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Geometrically frustrated materials have a ground-state degen-
eracy that may be lifted by subtle effects, such as higher-order
interactions causing small energetic preferences for ordered struc-
tures. Alternatively, ordering may result from entropic differences
between configurations in an effect termed order by disorder.
Motivated by recent experiments in a frustrated colloidal system
in which ordering is suspected to result from entropy, we consider
in this paper the antiferromagnetic Ising model on a deformable
triangular lattice. We calculate the displacements exactly at the
microscopic level and, contrary to previous studies, find a partially
disordered ground state of randomly zigzagging stripes. Each such
configuration is deformed differently and thus has a unique pho-
non spectrum with distinct entropy, lifting the degeneracy at
finite temperature. Nonetheless, due to the free-energy barriers
between the ground-state configurations, the system falls into a
disordered glassy state.
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Frustrated systems are characterized by interactions that may
not be satisfied simultaneously (1). This leads to a degenerate

and thus disordered ground state, and naively one would expect
to have disorder down to zero temperature (2). However, the
frustrated phase is very sensitive to small perturbations that can
order it. These include anisotropic (3) or longer-range (4) inter-
actions and lattice deformations (5–10), as well as entropic effects
that may lift the ground-state degeneracy at finite temperature,
in a process termed order by disorder (11–16). Frustration and
its relief due to order by disorder are traditionally investigated
in antiferromagnets and, in particular, in compounds that have
a triangular-lattice structure (17–20). Recent experiments have
demonstrated that artificial systems made of mesoscopic building
blocks such as single-domain magnetic islands (21) or colloidal
spheres (22) exhibit behavior that is similar to that of magnetic
systems comprised of atomic-scale particles. Such mesoscopic
systems enable direct visualization of the dynamics at the single-
particle level and thus provide insight into the microscopic
physical mechanisms responsible for the peculiar properties of
frustrated matter. In this paper we address the theoretical under-
pinnings of these experimental systems and thus provide a vital
step in understanding their unusual behavior and its connection
to atomic-scale antiferromagnets.

A densely packed monolayer of hard spheres buckles out of its
plane when it is confined between walls that are separated by
slightly more than a single sphere diameter (23). Entropic forces
depending only on geometry give rise to effective antiferromag-
netic interactions favoring motion of neighboring spheres toward
opposite walls (24), leading at high densities to stripes of alter-
nating up and down spheres. The close-packed state is highly
degenerate: The same maximal density is obtained by straight
stripes or by any set of parallel stripes that zigzag within the hex-
agonally packed layer (22, 24–28). Recent experiments indicate
a possible preference of the stripes to be straight rather than
to zigzag randomly in the plane, suggesting that at densities below
close packing there is an order-by-disorder effect giving an entro-
pic advantage for straight stripes (22).

This quasi-two-dimensional problem is strongly related to the
old, yet unsolved question of what is the stable high-density struc-
ture of hard spheres, fcc or hcp (29–31). In three dimensions,
maximal density is obtained by stacking hexagonally packed
layers with arbitrary sideways shifts between the close-packed
positions. And, as for the buckled monolayer, slightly below close
packing it is not clear which structure has the greatest entropy.
Experiments on colloidal crystals that were grown slowly enough
exhibit fcc order (32), whereas there is controversy on whether
the theoretical estimates have reached the accuracy required
to resolve the elusive entropic difference between fcc and hcp
(33–38).

As for the fcc vs. hcp question, the entropy, or free volume, of
buckled hard spheres is a collective function of the positions of
all particles; thus the ability to obtain analytical results for it is
very limited. Thus, instead of approximating the entropy of this
hard-sphere system, we consider the antiferromagentic Ising
model on a deformable triangular lattice. This model has the
same degenerate ground state of zigzagging stripes as the colloi-
dal system, and for it we can exactly calculate the free-energy
difference between the competing configurations. We find that
straight stripes are always favored entropically. However, the
free-energy barriers between various ground states are huge
compared to this entropic gain, causing the system to fall into a
disordered glassy state upon cooling.

