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Abstract

Background: During the Neolithic revolution, early farmers altered plant development to domesticate crops. Similar traits
were often selected independently in different wild species; yet the genetic basis of this parallel phenotypic evolution
remains elusive. Plant architecture ranks among these target traits composing the domestication syndrome. We focused on
the reduction of branching which occurred in several cereals, an adaptation known to rely on the major gene Teosinte-
branched1 (Tb1) in maize. We investigate the role of the Tb1 orthologue (Pgtb1) in the domestication of pearl millet
(Pennisetum glaucum), an African outcrossing cereal.

Methodology/Principal Findings: Gene cloning, expression profiling, QTL mapping and molecular evolution analysis were
combined in a comparative approach between pearl millet and maize. Our results in pearl millet support a role for PgTb1 in
domestication despite important differences in the genetic basis of branching adaptation in that species compared to maize
(e.g. weaker effects of PgTb1). Genetic maps suggest this pattern to be consistent in other cereals with reduced branching
(e.g. sorghum, foxtail millet). Moreover, although the adaptive sites underlying domestication were not formerly identified,
signatures of selection pointed to putative regulatory regions upstream of both Tb1 orthologues in maize and pearl millet.
However, the signature of human selection in the pearl millet Tb1 is much weaker in pearl millet than in maize.

Conclusions/Significance: Our results suggest that some level of parallel evolution involved at least regions directly
upstream of Tb1 for the domestication of pearl millet and maize. This was unanticipated given the multigenic basis of
domestication traits and the divergence of wild progenitor species for over 30 million years prior to human selection. We
also hypothesized that regular introgression of domestic pearl millet phenotypes by genes from the wild gene pool could
explain why the selective sweep in pearl millet is softer than in maize.
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Introduction

Plant domestication provides many examples of repeated

phenotypic evolution [1,2] and a powerful system to explore its

genetic basis [3,4]. Cereals in particular share many common

adaptations to cultivation which define the domestication

syndrome [1,2]. They were domesticated from different wild grass

species in distinct domestication centers 10,000 to 4,000 years ago

[5]. Human selection focused on the seed and shaped the generally

small-sized, naturally dispersed and coated wild seed into the

typical cereal grain, large, naked, devoid of dormancy and

dispersal ability [5,6]. In maize, sorghum and millets (cereals of

the Panicoideae subfamily), the characteristic bushy architecture of

wild progenitor species was also altered and branch number

strongly reduced [7]. In maize in particular, vegetative branching

was almost completely suppressed (Figure 1A). The genetic

dissection of these developmental adaptations in crosses between

domesticated crops and their respective wild relatives has revealed

that, despite the multigenic inheritance of domestication traits,

some of the underlying quantitative trait loci (termed domestica-

tion QTL) coincide at conserved syntenic locations in the different

cereal genomes. This has prompted the hypothesis that man could

have unconsciously and independently selected the same reper-

toire of genes for the domestication of multiple species. This would

constitute a large scale process of parallel genetic evolution [1],

whereby repeated phenotypic evolution proceeded by the
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Figure 1. Hypothesis of parallel genetic evolution at the Tb1 locus for the adaptation of vegetative branching during maize and
pearl millet domestication. A. The phylogenetic tree shows that Zea mays and Pennisetum glaucum are two wild grasses from the Panicoid sub-
family that separated 30 million years ago (dotted lines, scale not respected), wild Z.mays (teosinte) growing in America and wild P.glaucum in Africa.
About 9,000–4,000 years ago, they were independently domesticated into maize and pearl millet, respectively. Pictures below the tree illustrate the
parallel morphological evolution of both wild progenitors during their domestication, in particular the reduction of tillering and branching. Z.mays
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recurrent, independent emergence and selection of new adaptive

mutations at homologous genes (reviewed in [8,9,10,11]).

This initial view has been refined as the genetic control of

developmental traits targeted by domestication is gradually

revealed in model systems like rice and maize. Prior to

domestication, wild progenitor grass species have diverged over

65 million years during which they have strongly diversified

morphologically through the evolution of gene networks. It is now

clear that many of these networks control the same developmental

traits as those later targeted by domestication [7]. For some traits,

genes have conserved their role in different grass species and

sometimes even across monocots and dicots. In contrast, for other

traits, developmental gene networks have evolved specifically in

such a way that key determinants differ in related species (e;g. the

ramosa gene in Panicoideae, which cannot be found in rice despite

extensive efforts to clone it) [7]. Positional cloning of domestication

genes is still tedious, slowing the advances to identify these

determinants and compare them across species. Therefore, the

hypothesis of parallel genetic evolution during domestication is not

trivial and needs to be tested directly by a candidate-gene

approach for a given domestication gene.

Like in maize, vegetative branching has been considerably

reduced during pearl millet domestication (Pennisetum glaucum) [12]

(Figure 1). Even though branch number still segregates in

domesticated pearl millet populations, cultivated varieties produce

much less branches than wild P.glaucum (Figure 1A–B). In some

areas, segregation of wild features in the domesticated gene pool

may be due to the occurrence of weedy plants, which display

intermediate branching phenotypes [13] (Figure 1B). Previously,

we reported a domestication QTL for reduced vegetative

branching in this species which covered a region predicted to

harbor the Teosinte-branched1 (Tb1) gene according to comparative

mapping [12,14]. Tb1 is a plant-specific transcription factor [15]

and a major domestication gene in maize [16]. While the barley

Tb1 orthologue has recently been shown to contribute to spike

architecture differences between two-rowed and six-rowed varie-

ties [17], Tb1 has mainly been associated to the development of

vegetative branches. Its specific targets and mode of action are yet

unknown but transgenic and mutant studies of Tb1 homologs in

rice, sorghum and A.thaliana showed that it contributes to repress

the activity of vegetative axillary meristems where it is expressed,

and their expansion into branches [18,19,20,21]. Vegetative

branching is a very complex and highly multigenic trait requiring

the coordination of meristem growth by multiple pathways,

including local meristematic and long-distance hormonal signals

from roots and shoots, as well as environmental cues (reviewed in

[22,23]). Surprisingly, Tb1 was singled out as the only major gene

involved in the adaptation of vegetative branching during the

domestication of maize, accounting for 35% of the trait variance

[16,24,25], even though stem number is controlled by at least 8

other loci in the wild progenitor teosinte [26]. Further studies

revealed that human selection targeted adaptive sites located

upstream of the gene, possibly in regulatory sequences related to a

hypothetic dosage effect of Tb1 on development or to the strong

pleiotropy of the gene over inflorescence structure [27,28].

