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From molecules in cells to organisms in ecosystems, biological
populations fluctuate due to the intrinsic randomness of individual
events and the extrinsic influence of changing environments. The
combined effect is often too complex for effective analysis, and
many studies therefore make simplifying assumptions, for example
ignoring either intrinsic or extrinsic effects to reduce the number
of model assumptions. Here we mathematically demonstrate how
two identical and independent reporters embedded in a shared
fluctuating environment can be used to identify intrinsic and
extrinsic noise terms, but also how these contributions are quali-
tatively and quantitatively different from what has been pre-
viously reported. Furthermore, we show for which classes of
biological systems the noise contributions identified by dual-repor-
ter methods correspond to the noise contributions predicted by
correct stochastic models of either intrinsic or extrinsic mechan-
isms. We find that for broad classes of systems, the extrinsic noise
from the dual-reporter method can be rigorously analyzed using
models that ignore intrinsic stochasticity. In contrast, the intrinsic
noise can be rigorously analyzed usingmodels that ignore extrinsic
stochasticity only under very special conditions that rarely hold in
biology. Testing whether the conditions are met is rarely possible
and the dual-reporter method may thus produce flawed conclu-
sions about the properties of the system, particularly about the in-
trinsic noise. Our results contribute toward establishing a rigorous
framework to analyze dynamically fluctuating biological systems.

gene expression ∣ stochastic networks

All biological systems are networks of individual agents that
interact probabilistically in changing environments. Fluctua-

tions in population sizes—whether of chemical species in cells (1)
or of organismic species in ecosystems (2)—thus arise both from
probabilistic births and deaths at low numbers (“intrinsic noise”)
and the randomizing effects of the physical and biological envir-
onment (“extrinsic noise”). The stochastic dynamics of any given
species therefore reflects all directly and indirectly connected
processes, many of which are poorly characterized. This explains
why fluctuations are so prevalent in biology, but also why they can
be overwhelmingly difficult to analyze. For example, even an ac-
curate microscopic model of gene expression could not predict
fluctuations in protein levels without accounting for variations
in, e.g., RNA polymerases and ribosomes, which in turn depend
on yet other components.

An ingeniously simple approach to this seemingly intractable
problem is to embed a second independent system in the same
environment and observe the two copies simultaneously. Corre-
lations between the systems then reflect the influence of the
common environment, whereas differences between them reflect
the spontaneous noise created within each system (Fig. 1). Such
approaches promise to distinguish the intrinsic or extrinsic origin
of fluctuations in one fell swoop without knowledge of the micro-
scopic details of either the system or its environment. For exam-
ple, in microrheology two-particle methods have been used to
disentangle material inhomogeneities from diffusion effects
(3), whereas twin studies attempt to separate genetic from envir-
onmental influences during human development (4).

Here we derive generally applicable methods but focus on
dual-reporter applications in molecular biology that are used
to identify the cellular sources of fluctuations in protein numbers.
The normalized covariance between two reporter proteins within
a gene regulatory network has been used as a measure of extrinsic
noise defining the remaining noise as intrinsic (5–8), allowing
each category to be modeled and evaluated separate from the
other. To ensure that this is a mechanistically sound interpreta-
tion rather than an arbitrary definition, early theoretical analyses
reported that the total noise indeed can be decomposed into
intrinsic and extrinsic parts by conditioning on the state of the
shared environment (9) and that the dual-reporter method can
identify those two parts. However, the authors later emphasized
relations that contradict key steps of the original proof (10). This
implies that the originally reported decomposition allows only
for static environmental heterogeneity (Fig. 1B). This may be
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Fig. 1. The dual-reporter setup. (A) Cartoon illustrating an example dual-
reporter setup in which a common cellular environment affects the rates
of gene activation, transcription, and translation of two different fluorescent
proteins. (B) Signal of two reporters (red and blue lines) subject to a common
environment (dashed gray line) reflecting two sources of variability: stochas-
tic events within a system leading to uncorrelated fluctuations; changes in
the common environment leading to correlated fluctuations. In contrast
to a dynamic environment, a static heterogenous environment takes differ-
ent but constant values. (C) Jump processes for two copies of identical and
independent stochastic systems with intrinsic variables x ¼ x1;x2;x3;…xn and
y ¼ y1;y2;y3;…yn undergoing reactions with step size sk and rates rk that
depend on a common time-dependent set of environmental variables zðtÞ.
General master equation for the time evolution of the joint conditional prob-
ability distribution Pðx;yjzðtÞÞ of the two reporters given a realization of the
stochastic environment Z ¼ zðtÞ.
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approximately true in special systems, but in many biological net-
works the environment and the system are expected to change on
similar time scales because they are governed by similar types of
processes. For example, in the first experimental analysis (5)
based on this approach, the extrinsic noise was traced back to
the influence of a repressor that is expected to change at least
as quickly as the fluorescent proteins measured.

