider a synapse in a case in which both the pre- and the
postsynaptic cell produce one spike in response to a stimulus
presentation. The decision as to whether this presynaptic cell is
appropriate for connecting to the postsynaptic cell will be based
on a function W(�t), where �t is the time difference between the
post- and the presynaptic spike. We will determine W(�t) from
a large body of data on spike trains from presynaptic cells known
to be either appropriate or inappropriate for connection.

In general, there may be more than one spike from the pre-
or postsynaptic cell under consideration. There will then be
several pre- and postspike pairings, with different values of
postspike minus prespike time difference �tj, where the index j
runs over the different pairs. We define a quantity M, on the
basis of which the decision on appropriateness of connecting will
be made. From the pairwise additivity assumption, M is given by

M � �
j

W��tj�. [1]

We discretize the possible time intervals �t of presynaptic–
postsynaptic spike pairs into time bins of length � indexed by k.
The unknown function W(�t) can then be described in terms of
a set of unknown parameters wk, where wk � W(k�). We have
used 75 bins with a width of 0.4 ms, with centers in the range of
15 ms before to 15 ms after the approximate time of the
postsynaptic cell spike. [Synaptic currents were fast, and the
postsynaptic cells in the olfactory model had a short membrane
time constant, so a presynaptic spike �15 ms before a postsyn-
aptic spike had little effect on the timing of that postsynaptic
spike. Time differences of �15 ms are similarly presumed to have
no effect on plasticity. If the postsynaptic cells have long time
constants or synaptic currents are slow, the range used in

determining W(�t) should be made correspondingly greater.]
The pairings of a presynaptic cell’s spikes and the postsynaptic
cell’s spikes can now be described by a set of integers nk
describing how many pairings occurred within each time bin k.
In these terms, M is given by

M � �
k

wknk. [2]

For a given postsynaptic spike train, each presynaptic spike train
will then produce a value of M. The parameters wk must produce
values of M that classify the spike patterns into two sets, those
coming from presynaptic cells with appropriate connections
and those coming from presynaptic cells with inappropriate
connections.

Formulated in this fashion, our problem is exactly the math-
ematical problem of pattern classification by a feed-forward
‘‘artificial neural network’’ having no ‘‘hidden’’ units. The nk
values are the inputs, the wk values are the ‘‘weights,’’ and the M
value is the input to the output ‘‘unit.’’ We have used a procedure
(6) that trains an output unit to predict the probability that a
presynaptic cell belongs to the class appropriate for connection.
(Because of noise, it is possible that cells belonging to both
appropriate and inappropriate classes can sometimes generate
the same pattern of nk values.) We later will use the value of M
to prescribe which connections are made in learning.

The prediction made by the artificial neural network is taken
to be the logistic function

P�appropriate connection� � 1��1 � e�M�. [3]

The weights wk are obtained through ‘‘learning’’ (described
below) on a training set of preclassified spike trains. The training
set was obtained from a working olfactory model in which
connections were engineered to produce an odor-selective
postsynaptic cell (3). We refer to this connection pattern as the
engineered solution. The presynaptic cells (and their spike
trains) engineered to have functional connections to the postsyn-
aptic cell were labeled appropriate, and all other presynaptic
cells and spike trains were labeled inappropriate. The postsyn-
aptic and the full set of presynaptic spike trains produced in the
engineered network in response to the postsynaptic cell’s target
odor were recorded. The resulting labeled spike trains then were
used in an iterative weight change rule for the artificial neural
network, as follows: For each presynaptic spike train example,
change each weight wj according to

�wj � ��1 or 0	 � P� * nj

�1 if an appropriate example, 0 if inappropriate�. [4]

This procedure (6) minimizes the K–L distance (7) between the
network-defined probability P and the actual probability distri-
bution, without the necessity of explicitly defining the actual
probability distribution. In this structure of a feed-forward
network with the K–L measure of error, gradient descent in
weight space determines the unique best wk.

Training the artificial neural network is a mathematical pro-
cedure that allows us to derive the optimal plasticity rule.
Biology is likely to find optimal rules through evolution.