Tb1 is an obvious a priori candidate gene for the adaptation of

vegetative branching in other domesticated species due to its

conserved function in the control of this trait in dicots [19] and

monocots (grasses) [18,20]. However, it has never been formally

proven to be involved in the evolution of branching during

domestication other than in maize. In fact, patterns of evolution in

the coding sequence of the gene suggest that changes in the TB1

protein did not contribute to the morphological diversification of

grasses [29]. This does not preclude the eventuality of positive

selection on other Tb1 regions, such as its regulatory sequences. In

the single study published to date examining Tb1 roles in the

evolution of tillering during domestication other than in maize

[30], a cDNA clone of the maize Tb1 gene was shown to coincide

with a domestication QTL in some foxtail millet crosses (Setaria

italica). This QTL was minor and its effects considerably smaller

than those of Tb1 in maize (9% vs 35% on average). Therefore,

Tb1 effects seem to vary greatly between species, making it difficult

to predict if the gene may be a ‘‘key’’ locus recurrently recruited

for the evolution of branching during domestication. The

ontogeny of axillary stems from different types of vegetative

meristems (see first section of results and ref.[7]), as well as the

pleiotropy of Tb1 on inflorescence architecture [16,17,24,25] are

further a priori arguments against the possibility of parallel genetic

evolution at this locus.

In this study, we asked if the Tb1 locus played a role in the

evolution of tillering in pearl millet, using a candidate-gene

approach to investigate the parallel evolution observed between

maize and pearl millet during their domestication (Figure 1A). To

test this hypothesis in the absence of routine transgenic technology

in non-model species, we first checked whether polymorphism in

the gene segregates with branching variation in pearl millet genetic

crosses. We also extended this survey to rice, sorghum and foxtail

millet. Secondly, we verified that Tb1’s expression pattern is

conserved in pearl millet. Thirdly, we tested whether sequence

polymorphism at the Tb1 locus in domesticated and wild

populations is consistent with a recent event of human selection.

For these purposes, we cloned PgTb1, the orthologue of Tb1 in

pearl millet and used a combination of QTL mapping, expression

and molecular evolution analyses.

Results

Comparative QTL mapping for vegetative branching in
cereals

Grasses produce two types of axillary stems from their main

primary shoot. Tillers are issued at a basal position, from nodes

that are put in place early during seedling development, and they

and P.glaucum inherited from their most recent common ancestor the orthologous copies ZmTb1 and PgTb1of the developmental gene Tb1
(represented by a hatched box). It was previously shown that ZmTb1 has been targeted by human selection for the reduction of maize branching
during domestication. We ask whether PgTb1 was subjected to parallel evolutionary processes for the similar adaptation of branching during the
domestication of pearl millet. B. Distribution of the number of tillers and branches in domesticated pearl millet, wild P.glaucum and weedy plants
grown in the same location in south Niger. The cultivated field and the wild population were in parapatric situation. Plants present in the field were
classified as domestic or as weedy according to farmer’s classification. The ability of weedy pearl millets to shed their seeds spontaneously at the
maturity stage is one of the main factors used by farmers to recognize them [13]. Histograms show that domestication was associated with a
reduction of vegetative branching. These data were obtained on more than 200 plants for the wild and the domestic pearl millets repectively, and
more than 150 plants for weedy phenotypes. C. Tillering in young P.glaucum seedlings. At 4 weeks after germination, tillers are visible in wild
P.glaucum (left) but not in the Souna domesticated landrace (right). Close-ups after dissection reveal that axillary meristems have developed into an
emergent tiller in the wild plant (arrow) but remain dormant as buds with 1 or 2 leaves (arrow) or undeveloped meristems (box) in the cultivated
landrace.
doi:10.1371/journal.pone.0022404.g001
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often develop their own adventitious roots independent from the

main stem. Branches grow from nodes located higher up on the

stem, after this latter starts elongating (after flowering induction)

[7]. Both types of branching have been reduced in domesticated

sorghum [7], foxtail millet [30], maize [25] and pearl millet [12]

(Figure 1A). Absence of branching at a node can arise from various

developmental defects related to different genetic networks [23].

The vegetative axillary meristem can either fail to initiate at the

axil of the leaf, as observed in some foxtail millet varieties [7], or it

can be arrested in its organogenic activity, like it is the case in

maize [31], sorghum [20] and foxtail millet [7]. To investigate

whether it is so in pearl millet as well, we dissected domesticated

and wild plants at different stages of development. As illustrated in

Figure 1C, tillers and branches fail to develop in domesticated

plants due to the arrested activity of their vegetative axillary

meristems which remain dormant either as meristems or as small

buds with one or two leaf primordia. Therefore, branching

adaptation during domestication has comparable developmental

origins in maize, sorghum, foxtail and pearl millet, and could be

caused by orthologues of the same genes involved in axillary

meristem activity.