The main practical reason for decomposing noise into separate
terms is to more effectively evaluate models without having to
specify both the intrinsic and extrinsic mechanisms simulta-
neously—simplifying analyses greatly by reducing the number
of ad hoc assumptions and free parameters. However, for that
approach to work, the top-down statistical decomposition that
is inherent to the dual-reporter method must capture the same
noise terms as correct bottom-up mechanistic mathematical mod-
els. This is often taken for granted (6–8) but is in fact nontrivial.

Here we address these key questions of fluctuations in biology:
How can intrinsic and extrinsic types of noise be separated in
complex systems? What do the two categories mean biologically?
How should measurements be compared to mechanistic models?

Decomposing Noise with the Dual-Reporter Method
Noise arising from the inherently probabilistic reactions within a
system is typically called intrinsic or internal, whereas the effect
of environmental fluctuations on a system is called extrinsic or
external (11). The distinction thus depends on what is defined
as system and environment in any particular experiment. The
two contributions have been suggested to add up to the total
variance with the extrinsic noise identified by the covariance
between independent and identical reporters. For example, with
x and y denoting the levels of the dual-reporter proteins (Fig. 1)
observed in single cells we would have

η2tot ≡
σ2x
hxi2 ¼ η2int þ η2ext; [1]

η2ext ¼
Covðx;yÞ
hxihyi ; [2]

where averages correspond to an ensemble snapshot over a
population of cells (5). Here we discuss the idealized scenario
of dual reporters that are strictly identical and independent. This
assumption is fundamental to the approach and always needs to
be established experimentally as in the original dual-reporter
study (5) in which the marginal distributions of the two reporters
were almost indistinguishable and the addition of a second repor-
ter did not significantly affect the distribution of the first. In ad-
dition to the natural heterogeneity, experimental errors can
contribute to the observed intrinsic and extrinsic variability.
For example, the fluorescence from reporter proteins may imper-
fectly reflect the actual protein copy numbers due to slow fluor-
ophore maturation. Here we consider only the dynamics of the
proteins themselves rather than any technical issues associated
with specific experimental methods to infer protein copy
numbers.

Because intrinsic and extrinsic noise have physical meanings
that reflect the origin of fluctuations, the above equations are
not definitions but interpretable claims. To prove that the dual-
reporter covariance can identify the origin of fluctuations we
must thus show that the total noise can be meaningfully decom-
posed according to Eq. 1 and that the extrinsic noise is given
by Eq. 2.

In the limit where all noise is either intrinsic or extrinsic, this is
trivially true: Statistically independent variables by definition do
not covary, whereas identical deterministic systems subject to the
same inputs by definition take the same values, so that the covar-
iance equals the variance. However, the fact that a decomposition
“works” in the limit where there is nothing to decompose in
no way suggests that it is suitable to separate the two noise con-

tributions. There are in fact infinitely many pairwise statistical
measures that converge to zero in the limit of deterministic
extrinsic dynamics and to the covariance in the limit of determi-
nistic intrinsic dynamics, but produce different values for inter-
mediate scenarios. Because the whole purpose of the approach
is to separate between the noise sources, it is thus essential to
find a decomposition that provably performs this separation.
That was indeed the great appeal of the original motivation
(5, 9), though later results (10) imply that it unfortunately applies
only to static environments. Furthermore, for any decomposition
to be of practical value beyond a phenotypic classification, the
noise terms obtained should also be relatable to mathematical
models that account for one type of noise without the other.
We will thus establish if the intrinsic part of the total noise
corresponds to the fluctuations exhibited by the system in the
absence of environmental variability and if the extrinsic part of
the total noise corresponds to the fluctuations the system would
exhibit in the absence of intrinsic variability.