Fig. 2a plots the optimal weights wk derived from this proce-
dure when applied to spike trains such as those in Fig. 1. In the
olfactory example, the total number of spikes is very similar for
both appropriate-connection and inappropriate-connection
cells, so the strength of the connection to a bias unit can be
traded against the addition of a constant to each of the weights
wk, with no change in the classification performance of the
network. We chose wb so that W(�t) goes to 0 for large �t (i.e.,
so that pairings too far apart in time will be ineffective). With this

Fig. 1. Spiking network model of odor recognition. (Upper) Spike rasters of
all presynaptic cells during a single trial (a sniff of the target odor). Spikes from
cells that do and do not have a functional connection to the postsynaptic cell
are shown in red and blue, respectively. Different presynaptic cells receive
different peak currents during the odor sniff. Cells have been sorted vertically
by the magnitude of that peak current. Vertical red lines indicate postsynaptic
cell firing times. The essence of the self-repair problem is to automatically
determine whether a presynaptic spike train belongs to the blue or the red
raster set and, therefore, whether the presynaptic cell producing it should
have a functional connection to the postsynaptic cell. A common underlying
subthreshold oscillation promotes a systematic relationship between injected
current and phase of firing of the presynaptic cells (indicated by the gray
background). For any odor, there is a subset of presynaptic cells that, at the
peak of the sniff, will fire at the same phase with respect to the oscillation, will
therefore be synchronized, and can be used to drive an odor-selective postsyn-
aptic cell (3). (Lower) The strength of the stimulus during the sniff is plotted.
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choice, it was also the case that 
wk � 0. Thus, the mere
existence of a presynaptic–postsynaptic pairing at some point in
the interval contained no evidence about the probability of the
presynaptic cell belonging to the appropriate class. It is only the
value of �t that contained evidence of to which of the two classes
a cell belonged, and all decision information was in the timing
domain, not in the number of spike pairs per se.

The qualitative nature of the shape of the wk vs. �t plot in Fig.
2a could be anticipated from the data shown in Fig. 1 or in
related earlier work (3). The neurons in the designed solution on
average fire in synchrony when the odor is present and will
induce the postsynaptic cell to fire after the integration of the
excitatory synaptic currents they generate. A positive peak is thus
expected near the peak of the integrated synaptic current, which
for this system occurs at 3 ms. Presynaptic neurons that system-
atically fire after the postsynaptic cell cannot contribute to the
functionality of the network and should be discriminated against.
This fact leads one to expect a negative peak within the
postsynaptic minus presynaptic �t region.

The data shown in Fig. 2 b–d display the classifications of 5,600
presynaptic cells. On combination with the spikes of the postsyn-
aptic cell, the spikes of each presynaptic cell generate a spikes-

pair pattern vector nk. On the whole, appropriate examples are
assigned much higher estimated probabilities of being appropri-
ate examples than are inappropriate examples (Fig. 2b). Very
few inappropriate examples are assigned high probability.

Whereas the shape of this synapse-choice function has qual-
itative similarity to the shape of the synapse-change timing
relationship seen in STDP (8), there are some important quan-
titative differences. Both rules favor making connections when
postsynaptic spikes occur after pre- and suppressing connections
when postsynaptic spikes occur before pre-. The optimal derived
rule, however, contains a slight positive spillover into the neg-
ative �t region that has important implications for the long-term
stability of the system (see Long-Term Stability). The optimal
shape of the timing rule, as derived here, depends on the task
being performed, the synaptic and cell time constants, and the
level of noise present. We have found that increasing the
noise-induced uncertainty in the firing time of the presynaptic
cells broadens the positive peak in Fig. 2a and that decreasing the
width of the band of positive examples in Fig. 2 c and d sharpens
this peak. The biological system has delay from the back-
propagating action potential and synaptic delay, additional issues
that must be taken into account at the millisecond level when
comparing experiment with theory.

During each iteration of the self-repair task, the value of M for
each presynaptic spike train is used to rank the probability of its
corresponding to a cell appropriate for connection. The choice
of making a functional connection is based on this ranking. In the
particular case of the olfactory model, the top 200 cells were
chosen for functional connections. There is thus a value of M that
acts as a threshold. Information about the degree to which a cell’s
M value is above or below the threshold is discarded. Thus,
although W(�t) is a well defined function to use in estimating a
probability, in the replacement task most of the detailed struc-
ture of the curve of W(�t) is not relevant. To see why, consider
the case where pre- and postsynaptic cells fire only one spike.
The relative timing of a presynaptic spike with respect to the
postsynaptic spike, �t, then precisely defines the M value for a
cell, which will be W(�t) (see Fig. 2a). The choice of which cells
to include for connections would depend only on whether W(�t)
for a cell was above or below the threshold. In such a case, the
shape of W(�t) above or below the threshold is irrelevant. When
many correlated action potential pairs are involved, the same
effect may continue to be a dominating influence. For this
reason, curves as different as the rules of Figs. 2a and 4c can be
similarly successful in a replacement task.

