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Abstract

Methamphetamine (METH) abuse has reached epidemic proportions, and it has become increasingly recognized
that abusers suffer from a wide range of neurocognitive deficits. Much previous work has focused on the
deleterious effects of METH on mature neurons, but little is known about the effects of METH on neural progenitor
cells (NPCs). It is now well established that new neurons are continuously generated from NPCs in the adult
hippocampus, and accumulating evidence suggests important roles for these neurons in hippocampal-dependent
cognitive functions. In a rat hippocampal NPC culture system, we find that METH results in a dose-dependent
reduction of NPC proliferation, and higher concentrations of METH impair NPC survival. NPC differentiation,
however, is not affected by METH, suggesting cell-stage specificity of the effects of METH. We demonstrate that
the effects of METH on NPCs are, in part, mediated through oxidative and nitrosative stress. Further, we identify
seventeen NPC proteins that are post-translationally modified via 3-nitrotyrosination in response to METH, using
mass spectrometric approaches. One such protein was pyruvate kinase isoform M2 (PKM2), an important mediator
of cellular energetics and proliferation. We identify sites of PKM2 that undergo nitrotyrosination, and demonstrate
that nitration of the protein impairs its activity. Thus, METH abuse may result in impaired adult hippocampal
neurogenesis, and effects on NPCs may be mediated by protein nitration. Our study has implications for the
development of novel therapeutic approaches for METH-abusing individuals with neurologic dysfunction and may
be applicable to other neurodegenerative diseases in which hippocampal neurogenesis is impaired.

Background

Over 35 million people internationally abuse METH, and
in the United States METH abuse has reached epidemic
proportions. Through mechanisms that are not yet well
understood, METH abusers suffer from a variety of neuro-
cognitive deficits, including behavioral changes, executive
dysfunction, deficits in perceptual speed and information
manipulation, and impairment of verbal and spatial mem-
ory. Neurocognitive deficits may persist after cessation of
METH abuse, are slow to improve, and may not comple-
tely reverse [1-5]. Although METH was initially thought
to selectively damage monoaminergic nerve terminals,
recent studies have consistently shown that widespread
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neuronal cell death results [6-10]. Cell death involves not
only the striatum and cortex, but the hippocampus as well
[7,11]. Although the molecular mechanisms underlying
METH neurotoxicity are likely multifactorial, several key
findings support a significant role for both oxidative and
nitrosative stress. Mice overexpressing superoxide dismu-
tase, an antioxidant, show markedly decreased METH-
induced apoptosis [12]. Suppression of nitric oxide (NO)
production, through both pharmacologic and genetic
means, also protects against METH-mediated neurotoxi-
city. In addition, METH causes increased levels of 3-nitro-
tyrosine adduct formation, reflective of oxidative and
nitrosative stress [13,14]. Although METH-induced oxida-
tive and nitrosative stress and toxicity have been demon-
strated in neurons, little is known about whether other
cells within the brain, such as NPCs, are similarly affected
by METH.
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The brains of mammals contain several distinct popu-
lations of cells that are capable of dividing and differen-
tiating into neurons and glial cells throughout adulthood
[15,16]. Increasing evidence suggests that continued neu-
rogenesis is important for maintenance of cognitive func-
tion [17-20]. Within the hippocampal dentate gyrus
(DG), neurogenesis occurs in the subgranular zone and
granule cell layer. New neurons formed here are func-
tionally incorporated into the hippocampus [21] and may
participate in the formation of hippocampal-dependent
memory [22].

Studies in rodents have demonstrated that hippocam-
pal neural progenitor cells (NPCs) can respond to a
wide variety of environmental demands, such as enrich-
ment and exercise, by increasing neurogenesis, with
consequent enhancement in long-term potentiation of
synaptic transmission as well as functional learning and
memory [23-25]. On the other hand, neurogenesis is
decreased in many settings in which learning and mem-
ory are disrupted in rodents, including aging, stress,
inflammation, and exposure to certain drugs [16,26-29].
Of note, certain pathogenic conditions, such as epilepsy
and stroke, lead to increased neurogenesis without a
measurable improvement in cognition, possibly due to
abnormal migration and integration of newly formed
neurons [30]. Thus, pathogenic processes that either
increase or decrease neurogenesis may interfere with
cognitive function.