The Model and Its Ground States
In our Ising model, each site i at continuous position ~ri on a tri-
angular network is occupied by a particle of discrete spin σi ¼ �1,
and each nearest-neighbor bond comprises a harmonic spring of
stiffness K and relaxed length a; see Fig. 1A. The internal energy
of the system depends only on the spin product σiσj of neighbor-
ing particles and on their relative positions, δrij ¼ j ~ri − ~rjj − a.
The model’s Hamiltonian is given by the following sum over
all nearest-neighbor pairs hiji:

H ¼ ∑
hiji

�
ð1 − ϵδrijÞJσiσj þ

K
2
δr2ij

�
: [1]

The antiferromagnetic interaction strength is equal to J > 0
for particles separated by the relaxed spring length a and de-
creases linearly with distance at a rate ϵ > 0. This mimics the
buckled colloidal monolayer in the following way: For hard
spheres, free energy is determined by their free volume. How-
ever, it is convenient to reduce this to an effective two-particle
repulsive interaction. Although the particles are confined to be
quasi-two-dimensional, they do have a limited freedom to move
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in the vertical direction, and thus nearest neighbors prefer to sit
at opposite heights. We can now map the vertical position of
each particle onto an Ising degree of freedom, due to a prefer-
ence for either an “up” or “down” state. This leads to an effective
two-dimensional antiferromagnetic Ising model, with the cou-
pling between the elastic and the magnetic degrees of freedom
as reflected in our Hamiltonian (Eq. 1); i.e., the effective anti-
ferromagnetic interaction decays as the in-plane separation
increases (24).

We model the in-plane entropic repulsion between neighbor-
ing spheres by a rotationally invariant central-force harmonic
spring (Eq. 1). Approximate versions of this model have been
studied previously: Ref. 6 uses a linearized long-wavelength elas-
tic energy, invariant with respect to only infinitesimal rotations,
that limits deformations to be small and to vary slowly in space,
whereas in ref. 5 deformations are taken to be uniform.

In this paper we present results for the case in which the total
area of the system is fixed to the area of a triangular lattice with
lattice constant equal to a. However, we obtained qualitatively
similar results for systems compressed or dilated with respect
to this simple situation. From the equivalence between ensembles
we thus expect to get the same results also when considering the
fixed pressure case, which is probably more appropriate for the
colloidal experiments.

As in the rigid triangular-lattice model (2, 3), the antiferromag-
netic interactions along each three-particle loop in our deform-
able network cannot be satisfied simultaneously, and energy is
minimized by having two satisfied (σiσj ¼ −1) bonds and a single
frustrated (σiσj ¼ 1) bond around each triangular plaquette.
Because of the magnetoelastic coupling, energy may be lowered
by stretching the frustrated bonds by a factor f and compressing
the satisfied ones by a factor s. We fix the area of each resulting
isosceles triangle to be that of the initial equilateral plaquette
with sides a, and thus we can parametrize the deformation by
the head angle β (see Fig. 1B, Inset): f ðβÞ ¼ 31∕4ðtan β

2
Þ1∕2, sðβÞ ¼

31∕4ð2 sin βÞ−1∕2. Minimizing the energy (Eq. 1) with respect to β
yields (see SI Appendix)

ð2s0 − f 0ÞJϵþ ½2ðs − 1Þs0 þ ðf − 1Þf 0�Ka ¼ 0. [2]

Fig. 1B shows how the triangles deform from β ¼ 60° toward β ¼
180° as the ratio b≡ Jϵ

Ka of the magnetoelastic interaction strength
to the lattice rigidity grows.