Applying the Repair Rule: Functional Properties of a Network
Composed of Fully Replaced Synapses
We will examine stability and self-correction abilities under a
protocol in which all synapses are remodeled after presentation
of a stimulus. We use the olfactory model as a case study and test
bed. Consider a system repeatedly exposed to odors randomly
chosen from a set of odors a, b, c, d, etc. Begin with an
engineered set of synapses designed to recognize odor c. In our
system, this set has 200 functional synapses and 5,400 potential
but silent synapses. The postsynaptic cell recognizing odor c will
not respond to odors a, b, d, etc. The connections to this cell will
change only when that cell fires and thus (at least initially) only
when odor c is present. When odor c occurs, the postsynaptic cell
fires and we then eliminate all synaptic connections to it. We use
the prediction algorithm to rank the probability that each of the
5,600 presynaptic cells is appropriate for connecting to the
postsynaptic cell, and we then make functional connections from
the 200 most highly probable presynaptic cells.

Fig. 3a illustrates the selectivity produced by the original
connections: of 500 random odors, the postsynaptic cell pro-
duced spikes only for one, the target odor. An iteration of the
protocol in which all functional connections are replaced by the

Fig. 2. (a) The weights wk after training on the classification problem,
plotted against the time difference �t of the post- and presynaptic spike pairs.
Dots indicate an evaluation of the weights based on the spike trains from a
single stimulus presentation. The solid line is a spline fit through wk points
averaged over 16 runs, and it should closely approximate the function W(�t).
In the training set used, there were �1,000 appropriate presynaptic spike train
examples and 4,600 inappropriate spike train examples. (b) Histogram of the
number of training set examples having estimated probability P of belonging
to the appropriate class (determined by using the wk shown in a and Eqs. 2 and
3). The known appropriate and inappropriate spike trains are shown. The
vertical dashed line indicates the cutoff threshold for P, defining the top-
ranked presynaptic cells for making functional connections. (c and d) For the
olfactory network, selective odor recognition corresponds to choosing con-
nections from cells with a narrow range of peak input currents, as compared
with the total possible range. We plot the estimated probability P as a function
of the peak input current of the presynaptic cells. Choosing cells with an
estimated P above the threshold setting (indicated by the dashed line in c and
d) also chooses cells with peak currents within a narrow range. In general, such
an underlying principle allowing visualization in plots such as those in c and d
might not be known.
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200 top-ranked cells, according to the repair rule (Fig. 2 and Eq.
3), produces a new set of functional connections, of which �1�3
are also members of the set of original connections. Fig. 3b shows
that, with these new functional connections, the odor to which
the postsynaptic cell is responsive is still the target odor, and
responses to other odors remain negligible. The principles of
operation of the network indicate that the actual selectivity will
remain very high, �1 in 106. Concentration invariant recognition
and robustness to background odors also remain (data not
shown). Although the replacement connections are not identical
to the initial pattern, they are functionally equivalent. The system
has a superfluous number of acceptable, equally functional
presynaptic cells available, and the iteration chooses a similar,
overlapping subset of these.

If a small fraction of the connections is lost, the remaining
connections will be sufficient to drive the postsynaptic cell to
spike almost exactly as it would have done with all of the
connections. This spiking pattern then can be used to appropri-
ately select replacement synapses for those that were lost.
Self-repair in this framework requires a reoccurrence of the
target stimulus, because there is no other location in the system
that contains the fundamental knowledge of what is lost when a
connection fails.

Complete replacement of functional synapses may be iterated,
occurring each time the target odor is presented. Under such
multiple iterations, there are technical issues concerning long-
term stability that apply both to our derived plasticity rule (Fig.
2a) and to any other plasticity rule. In a later section we return
to a consideration of these issues.

An alternative repair procedure would be to make connections
to those neurons for which M (see Eq. 2) surpasses a fixed threshold,
rather than to all those necessary to generate a given number of
total connections. However, stability is most robust when the total
synapse strength driving the cell is maintained near a target value,
by a homeostatic mechanism, such as keeping the average activity
of the cell stable as synapse number changes (9).