By assembling a comprehensive comparative genetic map of

QTLs for axillary branching in these four species (Figure 2), we

observed that QTLs for branching reduction are consistently

detected in the predicted region for Tb1 in sorghum and pearl

millet, in addition to the previously described cases of association

with the gene in maize [16] and foxtail millet [30]. These QTLs

reflect adaptation of branching during both domestication (in

‘‘wild progenitor x cultivated landrace’’ crosses) and secondary

crop diversification (in crosses between varieties). Interestingly, the

Tb1 region of perennial species of sorghum also harbors QTLs for

the production of rhizomes (Figure 2), which are structurally

equivalent to underground tillers [7]. On the other hand, the Tb1

region is not associated to domestication QTLs in wheat (not

shown) or rice (Figure 2), although transgenic experiments have

shown that Tb1 orthologues of these species have conserved a role

in tiller development [18]. This is consistent with the fact that the

vegetative architecture of pooids (wheat) and ehrhartoid (rice)

cereals was not altered by domestication. Instead, they produce a

profuse number of tillers (and no upper branches), like their wild

progenitors [7]. However, QTLs for tiller number map close to

OsTb1 in crosses involving rice varieties that have been specifically

selected for a low-tillering phenotype during secondary crop

diversification (Figure 2).

This comparative map also revealed that the genetic basis of

branching adaptation during the domestication of sorghum and

millets is in sharp contrast with maize. It involves multiple genes in

addition to Tb1, some of which have much stronger effects on the

trait than Tb1 (Figure 2). As opposed to observations in maize, Tb1

effects in those species are usually moderate to low and sometimes

depend on environmental conditions (e.g. in foxtail millet [32]).

Altogether, these results suggest a consistent pattern of parallel

evolution of vegetative branching in cereals based in part on the

repeated selection of Tb1, despite strong differences from a species

Figure 2. Comparative mapping of domestication QTLs for vegetative branching in cereals. The orthologous map segments syntenic to
the maize Tb1 region are aligned following consensus markers (linked by dotted grey lines). QTLs associated to branching are indicated by their
confidence intervals (colored boxes). The respective percent phenotypic variance they explain (R2) is reported alongside the number and effects of
other QTLs in the same cross. These QTLs tend to be consistently conserved at similar positions around the mapped or predicted location of Tb1
orthologues in sorghum, foxtail millet and pearl millet, and in some rice crosses involving parents with contrasted vegetative branching architecture.
doi:10.1371/journal.pone.0022404.g002
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to another in the respective contribution of Tb1 orthologues to the

genetic basis of domestication.

Characterization of PgTb1 in Pennisetum glaucum
We first isolated the homologous Tb1 coding sequence by

polymerase chain reaction (PCR) in pearl millet (P.glaucum) and

other wild Pennisetum species. In an approach similar to Lukens &

Doebley’s in [29], we used primers from conserved regions of the

gene (Table S1) to isolate Tb1-like sequences. The product we

cloned shared strong nucleotide and amino acid identity with

Z.mays Tb1 (87% and 83% respectively), especially in the specific

TCP and R transcription factor domains. Southern blotting (not

shown) indicated that this gene was present as a single copy in

P.glaucum, in agreement with previous studies in Andropogoneae [29].

This, along with the high identity levels and the phylogenetic tree

built from the aligned Tb1 sequences (Figure 3A), demonstrated

that the gene we isolated in pearl millet is orthologous to maize

Tb1 (the P.glaucum gene is hereafter referred to as PgTb1 and the

Z.mays orthologue as ZmTb1). Reverse transcription PCR (RT-

PCR) on seedling RNA also confirmed that PgTb1 is a functional

gene expressed in wild and domesticated P.glaucum.

The structure of Tb1 has been somewhat unclear due to a

putative cryptic intron reported in ZmTb1 [33]. We examined the

expressed-sequence tag (EST) and cDNA sequences homologous

to ZmTb1 and available in grasses, and found all of them to be

perfectly colinear with the corresponding DNA sequences

(Figure 3B). RT-PCR was also performed with several sets of

conserved primers which failed to detect any splice variant in

ZmTb1 or PgTb1 (e.g. on Figure S1). This confirmed that Tb1 is a

single-exon gene in both maize and pearl millet. These RT-PCR

results located the transcription start site roughly 900bp upstream

of the start codon (Figure 3B). This structure is probably conserved

in other Tb1 orthologues according to the EST and cDNA data

available in other cereals.

To gain a view of sequence evolution in the Tb1 genomic

region, we isolated a bacterial artificial chromosome (BAC)

containing PgTb1 and compared it to orthologous BACs from

maize, rice and sorghum. While conservation between Tb1

orthologues was high in their transcribed region (.73% nucleotide

identity on average), similarity dropped abruptly upstream of the

transcription start site (alignment was impossible in those regions).

In contrast, many highly conserved non-coding sequences were

Figure 3. Structure and sequence conservation of grass Tb1 orthologues. A. Phylogenetic tree built from the alignment of Tb1 orthologous
sequences (from start to stop codon) using maximum likelihood. Bootstrap values at the nodes were estimated from 500 replicates. B. The position of
orthologous Tb1 EST and cDNA from grass species identified by a nBLAST search of the Genbank database are reported relative to the maize ZmTb1
gene. In the schematic representation of the structure of ZmTb1, white boxes stand for exons, lines for UTR and introns. The putative transcription
start site (TSS) is indicated by an arrow and the box in interrupted lines is a putative short exon reported by [33] but not supported by any of the EST
and cDNA data. C. Analysis of pairwise sequence conservation between ZmTb1 (BAC clone AF464738) and the orthologous regions of sorghum
(AF466204), rice (AC091775) and peal millet using the VISTA software [51]. Evolutionary conserved regions (ECR or CNS) were defined by a sliding
window analysis with a threshold size of 70 bp and a minimum 70% nucleotide identity.
doi:10.1371/journal.pone.0022404.g003
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found up to 9kb downstream of the gene, some of them shared by

all four orthologues (Figure 3C).