Thus, each plaquette of the triangular lattice would minimize
its energy by deforming into an isosceles triangle. We now show
how this can be accommodated in the ground state by global
deformations of the system. In the rigid triangular lattice, because
each triangle must have exactly one frustrated bond, five nearest-

neighbor configurations are allowed in the ground state (Fig. 1C)
(39). Requiring that the angle opposing each frustrated bond
deforms to β > 60° selects configurations (iii) and (iv) (22, 24),
which give rise to zigzagging stripes. Thus, selecting a stripe of
frustrated bonds defines a ground state of the lattice. It can be
constructed by starting with a row of alternating spins (along
the horizontal axis) and stacking copies of this row (along the
vertical axis), as shown in Fig. 2. The intrarow and interrow
separations are sa and sa sin β, respectively, and the lateral shifts
are determined by the arbitrary polarity of each row with respect
to the one preceding it. Because these rows of alternating spins
may be in any of the three principal directions of the network, and
for a system of N particles, each of the

ffiffiffiffi
N

p
rows may be in one

of two states, the ground-state degeneracy is 3 · 2
ffiffiffi
N

p
.

This partially disordered ground state is realized by deforma-
tions that may vary rapidly in space; if deformations are assumed
to be homogeneous (5) or to vary slowly (6), straight stripes are
selected. In particular, the zigzagging stripes that minimize our
microscopic Hamiltonian (Eq. 1) have a higher energy than
straight stripes in the coarse-grained Hamiltonian considered in
ref. 6. The ground state of zigzagging stripes that we find
here is precisely the state that maximizes the packing density of
buckled spheres (22, 24), which constitutes the connection of our
model to the colloidal system.

Given the high ground-state degeneracy and the fact that it
takes a discrete energy (of order J) to flip a spin in the ground
state, one might naively expect to find a stable phase of randomly
zigzagging stripes at sufficiently low temperature (kBT ≪ J).
However, at positive temperature, the entropy of particle fluctua-
tions around the energy-minimizing position is different in the
different ground-state configurations. We will show that the state
with straight stripes has lower free energy (or greater entropy)
than other states, making it the stable thermodynamic phase
at arbitrarily low temperature. Nonetheless, the resulting free-
energy differences between the different zigzagging realizations
are much smaller than the free-energy barriers between the
ground-state configurations, and the system typically falls into
disordered metastable configurations.
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Fig. 1. Model and its ground state. (A) Two-dimensional triangular network
of antiferromagnetic Ising spins connected with harmonic springs. (B) Defor-
mation angle β vs. the dimensionless ratio b≡ Jϵ

Ka between themagnetoelastic
interaction strength and the lattice rigidity, from Eq. 2. (Inset) Isosceles
triangle with head angle β, satisfied bonds (thin lines) compressed by s,
and frustrated bond (thick line) stretched by f. (C) The five possible config-
urations (up to rotations and spin inversions) of a particle and its neighbors,
with a single frustrated bond in each triangle.
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Fig. 2. Zigzagging stripes. Ground-state configurations are generated by
stacking layers of particles with alternating spin and with arbitrary relative
polarities between successive layers. The figure shows only simple configura-
tions with periodic sequences of the straight (iii) and bent (iv) segments, as
defined in Fig. 1C. However, ground-state configurations do not necessarily
have a finite unit cell. (A) Straight stripes, for which all particles are in the
state (iii). (B) Bent stripes, for which all particles are in state (iv). (C) Zigzag-
ging stripes with a more complicated unit cell comprised of both (iii) and (iv).
The shaded regions represent the unit cells used for the low-temperature
expansion explained in the text. A, B, and C have one, two, and five particles
per unit cell, respectively. Thick blue lines represent the stretched frustrated
bonds, and thin blue lines represent the compressed bonds for which the
antiferromagnetic interaction is satisfied.
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Monte Carlo Simulations
To demonstrate the peculiar slow dynamics of this model, we used
Monte Carlo simulations in which individual particles can flip
their spin or move continuously in the plane and in which the
simulation box may change its shape to accommodate the
global deformations of the network (24). We start from a disor-
dered state at high temperature, and we slowly cool the system at
a rate r (time is measured in attempted Monte Carlo steps per
particle). Fig. 3A shows that at high temperature the system
follows an equilibrium curve irrespective of cooling rate, whereas
below a certain temperature (T ≈ 0.6 for the parameter values
shown here), the system’s energy has a clear cooling rate depen-
dence. Apparently, if the cooling is slow enough (r ≤ 10−6 here),
the system manages to reach the ground state.