Decomposing Noise by the State of the Environment. The effect of
specific variables could in principle be accounted for by condi-
tioning experimental data on the state of those variables, for ex-
ample, by gating data based on morphology. To summarize this
effect in a single number for the whole dataset, the conditional
variance so obtained can be averaged over the full process. This is
formalized by the law of total variance that splits up the variance
of any variable into the expectation of a conditional variance and
the variance of a conditional expectation. For example, looking at
gene expression with X denoting the number of molecules (of a
protein in interest) in a given cell, we can always rewrite the ob-
served cell-to-cell variability σ2X by conditioning the data on the
state Z of environmental variables such as the number of poly-
merases, ribosomes, etc.

σ2X ¼ hσ2X jZi|fflffl{zfflffl}
unexplained by Z

þ σ2hX jZi|fflffl{zfflffl}
explained by Z

: [3]

Here σ2X jZ is the variance of X in the subpopulation of cells with
some given value of Z, and the angular brackets denote averages
over all such subpopulations, whereas σ2hX jZi is the variance of the
conditional average of X given Z (Appendix). Though formulated
differently, this is mathematically equivalent to the noise decom-
position used previously in the motivation for dual-reporter
methods (9) and is also the most common approach to account
for the influence of observable variables.

To illustrate the biological implications of the above decompo-
sition, consider a toy system in which a fluctuating extrinsic vari-
able z affects the birth rate of the intrinsic variable x:

extrinsic dynamics intrinsic dynamics

z �����!λext zþ 1 x �����!λintz xþ 1

z �����!βextz z − 1 x �����!βintx x − 1

; [4]

where the reaction rates are transition probabilities per unit time.
At stationarity, the total variance of x is then

η2tot ¼
1

hxi|{z}
η2int

þ 1

hzi
τz

τx þ τz|fflfflfflfflfflffl{zfflfflfflfflfflffl}
η2ext

; [5]

where τz ¼ 1∕βext and τx ¼ 1∕βint are the respective average
lifetimes of the environmental and intrinsic components (12).
Eq. 5 is an exact result for the variance of the above system
and highlights two distinct terms: the first term comes from
the intrinsic stochastic reactions in X and the second term comes
from extrinsic fluctuations in Z levels that are inherited by X in a
time-averaged way because as Z changes, X levels adjust only par-
tially before the value of Z changes again. In this example the

12168 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1018832108 Hilfinger and Paulsson



total noise is thus indeed the sum of a purely intrinsic noise η2int
that is unaffected by environmental fluctuations and a purely ex-
trinsic noise η2ext that is unaffected by the intrinsic stochasticity.
The corresponding decomposition using (Eq. 3) is less straight-
forward to derive because conditional master equations are
harder to formulate or solve, which perhaps explains why decom-
positions are rarely illustrated explicitly in specific examples.
Here we derive an exact analytical recurrence relation for the
conditional average hxjzi of the system defined in reaction
scheme 4 (SI Appendix), leading to the following unexplained
and explained parts of the normalized stationary state variance:

σ2hX jZi
hxi2 ¼ η2ext

τz
τx þ τz

hσ2X jZi
hxi2 ¼ η2int þ η2ext

�
1 −

τz
τx þ τz

�
; [6]

with η2int and η
2
ext as given in Eq. 5. The above noise decomposition

based on the state of the environment thus exaggerates the intrin-
sic noise and underestimates the extrinsic noise (Fig. 2). Even in
the limit in which the average hxi is so large that intrinsic fluctua-
tions η2int are negligible, and X levels respond deterministically to
a fluctuating environment, the decomposition of Eq. 3 reports
substantial intrinsic noise (Fig. 2A). Hence, even if we could ex-
perimentally measure the current state of all environmental vari-
ables, we thus still cannot infer the variability that is due to those
variables, simply because the whole history matters. Conditioning
on the state of the environment captures the correct contribu-
tions only in the limit of infinitely slow environmental fluctuations
(τz ≫ τx). But few if any cellular components are slow compared
to the stable fluorescent proteins studied, let alone static. Con-
ditioning on the state of an environmental variable thus does
not identify how much it contributes to the overall variance if
the environment is dynamic. This problem applies to the motiva-
tion of the dual-reporter method and to the many studies that
first gate data based on morphology or other observable features.
Cell size and age are to some extent excepted from this problem,
because the current state is a good predictor of the recent history
(unless growth rates fluctuate rapidly) but another type of decom-
position is still needed.