Although several drugs of abuse have been shown to
influence neurogenesis [31,32], limited data are available
with respect to the effects of METH. Several in vivo
models of METH exposure have demonstrated decreases
in hippocampal neurogenesis [33-35]. In addition, a
recent study demonstrated that METH induces NPC
death through mitochondrial fragmentation [36]. How-
ever, cellular and molecular mechanisms by which
METH affects NPCs remain largely unknown. Here, we
investigate mechanisms by which METH-induced oxida-
tive and nitrosative stress impair NPC function.

Results

Characterization of cultures of adult hippocampal
progenitor cells

NPCs were isolated from hippocampi of adult rats and
maintained in culture media containing fibroblast growth
factor (FGF) to ensure proliferation of these cells. Under
these conditions, >99% of cells immunostained with anti-
body to nestin, a marker for NPCs (Figure 1A). These
cells also stained for Ki67 a marker of proliferating cells
(Figure 1A). To determine if these cells could be differen-
tiated into various neural cell types, we initially treated
them with BrdU to label the dividing cells and then chan-
ged the media to one containing fetal bovine serum (FBS)
and retinoic acid (RA). Under these conditions, we found
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the presence of neuronal cells as demonstrated by immu-
nostaining for Tujl (Figures 1B and 1C), astrocytes that
immunostained for GFAP (Figure 1C) and oligodendro-
cytes that immunostained for RIP (Figure 1B). Nearly
equal numbers (15-20%) of each of the cell types were
present (Figure 1D). The remainder were undifferentiated
NPCs. These self-renewing AHP thus fulfilled the defini-
tion of multipotent NPCs and were used for all further
experiments.

METH impairs proliferation and survival of NPCs

To determine the effect of METH on proliferation of
NPCs, these cells were exposed to METH for 24 or 48
hours, and then pulsed with BrdU for 4 hours. METH
exposure resulted in a decrease in BrdU positive cells in
both a dose- and time-dependent manner with significant
effects at >100 uM METH (Figure 2A). After 48 hours at
the highest concentration of METH used, only 25% of
cells showed BrdU uptake.

We next considered that METH may directly cause
NPC death, thus accounting for the reduction in prolifer-
ating NPCs. NPCs were exposed to METH for 24 to 72
hours, and cell death was quantified using several mea-
sures. Trypan blue staining demonstrated that METH
caused a dose- and time-dependent increase in cell death
(Figure 2B). Doses of >250 uM, resulted in significantly
increased cell death. As opposed to BrdU uptake, dosages
of 100 uM METH did not cause an increase in cell death
even at 72 hours post treatment. At the highest concentra-
tion of METH, 50% cell death was seen at 72 hours (Fig-
ure 2B). Effects of METH on NPC death were also
confirmed by 7-aminoactinomycin D (7-AAD) staining
followed by flow cytometry. The amounts of dead cells
determined by both techniques were similar (data not
shown). To determine if METH could induce cell death
via apoptosis, a TdT-mediated dUTP nick end-labeling
(TUNEL) assay was performed. Exposure of NPCs to
METH at doses of 250 uM, 500 uM (not shown) and
1 mM (Figure 2C) resulted in TUNEL positive cells, con-
sistent with apoptotic DNA fragmentation.

METH does not affect initial NPC differentiation

We considered the possibility that a reduction in prolifer-
ating NPCs upon exposure to METH may occur due to
an increased drive toward differentiation. To investigate
whether METH causes premature differentiation, we
exposed proliferating NPCs to METH for 24 hours, and
immunostained cells with markers of differentiating cells
4 days later. METH exposure did not result in premature
differentiation of proliferating NPCs into neurons, astro-
cytes, or oligodendrocytes (Figure 3A), although total
numbers of differentiated cells were reduced (Figure 3B).
These results indicate that METH does not promote pre-
mature differentiation of proliferating NPCs. To further
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Figure 1 Establishment of NPC culture system in vitro. Adult hippocampal progenitors (NPCs) derived from Fisher rats were maintained
under either proliferative or differentiating conditions. A. Under proliferative conditions, over 99% of cells are co-labeled with antibodies to
nestin (green, cytoplasmic) and Ki67 (red, nuclear), markers of proliferating cells. B,C. Cells are exposed to proliferative conditions for 24 hrs in the
presence of BrdU, followed by 5 days of differentiation conditions stain for BrdU (green), indicating that they were all initially proliferating cells.
In addition, some cells in B co-label with Tuj1 (red, neuron), or RIP (blue, oligodendrocyte) and in C co-label with GFAP (blue, astrocyte). D.
Immunostaining of cells derived from clonal NPCs grown under proliferative (FGF-2) or differentiating (FBS+RA) conditions yields reproducible
percentages of Tuj1 (neuronal), GFAP (astrocytic), and RIP (oligodendroglial) positive cells.