Fig. 4A shows that indeed if the system is cooled too rapidly
(r ¼ 10−4) it falls into a disordered state with multiple small do-
mains of a local stripy structure. For a slower cooling rate
(r ¼ 10−6, Fig. 4B), the system finds a ground-state configuration
with zigzagging stripes, such that the local configurations (iii)
and (iv) defined in Fig. 1C are roughly equally represented, thus

corroborating this phase as randomly zigzagging stripes. Fig. 4C
shows that for even slower cooling (r ¼ 10−8), there is preference
for ground-state configurations in which the stripes are more
straight than bent, namely configuration (iii) is preferred over
(iv). This is quantified in Fig. 3 B and C, which shows results
obtained by averaging over multiple realizations for each system
size and cooling rate. For very fast cooling, the system remains
quite disordered with PðiiiÞ∕PðivÞ ≈ 0.5, in accordance with the
combinatoric weights of these two local configurations. For
r ≤ 10−6, the system manages to find its ground state, as seen by
the fact that PðiiiÞ þ PðivÞ ¼ 1, namely all particles are in one
of these two states. For r ¼ 10−6 these two states are equally
probable, PðiiiÞ ≈ PðivÞ, as one would expect for randomly zigzag-
ging stripes. However, as the cooling rate is decreased even more,
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Fig. 3. Monte Carlo simulations. (A) Energy E per particle above the ground-
state energy EGS vs. temperature T for different cooling rates r as indicated in
the legend. System size is N ¼ 6;400. Similar results were obtained for
N ¼ 1;600 and N ¼ 25;600. (B and C) Probabilities of finding the local con-
figurations (iii) and (iv) defined in Fig. 1C at T ¼ 0 following cooling at
different rates r for various system sizes N, as indicated in the legend. Note
the logarithmic scale for the ratio PðiiiÞ∕PðivÞ in C. Error bars are smaller
than the symbols. Model parameters in all simulations are J ¼ 1, ϵ ¼ 2,
K ¼ 8, and a ¼ 1. Thus b≡ Jϵ

Ka ¼ 0.25. This yields a deformation angle of
β ¼ 86° in the ground state and a difference in the free-energy coefficient,
Eq. 4, of A0 −A1 ¼ 0.025 between straight and bent stripes.
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Fig. 4. Ordering with decreasing cooling rate. Portion of the system in its
final configuration after cooling at rates r ¼ 10−4 (A), 10−6 (B), and 10−8 (C).
Model parameters are J ¼ 1, ϵ ¼ 2, K ¼ 8, and a ¼ 1. Thus, b≡ Jϵ

Ka ¼ 0.25,
and in the ground state each triangular plaquette is deformed to an iso-
sceles with head angle β ¼ 86°. System size is N ¼ 25;600. For the fastest
cooling rate, the system falls into a disordered state (A), for which the frac-
tion of particles in the local configuration of a straight stripe (see Fig. 1C) is
PðiiiÞ ¼ 0.31 and the fraction in that of bends is PðivÞ ¼ 0.52. For the slower
cooling rates, zigzagging stripes are formed (B and C). The blue lines are
guides to the eye, which highlight a line of frustrated bonds, and emphasize
that as the cooling rate is decreased from B to C, the stripes become straigh-
ter. In B, PðiiiÞ ¼ 0.54 and PðivÞ ¼ 0.44, whereas in C, PðiiiÞ ¼ 0.9 and
PðivÞ ¼ 0.1.
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there is a clear preference for the straight configuration (iii) over
the bent one (iv). This is in qualitative agreement with recent
experiments (40) exploring the cooling rate dependence of our
colloidal antiferromagnet (22).