Decomposing Noise by the History of the Environment. To identify
the noise contributions in dynamical systems, we instead condi-

tion on the full histories of the extrinsic variables (13) and then
average the instantaneous conditional averages over all possible
histories. The law of total variance then gives

σ2X ¼ hσ2XtjZ½0;t�i|fflfflfflfflffl{zfflfflfflfflffl}
σ2int

þ σ2hXtjZ½0;t�i|fflfflfflfflffl{zfflfflfflfflffl}
σ2ext

; [7]

where the intrinsic term is the variance of Xt in a group of cells
sharing an environmental history Z½0;t� averaged over all possible
histories, and the extrinsic term is the variance of the average Xt
over different sample paths of the history Z½0;t�, where time t ¼ 0
corresponds to the infinite past. To stress the time dependence of
the conditional averages we have introduced the subscript t for
the random variable in the above equation and will use this nota-
tion for the remainder of the article. For ergodic systems, aver-
aging over all possible histories is equivalent to averaging a single
trace over time (Appendix). The so-defined extrinsic noise σ2ext can
then be interpreted as the variation of the average over time,
whereas the intrinsic noise σ2int corresponds to the variation
around that average (Fig. 3). Applying those definitions to the
example system of reaction scheme 4 leads to the correct intrinsic
and extrinsic noise contributions as given in Eq. 5.

In principle, the generalized decomposition Eq. 7 could be ex-
perimentally obtained by simultaneously observing a large num-
ber of identical reporters in the same cell. However, the two noise
contributions can also be obtained using just two reporters. If sys-
tems X and Y are identical and independent reporters embedded
in the same environment—requiring that the two reporters can-
not affect environmental variables, affect each other’s reaction
rates, or be stoichiometrically coupled in any chemical reaction
(14)—the time evolution of the conditional averages satisfy
hXtY tjZ½0;t�i ¼ hXtjZ½0;t�ihY tjZ½0;t�i and hXtjZ½0;t�i ¼ hY tjZ½0;t�i
(Appendix). The covariance between two independent and iden-
tical reporters thus corresponds to the extrinsic noise as defined
in Eq. 7, for any nonlinear or multivariate process:

CovðX;Y Þ ¼ hhXtY tjZ½0;t�ii − hhXtjZ½0;t�iihhY tjZ½0;t�ii
¼ hhXtjZ½0;t�ihY tjZ½0;t�ii − hhXtjZ½0;t�ii2
¼ hhXtjZ½0;t�2i − hhXtjZ½0;t�ii2 ≡ σ2ext; [8]

where the outer brackets denote time averages. Hence measuring
the covariance between two reporters can replace an infinite
number of reporters to decompose the total noise.

Periodic Versus Stochastic Environmental Influences. In some cases
the unknown environmental influence zðtÞ may have a more or
less deterministic component that varies periodically over time.
For example, many cellular processes are coupled to the cell cy-
cle, and in population biology much of the overall variation is
explained by the seasons. Previously such a periodic signal has
been treated as just one example of a varying extrinsic variable

A B

Fig. 2. Decompositions based on the current state of the environment do
not separate between intrinsic and extrinsic origins of fluctuations in dyna-
mical systems. (A) Comparing the true intrinsic noise (black line) of the system
defined in reaction scheme 4 with the decomposition that conditions on the
current state of the environment (dashed orange line) given in Eq. 6 for dif-
ferent values of the intrinsic reporter average hxi. The decomposition reports
substantial intrinsic noise (dashed gray line) even in the deterministic limit
hxi → ∞. Only in the absence of extrinsic noise, or for infinitely slow envir-
onmental fluctuations (τx ≪ τz), do the two measures agree. (B) Comparing
the true extrinsic noise (black line) with the decomposition of Eq. 6 (dashed
orange line) for different values of the relative time scale of fluctuations
τx∕τz. Only in the limit of very slow environmental fluctuations does the
extrinsic noise estimate based on an environmental value decomposition con-
verge to the true value. (Insets) Respective relative errors 1 − hσ2XjZi∕σ2int and
1 − σ2hXjZi∕σ

2
ext. The curves represent families of systems (cf. Eq. 6), with

example rate parameters corresponding to (A) λext ¼ 2 and βext, βint ¼ 1while
varying λint and (B) λext, λint, βext ¼ 1 while varying βint.