We also examined the timing and location of PgTb1 expression

during pearl millet development. In greenhouse conditions, wild

and domesticated plants began to differ at 25 to 30 days after

germination (8–10 visible leaves). At that stage, the first tiller

became visible and most axillary meristems at other nodes had

developed buds with one or two leaf primordia in wild seedlings,

while these meristems remained dormant and did not produce

buds in domesticated plants (Figure 1C). Time series of RNA in-

situ hybridizations detected PgTb1 transcripts in the axillary

meristems as early as 10 days after germination (Figure 4A).

Results were identical in 30 day-old plants. After floral induction,

PgTb1 was also expressed in axillary meristems and buds at upper

nodes along the main stem, albeit at lower levels than at basal

nodes, especially in wild plants (Figure 4A). The gene was not

expressed in other organs than vegetative axillary meristems.

These expression patterns were similar to those reported for Tb1

orthologues in maize, rice and A. thaliana [18,19,31] and supported

the hypothesis that PgTb1 has conserved its function in the control

of vegetative axillary meristem growth in P.glaucum.

Association of PgTb1 with domestication QTLs
To test comparative mapping predictions, we refined QTL

detection after mapping PgTb1 and additional flanking markers in

the same wild x cultivated crosses as we had previously analyzed

(Figure 4B). Among other QTL segregating around the gene,

PgTb1 was the lodscore peak marker for a QTL controlling the

total number of stems (log likelihood ratio of 34.1). The PgTb1

allele contributed by the domesticated parent was associated with

fewer tillers and branches. In both crosses, the effects of the gene

on the trait were modest (10% or 18% phenotypic variance

explained) and they were complemented by at least four other

QTL of equivalent effects. Even though direct transformation to

rule out potential effects of other linked genes is yet impossible in

P.glaucum, these results strongly suggested that PgTb1 underlies a

domestication QTL for the reduction of axillary vegetative growth.

Patterns of positive selection in PgTb1
If PgTb1 is a domestication gene, it should display signatures of a

recent selective sweep [3,4,34]. We analyzed sequence polymor-

phism in 6.7kb across PgTb1, in a wide collection of 52 accessions

representing the diversity of wild and cultivated P.glaucum (Figure S2

and Table S2). Polymorphism was compared between PgTb1 and

three single-copy sequence tagged-site loci (STS) located on

different linkage groups and away from domestication QTLs. They

provided a control for neutral evolution in contrast with the human

selection that occurred during domestication. A search of Genbank

using BLASTn indicated that STS 713 is likely coding and shares

high similarity with multiple plant protein kinases from the RLG

family in maize, sorghum and rice (e-values 3e-69 to 4e-04), while

STS 476 shared similarity with an expressed mRNA of unknown

function in Sorghum (e-value 3e-165) and STS 738 was non-coding

(one single hit in rice with e-value 6e-07).

The polymorphism indices p and h measure nucleotide diversity

and are reduced by genetic sampling during population bottleneck

as well as by positive selection, two processes characteristic of

domestication. Population bottleneck affects the whole genome

while selection effects are restricted to the targeted loci and regions

in linkage disequilibrium with them. The ratio of pcultivated/pwild

showed that cultivated pearl millet is 46% less polymorphic than

wild P.glaucum across all loci on average (Table 1) which is

consistent with a recent bottleneck. PgTb1 sequences also lost two

times more diversity than the STS loci (60% vs 32% on average),

possibly reflecting an additional event of selective sweep in PgTb1.

This loss of genetic diversity in domesticated plants was uneven

throughout the PgTb1 region, as illustrated by a sliding window

plot of p values (Figure 5A). The strong difference between

domesticated and wild polymorphism levels was particularly

visible upstream of the of the transcription start site and within

the transcribed region, where the drop in diversity reached 70%

(Table 1). These results suggested an action of selection on those

regions.

To test this hypothesis, we implemented several tests of

neutrality on the basis of DNA sequence polymorphism data.

We first performed an HKA test [35] by using STS 476 as a

control locus. Only STS 476 was used since it was the only

adequate neutral, coding locus (single BLAST hit (sequence XM

002450113.1) vs multiple possible homologues for STS 713). The

alignment between the Sorghum Tb1 sequence (AF466204) and

PgTb1 limited the HKA test to a short ,400 bp stretch of the 59

upstream region, the ORF and ,350 bp of the 39 downstream

region. Both on this whole region and on the coding sequence

only, the HKA tests resulted not significant either in the

domesticated or the wild sample (data not shown).

We also implemented two other tests of neutrality, namely

Tajima’s D [36] and Fu & Li’s F* [37]. Population size of wild

P.glaucum was supposed large and constant, with no effect on D

and F* statistics. However, the population expansion following the

strong bottleneck experienced by the domesticated population

could be a cause for an excess of rare alleles (e.g. singletons) as

equally as a recent selective sweep. This would translate into

negative D and F* values due to demography rather than positive

selection. Therefore, we generated the expected distributions of D

and F* under conditions of population bottleneck and subsequent

expansions consistent with the history of domestication and the

archaeological record [38,39] (see Methods for details). Several

combinations of model parameters were tested to explore a wide

range of possible demographic scenarios. The significance of the

observed values of D and F* was tested against this modified null

hypothesis of neutrality and demography (Figure S3).