determine whether METH affects NPC differentiation,
we treated proliferating NPCs with METH, followed by
culture under differentiating conditions. Under these
conditions, NPCs differentiated into neurons, astrocytes,
and oligodendrocytes with the same frequency when
exposed to METH as compared to control conditions
(Figure 3C). Again, fewer differentiated cells were present
in the METH-treated group as compared to controls
(Figure 3D). Finally, we determined the effects of METH
exposure on NPCs after the onset of differentiation.
Under these conditions, too, METH did not significantly
affect the frequencies of differentiating cells (Figure 3E).
Interestingly, there was no reduction in total numbers of
differentiated cells in the METH group as compared to
control, suggesting that proliferating NPCs may be pre-
ferentially susceptible to the effects of METH as com-
pared to differentiating NPCs.

METH induces oxidative and nitrosative stress in NPCs

We determined whether the effects of METH on NPC
proliferation and viability may be due to induction of
oxidative and nitrosative stress. We first exposed NPCs
to METH and measured intracellular reactive oxygen
species using the fluorescent dye DCFDA. At concentra-
tions of >100 uM, METH caused marked increases in
DCFDA fluorescence at both 4 hours (Figure 4A) and
24 hours (not shown). To investigate nitrosative stress
induced by METH, we assessed nitric oxide production,
which has recently been shown to occur endogenously in
hippocampal NPCs [37]. We employed the Griess reac-
tion to measure nitrite formation, which occurs following
the generation of nitric oxide. METH treatment resulted
in nitrite formation in a dose-dependent fashion at 24 hrs
(Figure 4B). To investigate the consequences of nitrosa-
tive and oxidative stress, we measured the formation of

nitrotyrosine adducts on NPC proteins. 3-nitrotyrosina-
tion represents a common final pathway for the effects of
both oxidative and nitrosative stress [38]. Semiquantita-
tive analysis of 3-nitrotyrosine slot blots demonstrated
that METH causes a dose-dependent increase in total 3-
nitrotyrosination (Figure 4C). At concentrations of >250
uM METH, levels of nitrotyrosination were similar to
those achieved by exposure to several potent inducers of
oxidative stress. Western blotting analysis revealed that
nitrotyrosination of several NPC proteins was increased
in response to METH (Figure 4D). In particular, nitrotyr-
osination of proteins of approximate molecular masses
90 kDa, 45 kDa, 32 kDa, 30 kDa, and 25 kDa (black
arrows) was increased by both METH and staurosporine
(STS), an inducer of oxidative stress. Other proteins,
such as those of approximate molecular mass 57 kDa
(p57) and 62 kDa (p62) (red arrows), appeared not to be
significantly nitrotyrosinated under control conditions,
but were after METH exposure. Of note, differences in
nitrotyrosination were found between STS- and METH-
exposed NPCs; the protein of apparent molecular mass
30 kDa, for example, appears to be more strongly nitro-
tyrosinated upon METH exposure, while the protein of
apparent mass 10 kDa appears more strongly nitrotyrosi-
nated upon STS exposure.