Single-Trial Unsupervised Learning
Can the self-repair timing rule (Fig. 2a) be used for de novo
unsupervised learning? Unsupervised learning is a learning
paradigm in which no recognition cell is externally ‘‘instructed’’
when or what to learn. We now show that postsynaptic cells that
are not sharply tuned to a specific stimulus can become highly
selective for a novel stimulus after it is presented, through the use
of our spike-timing plasticity rule.

To use a plasticity rule that depends on pre- and postsynaptic
spike timing, there must be postsynaptic spikes occurring at
appropriate times. We therefore commenced learning with a
postsynaptic cell that was very broadly ‘‘tuned,’’ responding to
many different stimuli (Fig. 3c). This quality was engineered by
connecting a few presynaptic cells chosen at random (usually
five) to the postsynaptic cell and increasing the strength of each
connection so that the total strength of connections to the
postsynaptic cell was about the same as in the 200-connection
engineered case. Such a postsynaptic cell ‘‘cares’’ about only five
components of the odor. It is far easier to find a good random
match to five components than to 200, so the cell is much more
broadly tuned in the space of odors than would be the case for
a cell receiving 200 different inputs. A typical such postsynaptic
cell responds to �1�2,000 of all random odors by producing
�11 spikes during the sniff. Fig. 3c shows the number of spikes
fired by such a broadly tuned cell in response to 500 different
random odors. We assume that a synapse modification process
is constantly present and is activated whenever the postsynaptic
cell fires more than a threshold number of spikes during a
stimulus presentation (i.e., a sniff in the olfactory case). In our
simulations, this threshold was set to 11 spikes over a 0.5-s sniff.
(Different networks and computations will have different ap-
propriate decision levels.) Integrating the number of spikes over
such a timescale can be achieved easily by known mechanisms
present in cell biology. Once activated, the synapse modification
process is the same as that used in self-repair: namely, all existing
functional connections to the postsynaptic cell are deleted, and
the 200 top-ranked presynaptic cells (according to the self-repair
rule; Fig. 2a) are given functional synapses equal in strength to
those of the postsynaptic cell.

Fig. 3d shows the response of the postsynaptic cell after
learning. Where previously it was broadly tuned, it is now highly
selective. It fires robustly in response to the particular odor that
triggered the synapse change procedure, responding very weakly
or not at all to the other odors. As was the case with self-repair,
the design of this particular olfactory model (3) leads to the
selectivity of this postsynaptic cell being invariant to the con-
centration of its new target odor, as well as robust to background
odors. To be able to learn any new stimulus, a system based on
these ideas should have an ensemble of broadly tuned postsyn-
aptic cells, which together cover the space or possible stimuli.

Some applications would be better served by a slower remod-
eling of the synapses, changing fewer of them or changing their
weights by a small amount. A more gradual approach to selec-
tivity results, averaging over the set of stimuli that drive the
postsynaptic cell to obtain an averaged target template.

Single-trial de novo learning as implemented here is closely
related to self-repair. The presynaptic action potentials are the
same in both cases: the two cases differ only in the postsynaptic
action potentials. In one case (de novo learning), the postsynaptic
spikes are generated by a broadly tuned cell; in the other case
(self-repair), they are generated by a highly selective cell that
might be missing a few connections or have a few erroneous
functional connections. When the broadly tuned cell is well
driven, these two postsynaptic spike trains are very similar to
each other, resulting in a selection of new synapses that is very
similar in the two cases.

Fig. 3. Histograms of the number of odors producing n spikes in the
postsynaptic cell; 499 random odors plus the postsynaptic cell’s target odor
were used. (a) Responses using the original, engineered connections are
shown (3). (b) Responses using the connections produced after one iteration
of complete functional connection replacement are shown. (c) Original re-
sponse of a broadly tuned postsynaptic cell connected to five presynaptic cells
to the presentation of 500 random odors. It responded with 11 spikes to one
of the odors. (d) With learning (one iteration) turned on, when some partic-
ular odor drove the broadly tuned cell to produce 11 spikes, the synapses were
remodeled. This remodeling led to the odor selectivity shown. The odor that
triggered the synaptic change now produces many spikes, but all other odors
produce very little response. The triggering odor has become the target odor
of a highly selective cell.
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Long-Term Stability
When many iterations of self-repair (as described above) were
carried out, the selectivity for the target stimulus remained high,
but the timing of postsynaptic cell firing often underwent a slow
but consistent drift toward earlier times. In the olfactory model,
this drift corresponds to drift in the concentration of odor to
which the system best responds. In the very long term, this drift
can go beyond the dynamic range of the system, causing distor-
tions such that the postsynaptic cell no longer responds to the
target odor at any concentration.