Although the Ising degrees of freedom in our model do not
have natural physical dynamics associated with them, the Monte
Carlo dynamics we employ are useful in exploring actual out-
of-equilibrium dynamics of spin systems (41–44). Thus, to our
understanding, the cooling rate in our simulations should be
interpreted as being directly proportional to the experimental
cooling rate, and it would be interesting to explore the connection
between the transition rates we apply in our Monte Carlo scheme
and the actual physical quantities in the experiments.

Excitations at Low Temperature and Order from Disorder
The preference we observe for straight over bent stripes comes
from an entropic difference between the two, as is explained in
the following low-temperature expansion: Expanding the Hamil-
tonian about the fixed-spin ground state to lowest order, we find
terms quadratic in particle displacements. Thus, the lowest-
energy excitations are harmonic modes of vibrations with fre-
quencies that we denote by fωkg (note that k indexes the normal
modes and does not necessarily refer to a wave vector). We
assume the temperature is low enough (kBT ≪ J) to ignore spin
flips, yet high enough (kBT ≫ ℏω) to ignore quantum effects.
Therefore, we use the canonical partition function of a classical
harmonic oscillator of frequency ω, Z ∝ kBT∕ω, to write the free
energy of the system as the following sum over all normal modes:

F ¼ −kBT logZ ¼ −kBT
�
∑
k

log
�
kBT
ωk

�
þ const:

�
: [3]

We emphasize at this point that the frequencies fωkg refer to
the fast oscillations of the positional degrees of freedom, which
at low enough temperature are expected to be much faster than
the spin flips.

The different spin states fσig of the various ground-state
configurations impose different deformations f ~rig; thus each one
has a distinct spectrum fωkg of eigenfrequencies, and a different
entropy, which is expressed as a different temperature depen-
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Fig. 5. Examples for some of the unit cells used in evaluating the free energy
in Fig. 6. All unit cells with ps ¼ 1∕3 containing 3 (A), 6 (B), and 9 (C) particles,
and with ps ¼ 1∕2 and 4 (D) and 8 (E) particles.
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Fig. 6. Normalized entropic contribution, Eq. 4 vs. fraction ps ≡ PðiiiÞ∕
½PðiiiÞ þ PðivÞ� of straight-stripe segments for deformation angles β ¼ 70°
(A), 100° (B), and 155° (C). A is normalized by its extreme values for straight
stripes A1 ≡Aðps ¼ 1Þ and for bent stripes A0 ≡Aðps ¼ 0Þ. The gray lines
indicate the prediction of a one-dimensional effective Hamiltonian of non-
interacting straight and bent segments. The size of the unit cell correspond-
ing to each ground-state configuration is indicated in the legend. We
calculated the free energy for all the 95 distinct unit cells consisting of up
to 10 particles. Except for straight (ps ¼ 1) and bent (ps ¼ 0) stripes, these
have 1

9 ≤ ps ≤
4
5. Additionally, of the 363 unit cells with 11–13 particles, we

calculated the free energy for 19 unit cells with extreme values of ps. In
numerically evaluating the integration over the Brillouin zone, we require
a relative numerical accuracy smaller than 10−7, and, therefore for
β ¼ 155° omitted from the plot 19 unit cells (with 11–13 particles), and
for β ¼ 100° omitted one unit cell (with 13 particles). See SI Appendix for
more details on the calculations and the results. (D) Entropic advantage
of straight stripes (ps ¼ 1) over zigzags (ps ¼ 0) vs. deformation angle. The
blue circles indicate the angles for which results for larger unit cells are
given in A–C.
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dence of the free energy F in Eq. 3. At T ¼ 0, entropy is irrele-
vant and all ground-state configurations are equivalent, but at
T > 0 this degeneracy is lifted and the configuration with the
minimal free energy is selected. The frequencies of all vibrational
modes scale as ω2

k ∝ K∕M, where M is the mass of each particle.
The normalized spectrum depends on the spin state fσig and on
the deformation angle β, which is set by b≡ Jϵ

Ka (see Eq. 2 and
Fig. 1B). Hence we define

Aðfσig;βÞ≡
1

N∑
k

log
� ffiffiffiffiffi

M
K

r
ωk

�
[4]

and write F ¼ NkBT½Aðfσig;βÞ þ const:�. Thus minimizing F is
equivalent to minimizing A.