We next determined if compounds such as Trolox, a
water-soluble analog of Vitamin E, and uric acid (UA),
that have broad antioxidant activity could block the
effects of METH on NPCs. As shown in figure 5A, both
Trolox (10uM) and UA (250uM) resulted in marked
decreases in nitrotyrosination of many NPC proteins. A
lower dose of UA (25uM), did not decrease METH-
induced oxidative stress in NPCs. Further, METH-trea-
ted NPC viability was increased by both Trolox and UA
(Figure 5B), indicating that antioxidants can confer
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Figure 2 METH decreases BrdU incorporation and causes apoptosis in vitro. NPCs maintained under proliferative conditions were exposed
to various concentrations of METH for 48 hours. BrdU (5 uM) was added for 4 hours to label proliferating cells. Cells were immunostained with
antibody against BrdU and counterstained with DAPI. A. Quantitation of BrdU positive cells reveals a dose- and time-dependent decrease in
BrdU positive cells upon exposure to METH (numbers following METH refer to concentration in puM). * p <0.01, ** p <0.001 ANOVA compared to
control (proliferation conditions). B. Cells were stained with Trypan Blue and visualized under light microscopy. Numbers following M refer to
concentration of METH in uM. * p <0.01, ** p <0.001. C. TUNEL positive cells were not detected in control cells, but were seen in some cells

partial protection against METH-induced NPC death.
Importantly, the lower dose of UA (25uM), which did
not decrease nitrotyrosination, also did not protect
against METH-induced AHP cell death.

METH leads to nitrotyrosination and decreased activity of
PKM2 in NPCs

To identify individual NPC proteins that may be nitrated
in response to METH treatment, we immunoprecipitated
METH-treated lysates with antibody to 3-nitrotyrosine.
Captured proteins were eluted, trypsinized, and analyzed
by mass spectrometry; the resultant peptides and their
proteins were identified using commercial database
searching programs. In our experiments, the additional

gel separation and gel extraction steps resulted in some
sample loss and low sequence coverage, which was suffi-
cient for identification of the proteins but not the specific
observation of the nitrated peptides. Seventeen proteins
were identified in 3-NT immunoprecipitated METH-
treated NPCs that were not observed in untreated NPCs,
including pyruvate kinase M2 (Table 1).

Since we found that METH preferentially acts on prolif-
erating NPCs, we next sought to confirm nitrotyrosination
of pyruvate kinase M2 (PKM2), a protein that mediates
cell proliferation. Western blot analysis demonstrated that
PKM?2 is expressed in proliferating NPCs, but not in term-
inally differentiated cultured neurons (data not shown).
We immunoprecipitated METH-treated NPC lysates with
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Figure 3 METH does not affect differentiation of NPCs. A,B. NPCs maintained under proliferative conditions were exposed to METH (250 uM)
for 24 hours, and fixed and immunostained 4 days later with antibody against Tuj1, GFAP, and RIP, and counterstained with DAPI. METH
treatment does not result in premature differentiation (A), but does result in fewer total numbers of differentiated cells (B). C,D. NPCs in
proliferating media were exposed to METH for 24 hrs, followed by culture for 4 days in differentiating conditions. METH does not alter the
percentage of cells adopting neuronal, astrocytic, or oligodendrocyte markers. E, F. NPCs were cultured in differentiating conditions for 24 hours,
followed by METH treatment for an additional 24 hours. Cells were analyzed 4 days after being placed in differentiating conditions. METH
treatment after the onset of differentiation does not significantly affect fate choice (E) or numbers of differentiating cells (F). * p <0.01 ANOVA,
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3-NT antibody, and probed for the presence of PKM2 by
Western blot (Figure 6A). METH treatment resulted in a
marked increase in nitrotyrosinated PKM2, and this
increase was partially blocked by Trolox. We next deter-
mined whether METH treatment affected the pyruvate
kinase activity of NPC lysates. Indeed, METH treatment
reduced PK activity, and this reduction was partially res-
cued by Trolox (Figure 6B). Thus, METH treatment of
NPCs results in nitrotyrosination of PKM2 and a conco-
mitant loss in PK activity.

We next sought to determine whether oxidative and
nitrosative stress can directly inhibit activity of PKM2.
Treatment with peroxynitrite resulted in nitrotyrosina-
tion of recombinant PKM2 and in diminished PK activ-
ity (Figure 6C).