The results of Tajima’s D test and Fu & Li’s F* neutrality tests

are presented in Table 1 (see also Table S3 for more details). As

expected, the control STS loci were compatible with expectations

both of neutrality (with respect to natural selection in the wild

sample) and absence of selection associated to domestication

(Table 1). Only one locus (STS 713) was significant in the

domesticated sample but only in some scenarios and only at the

5% level (p . 3.8% without correction for multiple testing). It

Figure 4. Conservation of PgTb1 function during plant development. A. In-situ hybridization of the PgTb1 mRNA in serial transverse sections
of a 10 day-old seedling of (a–c) the Souna landrace, (d–f) a 10 day-old wild seedling and (g) at the upper node of a mature wild plant (ms: main stem;
as: axillary branch). Positions of the sections are given on the bottom-right diagram. B. Association of PgTb1 with domestication QTLs for tillering and
branching in two domesticated x wild crosses. Souna and Tiotandé are landraces from Niger and Senegal, respectively. We mapped PgTb1 in the
reference cross 81B x ICMP451 to position the gene on the consensus pearl millet genetic map. The corresponding ZmTb1 locus and associated maize
domestication QTLs are taken from ref. [24]. The percentage of variation explained by a QTL (R2) is reported beside its confidence interval (box).
Abbreviations: till, tiller number; nb stems, total number of stems (tillers & branches); nb nodes, node number on the main stem; plht, plant height; lbil,
average branch internode length on the main stem.
doi:10.1371/journal.pone.0022404.g004
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Figure 5. Molecular polymorphism at the PgTb1 locus. A. Sliding-window plot of the polymorphism index p in the PgTb1 region. Values were
calculated separately in wild (blue) and domesticated (green) samples in a 600 bp window. B. Genetic tree of PgTb1 alleles (right) and for one of the
STS loci (left), constructed using the neighbor-joining method and the Kimura-2P distance (gaps excluded). Significant bootstrap support is indicated
at the node and was calculated for 1,000 random permutations.
doi:10.1371/journal.pone.0022404.g005
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could therefore not be excluded that STS 713 bears the weak

signature of a past selective sweep in the domesticated sample (and

maybe in both populations), possibly in relation to its coding

nature as a RLG-like kinase.

In contrast with these STS loci, neutrality tests supported a

highly significant selective sweep in domesticated pearl millet in

the region upstream of PgTb1. D and F* values were highly

significant regardless of the demographic scenario considered, in

strong contrast with the corresponding wild P.glaucum sequences

which were consistent with neutrality (Table 1). Neutrality was also

rejected in the transcribed and downstream regions in the

domesticated sample but it was harder to conclude as to a

selective effect of domestication, since both regions also seem to be

subjected to natural selection in wild P.glaucum (Table 1). In the

absence of demographic information, it was impossible to explore

whether this excess of rare alleles was due to a selective sweep or to

a recent expansion of the wild population (the latter would also be

in agreement with negative D and F* values observed for all loci

including the STS in the wild sample).

Altogether, neutrality tests supported a signature of selective

sweep related to domestication in PgTb1, markedly stronger

upstream of the gene and in agreement with the sliding window

analysis of sequence polymorphism as well as the domesticated-to-

wild ratios of h and p These results were consistent with the

hypothesis that human selection acted on PgTb1 and that the gene

was involved in pearl millet domestication. They also pointed to a

stronger selective sweep in the intergenic sequences upstream of

the gene that mirrored previous results reported in maize ZmTb1

[27]. However, the intensity of the selective sweep in PgTb1 was

noticeably less than in ZmTb1: while most of the wild genetic

diversity is lost in maize [27], a third still segregates in pearl millet

(Table 1). Possible explanations for this important discrepancy are

discussed below. It could explain the failure of HKA tests to detect

deviation from neutrality in PgTb1. Another reason could be the

poor alignment scores with Sorghum, as well as the use of STS 476

for which low levels of polymorphism reduce the power of the

HKA test.

The absence of fixation in domesticated pearl millet made it

impossible to identify putative causal sites. However, in both pearl

millet and maize Tb1 orthologues, the footprint of human selection

was centered on upstream regions theoretically involved in the

regulation of the gene. Furthermore, our data suggested a possible

footprint of natural selection in wild P.glaucum, which is not

unexpected given that PgTb1 indirectly controls inflorescence

number, an element of plant fitness. This also suggested that the

gene may have played a broader role in the evolution of grasses

beyond solely cereal domestication, as formerly speculated [29].

Discussion

A few years ago, Paterson et al. [1] proposed that the analogous

morphological transformations induced by domestication to turn

wild grasses into crops shared a common genetic basis. Our study

addressed this hypothesis directly with molecular data for a

candidate domestication gene. We argue that the same Tb1 gene

has been targeted by human selection in pearl millet and maize in

relation to the similar adaptations of their vegetative branching

pattern. Three observations are consistent with this hypothesis: (1)

sequence and expression pattern conservation between Tb1

orthologues (Figures 3 and 4A) indicate that the gene function

was conserved since the divergence of Zea and Pennisetum and could

therefore be a common target of human selection for similar

adaptations in the two species; (2) Tb1 orthologues segregate with

vegetative branching variation in crosses between wild and

domesticated plants (Figure 2 and 4B); (3) sequence polymorphism

in the Tb1 orthologue is consistent with evidence of human

selection (Table 1 and Figure 5A).

Further investigations would help consolidate this conclusion.

First, definitive proof of the implication of PgTb1 in the reduction

of tillering would require transformation of a domesticated plant

with a wild PgTb1 allele (and reciprocally). Second, tests of

neutrality based on sequence polymorphism are limited by

controls for demographic events in the history of the sample.

We explored a wide range of bottleneck/population expansion

scenarios, from the most extreme to the most compatible with

archaeological evidence (Figure S3) but additional sequence data

at neutral loci would help infer the precise demographic history of

pearl millet.

Also, while we did not identify another gene or open-reading

frame in the vicinity of PgTb1 within the BAC clone that we

sequenced (data not shown), the selective sweep pattern could

result from selection on another distant region in linkage

disequilibrium with the gene. Previous studies in maize were

confronted with the same problem, for lack of fixation in

domesticated populations [27]. It is strongly suspected that a

combination of multiple adaptive sites is involved in maize, some

of which have been fine-mapped to regions located between 58kb

and 69 kb upstream of the selective sweep originally detected

flanking ZmTb1 [28]. Despite the very strong divergence we

observed between Z.mays and P.glaucum in these intergenic regions,

it is possible that short regulatory elements have been conserved in

both species.