Time

S
ig

na
l

Fig. 3. Physical definition of intrinsic and extrinsic noise for dynamical
systems. Illustrated are two stochastic realizations (red and blue lines) of the
intrinsic system subject to a given environmental time trace zðtÞ (dashed gray
line). The extrinsic noise corresponds to the variability of the conditional in-
trinsic average trace (solid green line), whereas the intrinsic noise is deter-
mined by the average variability of the conditioned intrinsic system
(indicated by light green corridor).
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(9). However, periodically changing environments are different
from truly stochastic environments, not only because the variabil-
ity has little to do with noise, but also because the current value of
the environment explains much of the variability in the recent
history. Asynchronous cell populations then exhibit a nonrandom
source of heterogeneity simply because cells at different stages of
the cell cycle are different on average. Levels of independent re-
porters will thus correlate creating an extrinsic “noise” that may
completely overshadow truly stochastic sources of extrinsic noise
(15). The question is thus if we can separate such nonrandom
variability due to a periodic but deterministic extrinsic signal from
stochastic sources of extrinsic noise.

The heterogeneity due to unsynchronized observations can be
identified by conditioning on the phase t�, with 0 < t� < T where
T is the period of the environmental signal. The total observed
variability for asynchronous cells is then given by (outer brackets
denote averages over the cell-cycle phase)

σ 2
int σ 2

ext

σ 2
X = σ 2

int (t∗ ) + σ 2
ext (t ∗) + σ 2

Xt ∗ | t∗ ,

unexplained by
cell cycle position t ∗

explained by
cell cycle position t ∗

[9]

where the intrinsic and extrinsic contributions for synchronized
cells are given by (SI Appendix)

σ2intðt�Þ ¼ hσ2XtjZ½0;t��i; σ2extðt�Þ ¼ σ2hXt jZ½0;t��i

with outer brackets denoting averages over all histories Z½0;t��
that end at the specific phase t� within the periodic cell cycle.
The three contributions in Eq. 9 can be inferred from the
dual-reporter covariance of asynchronous populations by addi-
tionally measuring bulk averages of synchronized populations,
making the intrinsic and extrinsic noise contributions experimen-
tally accessible without having to follow a synchronized popula-
tion at the level of single cells. Observing dual reporters in
synchronized cells in turn allows for direct control experiments
because the extrinsic noise term is related to the phase depen-
dent dual-reporter covariance in synchronized cells (SI
Appendix): σ2extðt�Þ ¼ Covsyncðx;y; t�Þ.

Another important experimental consideration is that growing
populations of cells generally exhibit an age structure, with more
newborn cells than dividing cells. Bulk observations of asynchro-
nous cells will thus correspond to averages over a nonuniform
distribution of cell-cycle positions. Eq. 9 can be applied to
averages over any distribution of cell-cycle times, but must be
used consistently for all measurements. In the following we
use it exclusively to analyze decompositions that correspond to
cell-cycle averages obtained by picking cells at random times dur-
ing the cell cycle with uniform probability.

Analyzing Intrinsic Versus Extrinsic Sources of Noise
The above results show that a noise decomposition based on
environmental history can separate intrinsic and extrinsic noise
contributions regardless of microscopic details and that the con-
tributions can be experimentally identified using just two inde-
pendent reporters. This provides independent interpretations
of the intrinsic and extrinsic categories and ensures that the
approach is self-consistent without resorting to circularity. How-
ever, this level of description is entirely phenotypic and not con-
nected to mechanistic representations of the underlying system.
There is in fact no guarantee that the intrinsic and extrinsic con-
tributions correspond to what is typically thought of as intrinsic
and extrinsic processes, except in the trivial and nonuseful limit
that there is only one type of noise.

Specifically, we ask: Can each noise term be compared to mod-
els that account only for either intrinsic or extrinsic mechanisms
rather than the whole complex system that is subject to both types

of noise? That is arguably the main purpose of the whole ap-
proach and has been taken for granted in practical applications
of the dual-reporter method (6–8).

To address this issue we differentiate between different classes
of systems. We call the system linear in intrinsic variables if all
reaction rates rk are linear functions of x—still allowing nonlinear
effects with respect to the environmental variables—so that the
total fluxes follow Rðx;zÞ ¼ aðzÞ þ JðzÞx, for some vector a and
Jacobian matrix J. Borrowing terminology from stochastic differ-
ential equations we then call the environment additive when the
matrix J is independent of z, and multiplicative otherwise. Multi-
plicative noise is the rule rather than exception in biology: The
rate of encounters between predators and prey depends on the
product of population sizes, just as the rates of degradation, tran-
scription, and translation depend on the products of substrate
and enzyme levels.