Identification of nitrotyrosinated residues of PKM2

We next attempted in vitro studies to determine the possi-
ble amino acid sites on PKM2 that can be nitrotyrosinated.
In vitro nitrated recombinant PKM2 was analyzed by mass
spectrometry along with control protein not exposed to
peroxynitrite. The sequence coverage percentages were
76% and 66%, respectively. All of the tyrosine residues
aside from Y161 were detected. Control PK did not con-
tain any nitrated residues while the in vitro nitrated PK
contained three nitrotyrosine residues (Table 2). We next
modeled the effects of nitrotyrosination on the known
crystal structure of PKM2. PKM2 functions as a tetramer,
each subunit of which is comprised of three domains
(Figure 7A). Of the two nitrotyrosines located in domain
A, Tyr 175 is closest to the active site cleft, residing 14.6 A
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Figure 4 METH induces oxidative stress in NPCs. NPCs maintained under proliferative conditions were exposed to various concentrations of
METH. Numbers following “M" refer to concentration of METH in uM. 3-NP, DMNQ, and STS are inducers of oxidative stress and were used as
positive controls. A. NPCs exposed to METH for 4 hrs were loaded with Carboxy-H2 DCFDA. ROS formation (green) is far greater in cells exposed
to METH (250 and 500 uM) than control. B. Nitrite production from supernatants of NPCs was assessed via the Griess reaction. Values were
normalized to supernatants from untreated NPCs.C. 3-nitrotyrosination of cell lysates increases in a dose-dependent manner in NPCs exposed to
METH as demonstrated by quantification of slot blots, suggesting increased oxidative and/or nitrosative stress. D. Lysates from untreated NPCs
(Control) or those exposed to STS, METH 250 uM (M250) and 1000 uM (M1000) for 24 hours were subjected to western blotting with 3-
nitrotyrosine antibody. Several bands, including those of apparent molecular mass 10, 25, 30, 32, 45, and 90 kDa, were preferentially
nitrotyrosinated in NPCs exposed to METH (250 and 1000 uM) as compared to control cells. * p <0.05, ** p <0.01 ANOVA.
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from the y-phosphate of the ATP (Figure 7B). The third
nitrated tyrosine residue, Tyr 105, is located at the inter-
face between domains B and C (Figure 7A,C), in close
proximity to the allosteric inhibitory site of the enzyme.

Discussion
We found that METH decreased hippocampal NPC pro-
liferation, increased apoptosis, and led to increased oxi-
dative and nitrosative stress in a well-characterized in
vitro system. Further, we identified NPC proteins that
were nitrotyrosinated in response to METH, and
showed that nitration of one NPC protein implicated in
cell proliferation, PKM2, inhibited its activity. Thus,
impairment of PKM2 and other NPC proteins via nitra-
tion may contribute to impairment of hippocampal neu-
rogenesis in the setting of METH abuse.

It has become increasingly recognized that drugs of
abuse can inhibit adult hippocampal neurogenesis, with

potentially adverse consequences on regeneration and cog-
nitive function [31,32]. Few studies, however, have focused
on how METH may affect neurogenesis. In gerbils, acute
METH exposure resulted in a decrease in proliferating
NPCs within the hippocampal DG [39]. More recently,
short-term administration of stimulant drugs, including
METH, resulted in a trend toward decreased hippocampal
subgranular zone NPC proliferation in rats [35]. In addi-
tion, rats that chronically or regularly self-administered
METH over the course of several months also exhibited
marked decreases in hippocampal neurogenesis [33]. A
recent in vitro study also suggested that METH can impair
hippocampal NPC function by inducing apoptosis [36].
Here, we demonstrate that METH inhibits adult hippo-
campal NPC proliferation, and at higher concentrations
impairs survival without affecting neuronal differentiation.
METH has recently been found to exert similar effects on
proliferation and survival of subventricular zone (SVZ)
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Figure 5 Effects of antioxidants on METH-induced cell death of NPCs. NPCs were preincubated for 2 hrs with either Trolox (10 uM) or uric
acid (UA, 25 or 250 uM), followed by addition of METH (250 uM). Cells were analyzed at 48 hours. (A) Protein lysates were subjected to Western
blotting with antibody against 3-nitrotyrosine. Both Trolox and Uric acid markedly decrease nitrotyrosination of a number of NPC proteins. (B).
Both Trolox and Uric acid protect against METH-induced NPC death and decrease reactive oxygen species-induced nitrotyrosination (** p <0.01,
ANOVA).