Why is the signature of selection weaker in pearl millet
than in maize?

The amplitude of the selective sweep associated to domestica-

tion (Figure 5A) is arguably lower in PgTb1 than it is in ZmTb1

[27]. Several theoretical studies have shown that such soft sweeps

are in fact likely to be common and can stem from different

alternative explanations [34,40,41,42].

First, these two Tb1 orthologues strongly differ in their

respective contribution to the genetic basis of vegetative branching

adaptation (oligogenic in maize but multigenic in pearl millet). In

contrast with ZmTb1, the moderate-to-low and non pleiotropic

effects of PgTb1 may have prevented mutations from being

counter-selected in wild progenitor populations prior to domesti-

cation. Therefore, adaptive sites may have been harbored in

different initial PgTb1 haplotypes responsible for the higher genetic

diversity in domesticated landraces. Similar cases of cryptic

variation at intermediate frequencies has been documented for

several domestication traits in teosinte [43]. Such selection on

standing genetic variation reportedly affects the intensity of

selective sweeps [34,40] and therefore the power to detect

signatures of selection in domestication genes [34].

It is also unknown whether multiple wild progenitor populations

may have contributed to pearl millet domestication [44]. Statistical

support of PgTb1 phylogenies did not point clearly to a unique

origin of the domesticated sample (Figure 5B). In the case of a

reintroduction and recombination of polymorphism from various

wild populations during the domestication process, the interfer-

ence between linked adaptive sites originally proceeding from

different wild populations could have shaped a soft sweep [42].

Current agricultural practices in traditional areas of pearl millet

cultivation could also prevent the fixation of PgTb1 alleles. In

previous studies, we reported that farmers traditionally proceed

with selection in the granary, i.e. based on seed and panicle traits

and taking no account of the vegetative branching or general

architecture of the plants from which seeds were harvested
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[13,45]. This would be of little consequence if the domesticated

phenotype was fixed, but on the contrary, a significant phenotypic

diversity often segregates in the fields (Figure 1B). Cultivated plants

can range from typically ‘‘domesticated’’ to weedy types displaying

shorter panicles, smaller seeds and significant vegetative branching

[13,45]. In the Sahel, where sympatry with wild P.glaucum still

prevails, these intermediate phenotypes result from indeterminate

generations of hybridization between domesticated, weedy and

sometimes wild plants. They account for an important proportion

of millet plants found in the fields [45] and despite their lower

agronomical quality, they are harvested when other cultivated

plants fail to withstand the aridity and unpredictable rainfall. This

process whereby less-adapted individuals are selected if better

competitors are rare is a typical case of ‘‘soft selection’’ [46] and it

likely contributes recombinant PgTb1 alleles to the domesticated

gene pool. The impact of this long-term process extends far

beyond regions of sympatry with wild P.glaucum because seeds are

traded on a large geographic scale [47]. Domestication of pearl

millet can therefore be considered as a still on-going process and

strong selective sweeps cannot be achieved under these conditions.

This could also explain why population genetics tests (D anf F*)

were more efficient than HKA in detecting selection in our study.

These tests are indeed known to be efficient for detecting ongoing

selection acting on segregating variants [48].

This soft sweep in PgTb1 is in agreement with the emerging re-

evaluation of plant domestication as a process that may have taken

place much slower than previously envisioned, at least for some

phenotypes. For instance, archeological records of spikelets and

rachis fossils demonstrated that the evolution of non-shattering

forms in rice, barley and einkorn wheat was very slow [6]. It

suggests that selection pressures for this trait were surprisingly

weak during domestication, at least for these three cereals.

Remaining issues and broader implications
First, a better understanding of the causal polymorphisms, of the

regulation of Tb1 expression and of the gene’s function during

plant development are required to elucidate the molecular

mechanism of the adaptation of branching during domestication.

Analyses of natural polymorphism extended to larger Tb1 regions

and accurate comparative measures of Tb1 expression, in

complement to already undertaken reverse genetics studies in

the model species A.thaliana [19,21] will likely contribute to fill this

gap.

Second, did other domestication events? Studies in foxtail millet

[30], comparative QTL maps (Figure 2) and preliminary

expression data in sorghum (Figure S4) open the intriguing

perspective that this hypothesis could extend to other cereals for

which domestication also reduced branching. Moreover, the Tb1

orthologue in barley has been shown to be involved in the

differences of spike architecture between two-rowed and six-rowed

varieties, probably through its already demonstrated role in kernel

development in this species [17]. However, this hypothesis needs

to be investigated further by systematic cloning, evaluation of Tb1

effects and molecular evolution analyses in those other species.

What common properties of Tb1 orthologues would make them

preferential targets of human selection during distinct domestication

events? Rapid phenotypic evolution such as that sought by

domestication may require genes with significant effects while

avoiding deleterious antagonistic pleiotropy [10,11]. It has been

proposed that transcription factors acting at lower-order levels of

regulatory networks could therefore be predominantly involved in

natural variation [49,50]. Furthermore, case studies have illustrated

that parallel morphological evolution seems to bias for selection on

the control sequences upstream of transcription factors, not because

of the strength of these mutations but rather because these genes are

located at key positions in regulatory networks and act as integrators

between upstream patterning genes and downstream structural

effectors [10,11]. Tb1 could be just such a gene in plants, a

hypothesis that will likely be tested as details of its mode of action

and targets become available in model systems.

Conclusions
The independent emergence of similar traits in distinct lineages

is a common phenomenon observed at all taxonomic levels and

this has long raised the fascinating question as to whether these

repeated phenotypic changes evolve from similar or from different,

unique genetic mechanisms. Plant domestication has led to

strikingly similar morphological adaptations. In many cereals, it

involved the modification of architecture by selecting for plants

developing fewer branches. We examined the genetic basis of this

adaptation by comparing pearl millet and maize, domesticated in

Sub-Saharan Africa and Mexico respectively. Our study supports

that domestication in pearl millet involved the same Teosinte-

branched1 gene as previously documented in maize. Genetic maps

suggest this could have also been the case in other cereals with

reduced branching, like sorghum. However, Tb1 has modest

effects in pearl millet in comparison with maize, and the changes

in the branching habit of domestic plants have required other loci.