Modeling Extrinsic Noise. The response of a deterministic system
to extrinsic variables is described by a conventional deterministic
equation with rates rk where the continuous variables x̄ðtÞ re-
spond to changes in the environment, according to

dx̄
dt

¼ ∑
k

rkðx̄ðtÞ;zðtÞÞsk; [10]

for a given environmental sample path zðtÞ. If such a model could
be rigorously compared to the extrinsic noise in Eq. 7, we could
analyze the nature of extrinsic variability without having to specify
details of the intrinsic stochastic reactions, such as burst sizes.
Starting from the conditional master equation and without spe-
cifying the unknown environmental influences we can prove that
for systems linear in intrinsic variables, the conditional average
hXtjZ½0;t�i follows the above time evolution equation for the de-
terministic system x̄ðtÞ (Appendix). The extrinsic noise of the full
system thus indeed equals the noise of the intrinsically determi-
nistic system (Eq. 10) subjected to the fluctuating environment:
σ2ext ¼ hx̄ðtÞ2i − hx̄ðtÞi2, where brackets denote time averages. As
long as the system is linear in intrinsic variables the extrinsic noise
obtained from the covariance between dual reporters can thus be
rigorously analyzed by a simple deterministic model where the
rate “constants” vary in time. This is true regardless of the details
of the system and allows for arbitrary, nonlinear environmental
influences of both stochastic or periodically changing nature. The
condition of intrinsic linearity is less restricting than it may seem
because many reporter systems have been constructed to be lin-
ear in this sense (5, 6). The dual-reporter method is thus broadly
applicable to analyze extrinsic fluctuations in complex networks
and effectively reduces the number of unknown parameters that
would otherwise be necessary to specify the system’s intrinsic sto-
chasticity on top of the environmental dynamics. If the rates rk
instead are nonlinear functions of the intrinsic variables, the sys-
tem generally does not satisfy x̄ðtÞ ¼ hXtjZ½0;t�i with x̄ðtÞ following
Eq. 10. The extrinsic noise, according to the top-down definition
of Eq. 7, can then still be extracted using the dual-reporter meth-
od, but it cannot be rigorously analyzed using mathematical mod-
els that ignore the intrinsic stochasticity.

Modeling Intrinsic Noise. Many studies instead focus on intrinsic
noise and use dual reporters to eliminate the need to account
for unknown or complex environmental influences. The remain-
ing intrinsic fluctuations in gene expression are often thought of
as the variability within a population of cells “identical not just
genetically but also in the concentrations and states of their
cellular components” (5).

This can be modeled in several ways. For example, if molecules
of species X are degraded with a variable degradation rate βðzÞx,
a constant environment could be created by replacing βðzÞ by its
average. But such approaches, which have been modeled using
Langevin approximations (10), do not capture the correct aver-
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age abundances and therefore will not capture the correct intrin-
sic noise that is greatly affected by abundances. We follow an al-
ternative approach by replacing the fluctuating rate “constants”
by true constants that ensure that the average abundance and life-
time of X are preserved.

For systems that are linear in intrinsic variables and subject to
additive environmental influences, the noise decomposition
based on the environmental history can be obtained analytically.
The master equation (Fig. 1C) determines the time evolution of
the ensemble variance for a given environmental time trace, and
by time averaging the conditional ensemble variance σ2XtjZ½0;t� we
can calculate the intrinsic noise σ2int for arbitrary additive envir-
onmental fluctuations. This shows (SI Appendix) that the intrinsic
noise is captured by models that replace the fluctuating rates by
their averages, which for such systems is equivalent to using rate
constants that preserve the average abundances. The intrinsic
noise can then be modeled and interpreted separately from ex-
trinsic noise.

For multiplicative environments we first consider the simplest
example where X molecules are produced with rate λðzÞ and
degraded with rate βðzÞ per molecule:

x �����!λðzÞ
xþ 1 x �����!βðzÞx

x − 1; [11]

where both β and λ depend in some unspecified way on the fluc-
tuating environment. Replacing the fluctuating rates with con-
stants that ensure correct average abundances and average
lifetimes of X leads to a model that correctly captures the intrinsic
noise (SI Appendix)—even though noise terms generally are not
superimposable in systems with multiplicative noise (10, 14, 16).
Unfortunately this is a special case, and the same strategy fails
already if we simply allow for molecules to be produced in bursts

instead of one by one, i.e., x�!λðzÞ xþ b. The approach then
misleadingly produces the expected scaling with hxi but with
an incorrect burst size (Fig. 4A).