The problem of slow drift is relevant to all timing-dependent
plasticity rules, not only the particular rule we have derived (10).
We can capture the essence of the general drift problem in a
highly simplified abstract system where the origin of the drift is
apparent. Fig. 4a shows the ‘‘anatomy’’ of the system. Neurons
k, arranged in sequence along a line, are available for connec-
tions to a postsynaptic cell. Each of the neurons k fires a single
action potential at time t � k � �, where � is jitter due to noise.
A set of connections from a contiguous clump of these cells is
chosen so that an almost synchronous packet of action potentials
coming from the clump generates an action potential in the
postsynaptic cell at a time labeled t � 100 ms. The synapses are
iteratively replaced according to the self-repair prescription
discussed above (see Applying the Repair Rule). An ideal synaptic
plasticity rule would keep the set of connections functionally
invariant over multiple iterations of synapse replacement, leav-
ing the clump in its original position and with its original width.
However, if the width of the clump remains narrow (the equiv-
alent of keeping high odor selectivity and responsiveness in the
olfactory system) but the repair process moves the center of
gravity of the clump, the postsynaptic firing time will move by the
same amount, and long-term drift will occur.

The abstraction of Fig. 4 is closely connected to the situation
in neurobiology. A postsynaptic cell has connections or potential
connections to many cells. If we consider the case of a particular
postsynaptic spike, only the presynaptic spikes near it in time are
relevant, and only a single spike in each presynapatic cell is of any
interest. The relevant presynaptic cells with functional connec-
tions to the postsynaptic cell fired at times close to each other,
thus providing the ‘‘packet’’ of incoming spikes and synaptic
current that led the postsynaptic cell to fire. If the presynaptic
cells then are arranged in a line according to when they spiked,
one obtains the idealization sketched in Fig. 4a.

We examine the drift problem for different timing-dependent
plasticity rules [i.e., different functions W(�t)] in Eq. 1. Because
the postsynaptic cell fires in response to its presynaptic inputs, a
purely ‘‘causal’’ rule relating pre- and postsynaptic spikes, such
as that of Bi and Poo (8) (Fig. 4c, solid line), might appear
adequate. However, it is impossible in practice to guarantee that
the postsynaptic cell will fire after the end of the entire presyn-
aptic packet: timing jitter in the pre- or postsynaptic spikes,
variations in the strength of the connections, or having more
connections than minimally necessary will, in general, cause
some presynaptic spikes, from appropriately connected cells, to
occur after the postsynaptic spike. Any strictly causal rule
systematically rejects such connections and thus leads to a
systematic drift of the connection packet along the line of
neurons, as shown in Fig. 4b. The postsynaptic cell initially fires
on average at time t � 100 ms with a small noise jitter. With
synapse replacement, the time at which the postsynaptic cell fires
drifts toward earlier times.

This effect is due to the location of the center of mass of the
replacement synapses. If a given spike-timing plasticity rule is
shifted to the left or right, it will increase or decrease the rate of
drift. Indeed, by merely shifting the spike-timing plasticity rule
a bit, the drift can be eliminated. Fig. 4d shows the result of the
same iterations shown in Fig. 4b for the shifted plasticity rule
appearing as a dotted line in Fig. 4c. The spike-timing rule that
we derived (Fig. 2a) also showed little drift, because its center of
gravity was well located: in deriving the rule, connections from
presynaptic cells that tended to fire after the postsynaptic cell but
were nevertheless appropriate were included in the appropriate
class of the training set. However, we can see from the data of
Fig. 4c that the center of gravity of the chosen synapses will
depend on the level of P at which the decision boundary is
placed. A single functional form of W(�t) does not universally
solve the problem of drift.