We can analytically calculate the normal modes of vibrations
of the deformed lattice for any ground state with a periodic re-
petition of straight (iii) and bent (iv) segments (see SI Appendix).
In such cases the normal modes are phonons and the index k
labeling them may be associated with their wave vector. The
free-energy coefficient, A, may then be obtained by numerically
summing over the appropriate Brillouin zone. Fig. 2 highlights
the unit cells in ground states with periods of one, two, and five
particles. Now we consider ground states with larger unit cells and
show that the free energy is mainly determined by the fraction
ps ≡ PðiiiÞ∕½PðiiiÞ þ PðivÞ� of straight segments. To clarify which
configurations we used in these calculations, we show in Fig. 5
several representative unit cells. For example, ps ¼ 1∕3 in a
single configuration with three particles in its unit cell (Fig. 5A),
but also in two distinct configurations with six particles (Fig. 5B),
in six with nine particles (Fig. 5C), and in an increasing number of
other configurations with larger unit cells. Similarly, for ps ¼ 1∕2,
we show the two configurations with four particles per unit cell
in Fig. 5D and the six with eight particles in Fig. 5E.

Fig. 6 A–C shows the results obtained by numerically evaluat-
ing Eq. 4 for ground states with unit cells consisting of up to 13
particles, plotted vs. ps (see SI Appendix for more details and
Tables S4–S5 for the entire data plotted). We find that the free
energy is bounded between the extreme cases of straight stripes
(ps ¼ 1, Fig. 2A) and bent stripes (ps ¼ 0, Fig. 2B). Moreover, the
approximate collapse of the results for all calculated unit cells to
a single curve provides strong support for the hypothesis that
only the ratio between straight and bent segments is important
and not the order in which they are positioned or the period
of the pattern they form. Finally, the roughly linear dependence
of A on ps indicates that the free energy may be approximated
as a linear combination of contributions from the straight and
bent segments. Because the ground state is determined by a one-
dimensional sequence of straight and bent segments, this result
implies that the system may be well approximated by an effec-
tive one-dimensional noninteracting Hamiltonian. For β ¼ 155°
(Fig. 6C) we observe substantial deviations from the prediction
of such a noninteracting Hamiltonian. It would be interesting
to understand whether these deviations result from our limited
numerical accuracy in evaluating so small free-energy differences,
or from additional considerations that affect the physics of this
system at such large deformations.

In our elastic Ising model, the low-temperature free energy of
in-plane positional fluctuations is determined by the dimension-
less ratio b≡ Jϵ

Ka between the magnetoelastic interaction strength
to the lattice rigidity. This ratio sets the deformation angle β of
each isosceles triangle in the ground state (see Eq. 2 and Fig. 1B).
In the corresponding system of buckled colloids, the deformation
angle β of each isosceles plaquette in the close-packed state
(which is equivalent to the Ising model’s ground state) is similarly
dictated by the ratio of each sphere’s diameter to the separation
between the confining walls (24). We expect the colloidal system

to exhibit a similar order-by-disorder effect that will be governed
by the deformation angle β, and therefore we plot in Fig. 6D the
free-energy difference A0 −A1 between straight and bent seg-
ments vs. the geometrical parameter β rather than vs. the physical
parameter b.