Signatures of selection pointed to putative regulatory regions

upstream of both Tb1 orthologues in maize and pearl millet,

suggesting that some level of parallel genetic evolution could

explain the similar reduction of branching in these two crops.

These results are unanticipated given the complex control of

branch development, the multigenic inheritance of this domesti-

cation trait in pearl millet and the millions of years of

morphological diversification of wild grass progenitor species prior

to their domestication.

However, polymorphism patterns in Tb1 orthologues also

pointed to important differences between pearl millet and maize.

For example, evidence of selection was found in the coding and 39

downstream regions in both domesticated and wild pearl millet. In

addition, we have shown that the selective sweep is much weaker

in pearl millet than in maize. We suggest that this soft sweep is due

to the ongoing and common introgression of the domesticated

pool by wild and weedy pearl millet, a process we had previously

documented in the Sahelian region [44,45].

Materials and Methods

All primers used for this study are reported in Table S1.

Cloning of PgTb1 and conservation with Tb1 orthologues
Primer design in conserved regions of the gene was guided by

homologous grass Tb1 sequences retrieved from Genbank by a

BLASTn search. In particular, L2 primer is a 25bp element

downstream of Tb1 found identical in 14 cDNA and EST

sequences (AY043215, AK107083, BQ293969, BQ778719,

BU093021, CA828010, AF543434-41). The sequence of the

PgTb1 product obtained was deposited in Genbank (AY631857).

For Southern blotting, genomic DNA was digested with BamHI or

XhoI prior to electrophoresis, blotted and probed with the U1/L2

PgTb1 PCR product labeled with dCTP-alpha32P. We used the

same probe to screen the Tift23DB BAC library from the John

Innes Centre, Norwich, UK. A BAC clone was sub-cloned and

sequenced by the John Innes Genome Centre. We assembled these

sequences using the Staden package (http://staden.sourceforge.

net). Evolutionary comparisons between BAC clones were

conducted with the VISTA program [51].
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RT-PCR assays
RT-PCR was performed with SuperscriptII RT (Invitrogen)

using 1 mg of total RNA extracted from maize and pearl millet

seedlings, and the resulting products were sequenced. We also

cloned the pearl millet EF1-alpha gene (alpha subunit of elongation

factor1) to use as a control, since it is constitutively expressed and

contains an intron. Consensus EF1-alpha primers were derived

from available grass orthologous sequences.

In-situ hybridization
Tillering strongly varies with stock and environment, therefore

tissues were sampled from accessions previously selfed over 6-7

generations to reduce the effects of genetic background, and grown

in replicate under controlled-cabinet conditions (30uC, 12 hours of

day, spaced by 25 cm). Fixation, embedding, labeling and

hybridization were performed following Hubbard et al. [31].

Replicate hybridizations of a given accession yielded identical

results and patterns were similar in different domesticated

landraces (Ligui from Chad and an early flowering landrace from

Senegal). Control hybridization with EF1-alpha was strong and

homogeneous across sections.

Mapping and QTL detection
We mapped PgTb1 in the 81B x ICMP451 reference cross using a

CAPS marker (cleaved amplified polymorphic sequence) typed by

TaqI digestion and polyacrylamide electrophoresis of the U1/L1

PCR product. In the Souna x Mollissimum cross, PgTb1 was

mapped using a single-strand conformation polymorphism (SSCP)

in the U1/L1 product, and SSR markers [52] were also added to

improve map coverage. In the Tiotande x wildX cross, the lack of

an easily typed marker impaired PgTb1 mapping but four SSR

markers were added to enable comparative mapping. QTL were

detected using WinQTL Cartographer (http://statgen.ncsu.edu/

qtlcart/WQTLCart.htm).

Measures of plant height, basal tiller number and node number

on the main stem were correlated; therefore multiple-trait

composite interval mapping was performed to estimate QTL

effects. Likelihood thresholds were determined by simulation (500

random permutations of genotypes among individuals) and

included a Bonferroni correction for multiple testing.

Polymorphism survey and selection tests
The phenotype of sequenced accessions was checked under

controlled greenhouse conditions prior to DNA extraction. PCR

products were cloned and sequenced using the TOPO-TA

(Invitrogen) and ABI-Prism v3.0 kits, assembled using the Staden

package and aligned using ClustalW. Two independent products

per individual were sequenced and a site was tagged polymorphic

if it was found consistently so in both products. Sequences were

deposited in Genbank under accession numbers EF694113-

EF694165 (PgTb1), GQ472665-GQ472771 and JN125251-

JN125254 (STS loci). Sorghum sequences used for the HKA

(XM 002450113.1 and AF466204) test were retrieved from

Genebank by using a BLASTn search. Trees were constructed

with MEGA [53], polymorphism and molecular evolution analyses

were performed using DnaSP [54] and the MS program [55] to

simulate demographic models by coalescence methods. Statistics

were computed from the outputs of the MS program using

FABSIM [56].

Rationale for the coalescence simulations to test for

selection. Patterns of polymorphism were tested for selection

using a modified Tajima’s D and Fu &Li’s F* tests [36,37]. In their

classic version, these tests assume a large and constant population

size. While this could be a reasonable hypothesis for wild P.glaucum

(Figure S3A), it is unrealistic for domesticated landraces.

Accordingly, we adapted these tests to include demography:

following the rationale of Hudson’s haplotype test of selection, we

used coalescence simulations to infer the distribution of D and F*

expected from a bottleneck and subsequent expansion, without

selection (Figure S3B). The probability of the D and F* values

observed in the domesticated sample was deduced from this null

distribution.