For a given decision threshold and a given shape of W(�t),
there will be a precise time-shift location of the replacement rule
that leads to no average drift. However, even with this time-shift,
there will be nonsystematic random walk-diffusive drift. Thus,
truly long-term stability requires further mechanisms to anchor
the center of mass of the connections. Possible examples include
making a subset of the original connections fixed and nonre-
placing (1). Another possibility depends on the fact that the
speed of the drift is also a function of the density of cells on the
line of presynaptic neurons.

Conclusion
We have shown that a STDP rule that identifies appropriate
connections for self-repair can be derived from the timing
patterns of a functioning network. The idea of using the pattern
of action potentials in a functioning network to derive a plasticity
rule appropriate for self-repair is general; the task and network
structure will determine what the learning rule is. The particular
task and network structure used as a test bed here consists of a
model network in which function is largely defined by the
identity of the presynaptic cells that make nonsilent connections
to a postsynaptic cell. The computation defined by these con-
nections makes use of the relative timing of the connected

Fig. 4. The problem of drift with STDP rules. (a) Schematic of a linear array
of neurons, indexed by k, that each fire at a time t � k � �, where � is jitter due
to noise. All of these neurons could potentially make connections to the
postsynaptic neuron shown above them, but initially only a small subset, with
almost synchronous firing times, makes a functional connection, as shown. (b)
The gray line indicates the initial density of connections from presynaptic cells
to the postsynaptic cell. Presynaptic cells are labeled by their mean firing time,
in ms. The arrow indicates the firing time of the postsynaptic cell. Black lines
show the connection densities resulting from two successive iterations of the
self-repair procedure, using the rule shown as a solid line in c. (c) The solid line
shows a purely causal (all positive in the �t � 0 region, all negative in the �t �
0 region) plasticity rule. (This plasticity rule is used in b, where it is shown that
it leads to strong drift.) The dotted line is the same learning rule but shifted
2 ms toward the negative �t region. (d) Same format as in c, showing initial
connection density and two iterations of self-repair, but now using the
plasticity rule shown as a dashed line in panel c. Drift is sharply reduced.
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presynaptic cells’ spikes. Self-repair in such a network requires
the use of timing information to specify the identity of appro-
priate functional connections. The form of the derived rule has
qualitative resemblance to experimentally described STDP rules
(8, 11).

The direct application of these ideas to experimental data also
may be possible. The procedure to derive the self-repair rule
required a database of postsynaptic spike trains and presynaptic
spike trains, which may be obtained experimentally. It may thus
be possible to predict, for specific biological networks, plasticity
rules that are optimal for the self-repair of each network and to
compare the predicted rules to experimentally measured rules.

The spike-timing rule was derived from self-repair in a task
involving recognition of previously known patterns. The same
timing rule can be used successfully to learn to recognize a
hitherto unknown pattern, in a single exposure or learning trial.
The application of the self-repair rule requires knowledge of the
spike times of the postsynaptic cell and those of an array of
presynaptic cells (connections from a subset of which would
produce the observed postsynaptic cell spikes). In the de novo
learning situation, the presynaptic spikes are the same as in the
self-repair situation. What is thus required to apply the rule is a
matching set of appropriately timed postsynaptic spikes. A
broadly tuned postsynaptic cell can provide such spikes, in
essence functioning as a cell that is in bad need of repair. When
a broadly tuned cell responds well to a stimulus pattern, the

self-repair rule thus can be used as is for de novo learning. No
explicit instruction to learn is needed: when a broadly tuned cell
happens to respond strongly to a pattern, that pattern will be
learned, in the sense that the cell now will become narrowly
tuned for it. Selectivity for patterns learned in this fashion is in
every way equivalent to the properties of a network with
connections designed to recognize that pattern.

Purely causal plasticity rules neglect the fact that jitter occa-
sionally will make appropriately connected presynaptic cells fire
after the postsynaptic cell. Causal learning rules thus induce a
systematic bias that manifests itself as a drift in the firing time
of the postsynaptic cell and of the presynaptic cells chosen for
connections. Drift due to such a mechanism has been made a
useful feature in models in which cells learn to predict (12–14).
In the present case, however, such drift is deleterious, as it
eventually causes the system to run out of dynamic range.

The shape of the W(�t) was derived from consideration of
what synapses, now silent, should be made functional. The
interpretation of the W(�t) differs conceptually from the mag-
nitude modification interpretation usually given to similarly
shaped curves in experimental STDP studies. Nevertheless,
when averaged over many synapses in various states of facilita-
tion, the two are closely related.
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