Such discrepancies are the rule rather than the exception.
Consider for example the commonly used toy model for gene ex-
pression (cf. Fig. 1A) where mRNAs x1 and proteins x2 follow:

mRNA dynamics protein dynamics

x1 �����!λ1ðzÞ x1 þ 1 x2 �����!λ2ðzÞx1 x2 þ 1

x1 �����!β1ðzÞx1 x1 − 1 x2 �����!β2ðzÞx2 x2 − 1

: [12]

Replacing the fluctuating rates with a constant environment such
that average abundances and lifetimes are preserved will not
reproduce the intrinsic noise. This inevitably leads to incorrect
inferences of key features, such as how much noise in protein
levels is inherited from mRNA fluctuations (Fig. 4B). Because
multiplicative noise is the expectation in virtually all systems,
due to bimolecular interactions, this is a severe limitation: Inter-
preting the intrinsic noise σ2int from dual-reporter experiments in
terms of models that ignore the environmental influences does
not work even for systems that are linear in all intrinsic variables.
The approach also fails for systems with additive environmental
influences but nonlinear intrinsic mechanisms, because the aver-
age behavior is directly affected by the fluctuations around the
average.

Discussion
From biochemistry to embryonic development, population
dynamics and social interactions, many processes are both inher-
ently stochastic as well as affected by a wide range of fluctuating
inputs (1, 2, 17–23). Experimental observations must then be
compared to models that account for both the system of interest
as well as its environment, often introducing so many variables
that mathematical analysis can degrade from hypothesis testing
to mere curve fitting. The effect of “uninteresting” variables
can to some extent be accounted for by physically or statistically

holding them constant, but not all relevant variables are experi-
mentally accessible or even known. Alternatively one could use
identical pairs of reporters to infer the influence of a shared
environment. For example, genetically identical twins can be used
to determine what fraction of the phenotypic variance across a
population is explained by the shared genes.

Here we extend this approach to dynamically changing envir-
onments and prove how, e.g., two protein reporters can be used to
determine how much protein noise is explained by variations in
the intracellular environment. We show that the extrinsic noise
can often be analyzed by models that ignore intrinsic fluctuations,
whereas the same approach applied to intrinsic noise will lead to
misinterpretations of data. The reason is that, by construction,
the law of total variance separates an explained contribution from
an unexplained rest—it does not identify multiple explained con-
tributions. Even if a random variable is only a function of two
statistically independent other random variables, the contribu-
tions explained by each of those do not sum up to the total—
if 40% of the total variability is explained by extrinsic fluctuations
in gene expression, the remaining 60% is not explained by intrin-
sic fluctuations, except in very special cases. Unfortunately it is
not possible to reverse the roles of intrinsic and extrinsic: Two
proteins cannot share the same physical copies of genes and
mRNAs and at the same time be in different cells.