The archaeological record of pearl millet domestication [38,39]

was accounted for in the parameters of these demographic models,

which were varied one at a time in a combination of 54 scenarios

listed in Table S3 (see below for details). They explored a wide

range of possible demographic histories.

Implementation of demographic models with the MS

program. The parameters of coalescence models are detailed in

Figure S3B. They explored a range of possible bottleneck lengths

(100 or 500 years, as a proxy to the duration of the domestication

process), bottleneck intensity (a 5%, 0.5% or 0.05% ratio of

population size, as a proxy to selection intensity) and expansion

strength (100-, 10 or 1-fold expansion respective to initial

population size). Population size variation was assumed

instantaneous for the coalescence simulation but we observed no

difference by simulating an exponential growth (data not shown).

We also tested a bottleneck of 1000 years with no significant

differences in the conclusions for selection tests (data not shown).

Models also took into account different possible mutation rates for

the PgTb1 locus (equivalent to the Adh1 locus, 10 times less or 10

times more). Specifically, the MS program command line (Figure

S3B) required the sample size and number of segregating sites S

(fixed for each locus/ PgTb1 region and reported in Table 1), the

time for the end of the bottleneck (fixed to t1 = 4,000 years

according to archaeological data for the completion of pearl millet

domestication), the time for the beginning of the bottleneck

(t2 = 4100 or 4500 years), the ratio of population size during the

bottleneck (N1/N2, 3 possible values), the ratio of population size

during the expansion (N0/N2, 3 possible values). The mutation

rate m (3 possible values) and Watterson’s estimator h (Table 1)

were used to convert time points t1 and t2 from years to units of

4N0, as described in the documentation of the MS program [55].

Each variable parameter was then changed one at a time, resulting

in 54 combinations (scenarios) listed in Table S3. Ten thousand

simulations of each scenario were run, assuming absence of

recombination. The rejection tests for selective neutrality of

nucleotide polymorphisms in Tb1 and the three STS loci in the

domesticated sample were done by using each of the 54

distributions of D and F* generated for the 54 scenarios.

Testing the fit of demographic scenarios. Our objective

was not to infer the history of pearl millet domestication because

we considered that three potentially neutral loci would be not

enough to reach this goal. Rather, our goal was to compare our

PgTb1 data to the neutral expectations under a wide range of

possible demographic scenarios. Nevertheless, we estimated the

approximate likelihood of these 54 scenarios from the STS data

(see below and Figure S3C for details). To evaluate the likelihood

of these scenarios, we followed the same method as implemented

by Tenaillon et al. in maize [57]. For each STS locus and each

scenario, we computed the frequency of simulations (among the

10,000 repeats) for which summary statistics were included into

the range +/2 10%, 20% or 30% of the observed values of these

statistics. Both pDom and the ratio pDom/pWild were used as

summary statistics. A multi-locus approximate likelihood of each

scenario was estimated by multiplying the individual frequencies

obtained for the 3 STS loci. Likelihood values for all 54 scenarios
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are plotted in Figure S3C. Results obtained with the two summary

statistics were very similar for all three ranges and all scenarios.

Those obtained for the pDom/pWild ratio are given in Figure S3C.

From these results, only scenario 39 (long and intense bottleneck,

large expansion, high mutation rate) was subsequently discarded as

highly unlikely relative to the others. Other scenarios were

otherwise roughly equally plausible and, therefore, were all

taken into account to test for neutrality in the domesticated

sample. This was in agreement with previous observations from

coalescence modeling of demography and domestication in maize

[58] for which variation in individual parameters had little

influence on the likelihood of models. Under each scenario, the p-

values of D and F* were calculated: significant p-values consistent

across all possible demographic models (ie regardless of the true

demographic history of pearl millet domestication) were

considered to provide a strong support in favor of selection.

Supporting Information

Figure S1 RT-PCR evidence of PgTb1 expression.
Electrophoresis of the RT-PCR product issued from amplification

on pearl millet cDNA (and control DNA and water), using the

primers represented by horizontal arrows on the schematic of the

PgTb1 gene structure.

(TIF)

Figure S2 Polymorphism survey. A. Schematic diagram of

the PgTb1 region sequenced for the polymorphism survey. B. Map

of accessions sequenced for the PgTb1 polymorphism survey

(TIF)

Figure S3 Demographic models simulated by coales-
cence methods for tests of selection. A. Fisher-Wright

constant size population model for wild P.glaucum. The command

line for the coalescence simulation by the MS coalescence

program, and associated parameters are indicated to the right.

B. Bottleneck followed by an instantaneous population expansion

for domesticated pearl millet. The different demographic param-

eters tested are indicated in the table to the right, as well as the

specific parameters and command line for the coalescence

simulation by the MS program. C. Multi-locus approximate log-

likelihood of each demographic scenario. Approximate likelihood

was estimated based on the proportion of the 10,000 simulations

for which all of the p dom/p wild ratio was within 10%, 20% or

30% of their observed values in the STS loci (see Methods for

details). Scenarios are numbered 1-54 as listed in Table S3.

(TIF)

Figure S4 Conservation of the expression pattern of
Teosinte-branched1 orthologues in pearl millet (P.glau-
cum) and sorghum (Sorghum bicolor). In sorghum (right)

like in pearl millet (left), vegetative branching is reduced because

axillary meristems remain dormant (arrows). In-situ hybridization

in serial transverse sections of 10 day-old seedlings shows that Tb1

is expressed in axillary meristems in both species (a–c: pearl

millet;d–f: sorghum).

(TIF)

Table S1 List of primers used in this study.

(PDF)

Table S2 List of accessions sequenced for the PgTb1
polymorphism study.

(PDF)

Table S3 p-values of neutrality tests in the domesticat-
ed sample for each simulated demographic scenario.
Those scenarios rejected according to their likelihood scores are in

italics.

(PDF)
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