For extremely rigid lattices that hardly deform (β ≈ 60°),
straight and zigzagging stripes are almost equivalent in terms
of their particle displacements and therefore A0 ≈A1. As β
increases, straight stripes develop an entropic advantage that
comes from the fact that the straight-stripe ground state is the
most anisotropic and hence has the most nonuniform distribution
of eigenfrequencies, and thus the maximal entropy (13). For
extremely large deformations (β > 100°) we observe a decrease
in A0 −A1 that reaches a minimal value at β ≈ 155° and then
increases again as β → 180°. In the SI Appendix we show how this
nonmonotonic behavior results from the numerical structure of
the dispersion relations. In particular, we identify in Fig. S10 the
region in reciprocal space that dominates the free-energy differ-
ence between straight and bent stripes. The magnitude of the
free-energy difference in this region grows monotonically with β;
however, the size of this region decreases, which gives rise to the
nonmonotonic behavior seen in Fig. 6D for 60° ≤ β ≤ 155°. For
β ≥ 155° the free-energy difference has a different wave-vector
dependence (see Fig. S10) that gives rise to the second increase
in the total free-energy difference at such large deformations.
It would be interesting to understand theoretically the deeper
origins and possible implications of this nonmonotonic behavior.
Note that for large values of β, the distance to some of the next-
nearest neighbors becomes smaller than the distances between
nearest neighbors. This introduces further complications beyond
the analysis presented in this paper, which assumes only nearest-
neighbor interactions. Overall, our numerical results show that
for all ground-state deformations, straight stripes are preferred
entropically; however, their entropic advantage is extremely
small. We observed the same qualitative behavior when allowing
the system’s total volume to vary.

Before concluding we note that the free-energy coefficient A
given in Eq. 4 and plotted in Fig. 6 is defined for each specific
realization of the stripes. Randomly zigzagging stripes that mix
straight and bent segments are highly degenerate, and their free
energy possesses also a configurational entropy (or entropy of
mixing) that competes with the vibrational entropic advantage
of straight stripes that we found. However, due to the one-dimen-
sional character of the ground state, this configurational entropy
is subextensive in system size and scales as

ffiffiffiffi
N

p
. The vibrational

free energy of Eq. 4 enters as an extensive quantity that scales
linearly with N in F and is thus dominant in the thermodynamic
limit. As a result, straight stripes are favored. This may be the
reason for the limited ability of our simulations to reach perfect
straight stripes, and for the smaller values of PðiiiÞ∕PðivÞ for smal-
ler systems in Fig. 3C. To test this, we repeated the simulations
at parameter values where the difference in A between straight
stripes and zigzags is smaller and indeed found a weaker prefer-
ence for straight stripes.

Summary and Conclusions
In summary, our exact microscopic description of this previously
studied (5, 6) elastic Ising model reveals a highly degenerate, par-
tially disordered ground state. We find a much richer behavior
because entropy lifts the degeneracy at any positive temperature.
However, large free-energy barriers between the ground-state
configurations induce a glassy phase of zigzagging stripes.
Although equilibration is strongly hindered in this glassy phase,
the straight-stripe structures obtained in it result from the minute
entropic differences in the equilibrium free energies of the var-
ious stripe realizations. The fact that this model is amenable to
analytic treatment makes it appealing as a prototypical model
for studying such order-by-disorder phenomena in a broader
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context. Moreover, the current approach to experimentally study-
ing frustration relief by lattice deformations in antiferromagnets
is based on quite indirect measurements of lattice deformations
(45, 46). Our work makes direct contact to a colloidal system (22)
in which frustration and its relief are governed by similar physical
mechanisms, yet it has the advantage that local deformations can
be directly measured in it. Interestingly, several recent experi-
mental works are focused on measuring the normal modes of
vibration in colloidal systems (47–50). On top of understanding
deformable antiferromagnets and mesoscopic model systems for

them, we expect that results obtained for our system will shed
light on questions such as the statistical mechanics of sphere
packings and the physical origins of glassy dynamics.
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