Despite these limitations, dual-reporter methods are still pre-
ferable to using a single reporter, where interpretations always
rely on detailed assumptions about both the intrinsic and extrinsic
mechanisms. In addition to identifying extrinsic contributions,
dual reporters can estimate intrinsic contributions in any situa-
tion where these completely dominate. Also, comparing distribu-
tions across a population of dual-reporter cells to the distribution
across single-reporter cells can reveal feedback or competition
effects. Even in cases when dual-reporter data cannot be inter-
preted without explicit model assumptions about both system
and environment, measuring a second reporter allows for more
rigorous model testing by providing access to different types of
measurable outputs without introducing new parameters.
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Fig. 4. Intrinsic noise cannot be modeled independently of extrinsic fluctua-
tions. (A) Numerical results for the normalized intrinsic noise of the the sim-
ple birth and death process (reaction scheme 11) with bursts of synthesis. The
top-down intrinsic noise as measured by the dual-reporter method (orange
dots) differs from the fluctuations exhibited by the system in the absence of
environmental fluctuations (black squares; see formula in legend). (Inset)
Inferred versus the actual value of the burst size. (B) Analyzing the
mRNA-protein model (reaction scheme 12). The dual-reporter intrinsic noise
measure (orange dots) differs from the normalized fluctuations exhibited by
the system in the absence of environmental fluctuations (black squares; see
formula in legend). (Inset) Inferred time-averaging factor τm∕ðτp þ τmÞ when
incorrectly interpreting the intrinsic noise as the fluctuations exhibited by the
system in the absence of environmental fluctuations versus its actual
value determined by the respective average mRNA and protein lifetimes
τm and τp. Note the inferred nonsensical value of a time-averaging factor
larger than one. Parameters used: λðzÞ ¼ α, βðzÞ ¼ 10z, b ¼ 4 and λ1 ¼ 1,
β1 ¼ 0.5, λ2ðzÞ ¼ αz, β2 ¼ 1, where α was varied to generate systems of dif-
ferent averages. The extrinsic variable z followed simple Poissonian dynamics
(cf. reaction scheme 11) with τz ¼ 10 and τz ¼ 1∕3, respectively.
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We have shown that dual-reporter methods facilitate quanti-
tative analysis in many ways, without relying on detailed assump-
tions about every aspect of the system. However, because many
biological processes are nonstationary, have nonlinear rate func-
tions, and are subject to multiplicative environmental influences,
complementary mathematical approaches are also required.
Accounting for fluctuations in single cells may facilitate rather
than complicate such analyses, for example, by providing condi-
tional independences (24, 25) where the unknown mechanisms
are accounted for via the fluctuations they create. Such methods
will be key for quantitative biology, both because they account for
the stochastic mechanisms and because they rigorously deal with
complex and poorly characterized networks.

Appendix
In this appendix we clarify the mathematical definitions and per-
spectives introduced in the main text. The proofs of our technical
results (the example environmental state decomposition, the
noise decomposition in periodically changing environments,
and intrinsic noise models in additive or multiplicative environ-
ments) are detailed in SI Appendix.

Law of Total Variance.By introducing conditional averages the total
variance σ2X ¼ hx2i − hxi2 can be written as

σ2X ¼ hhx2jZii − hhxjZi2i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hσ2

X jZi

þ hhxjZi2i − hhxjZii2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
σ2hX jZi

;

where the outer brackets indicate averages over all states of Z.

Averaging Over All Possible Histories. For ergodic systems the aver-
age over all histories can be written as a time average of the time-
dependent ensemble average:

hhXtjZ½0;t�iiZ½0;t� ¼ lim
T→∞

1

T

Z
T

0

lim
m→∞

1

m∑
m

j¼1

xjðtÞ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

ensemble averagehXtjZj½0;t�i

dt

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{time average

where xjðtÞ for j ¼ 1;2;3;… are different realizations of the repor-
ter signal subjected to the same given sample path of the envir-
onmental time trace Z ¼ zðtÞ.

Conditional Independence of Dual Reporters. Overall X , Y are not
statistically independent, or there would be no covariance to dis-
cuss. However, assuming that the dual reporters are independent
in a mechanistic sense, i.e., they do not influence each other in
any way (directly or indirectly through feedbacks to the environ-
ment), implies that the dual reporters are statistically indepen-
dent for a given sample path of the environment. That means
for a fixed environmental history Z½0;t� ¼ zðtÞ we require that
the marginal distribution of Xt at time t given an environmental
history is not affected by knowing the value of Y t implying that
hXtY tjZ½0;t�i ¼ hXtjZ½0;t�ihY tjZ½0;t�i. This condition of causal in-
dependence is not the same as assuming that hXY jZ ¼ zi is equal
to hX jZ ¼ zihY jZ ¼ zi, which only holds for static environmental
variability but not for dynamically changing environments.

Modeling Extrinsic Noise. For systems with fluxes that are linear
functions of the intrinsic variables the conditional average given
a sample path of the environmental time trace Z½0;t� ¼ zðtÞ fol-
lows:

dhXtjZ½0;t�i
dt

≡∑
x;y

x
dPðx;yjZ½0;t�Þ

dt

¼ ∑
k
∑
x

rkðx;zðtÞÞskPðXtjZ½0;t�Þ ¼ ∑
k

skhrkðx;zðtÞÞjZ½0;t�i

¼ ∑
k

skrkðhXtjZ½0;t�i;zðtÞÞ;

because by assumption the rates rkðx;zðtÞÞ are linear functions of
the intrinsic variable x. That means that the extrinsic noise σ2ext as
given by Eq. 7 corresponds to the variability exhibited by the
above deterministic system (cf. Eq. 10) responding to a variable
environmental input zðtÞ.
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