NPCs [40]. In that study, however, much lower concentra-
tions of METH inhibited neuronal differentiation in SVZ
neurospheres. Taken together, these studies suggest that
METH affects NPC survival, proliferation, and differentia-
tion in a concentration-dependent manner. Importantly,
the lower range of METH concentrations that impaired
NPC function in our study are slightly lower than that
which causes toxicity to mature neurons, and may be
within the dynamic range of concentrations in the brains
of tolerant METH abusers during binges [41-43]. Overall,
these studies suggest that METH use can result in
decreased hippocampal neurogenesis and may contribute
to cognitive dysfunction.

An understanding of the cellular and molecular mechan-
isms by which METH affects NPCs may provide new
insights into neurodegeneration and regeneration. A
recent in vitro study found that METH, at similar concen-
trations to those used in this study, can act directly upon
NPCs to decrease proliferation, induce oxidative stress,
and result in dysregulation of the mitochondrial fission
protein DRP1 and concomitant mitochondrial fragmenta-
tion [36]. Similarly, in lymphocytes, METH causes
increases in intracellular calcium and disruption of the

electron transport chain in mitochondria [44]. Oxidative
stress has also been implicated in the impairment of hip-
pocampal neurogenesis by alcohol, which is prevented by
the synthetic antioxidant ebselen [45]. Surprisingly, in
some situations oxidative stress may enhance neurogen-
esis. Deficiency of the antioxidant enzyme superoxide dis-
mutase 1 (SOD1), for example, results in higher numbers
of newly generated hippocampal neurons compared to
wild type animals following cranial irradiation, an effect
that is potentially mediated through increased oxidative
stress [46]. The effects of NO and nitrosative stress on
NPC function are also not fully understood [47]. Several
studies suggest that NO donors decrease NPC prolifera-
tion and drive differentiation toward the neuronal lineage,
while inhibitors of NOS may increase proliferation and
decrease differentiation [48,49]. A decrease in transcrip-
tion of the oncogene N-myc may play a role, as its levels
correlate with NO-induced changes in NPC proliferation
and differentiation [50]. We found striking evidence of
both oxidative and nitrosative stress in NPCs upon METH
exposure, and this was accompanied by decreased prolif-
eration. Interestingly, we did not note significant effects
upon NPC differentiation, nor did we find that METH
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Table 1 Mass spectrometric identification of proteins
immunoprecipitated by antibody to 3-nitrotyrosine

Heat Shock proteins

grp75

Tumor rejection antigen gp96

Cytoskeletal proteins

Tropomodulin

Desmoplakin isoform 1,2

Translation factors

Aspartyl-tRNA synthetase

Eukaryotic translation elongation factor 1 delta

Ribosomal protein L6

Acid ribosomal phosphoprotein PO

Mitochondrial
proteins

mitofilin

ER proteins

ribophorin |l

calnexin
Others

Procollagen-lysine, 2 oxoglutarate 5-
dioxygenase 3

hnRNP R

Solute carries family 3, member 2

82-kD FMRP interacting protein
Histone H1.2

Pyruvate kinase M2

affected survival of NPCs that had already begun to differ-
entiate. Thus, METH appears to exert cell-stage specific
effects, with proliferating NPCs preferentially affected as
compared to differentiating cells.

A major consequence of oxidative and nitrosative stress
is protein tyrosine nitration, which results from excessive
peroxynitrite formation [51]. Protein tyrosine nitration is
a selective process, where only a few proteins get nitrated
and only a few tyrosine residues are modified within each
protein The nitration of tyrosines does not predictably
result in loss of function, as some proteins may exhibit
either no measurable change in function or even gain in
function upon nitration [51]. In a growing number of
neurodegenerative disorders, however, tyrosine nitration
has been implicated in disruption of protein function
with adverse pathological consequences. In Parkinson’s
disease, tyrosine nitration can lead to increased aggrega-
tion of alpha-synuclein, potentially contributed to the
increased formation of Lewy bodies [52]. Similarly, nitra-
tion of tau inhibits the ability of monomeric tau to pro-
mote microtubule assembly, increases self-aggregation,
and facilitates its incorporation into neurofibrillary tan-
gles, one of the pathological hallmarks of Alzheimer’s
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disease [53,54]. In addition, the protein L-prostaglandin
D synthase (L-PGDS) was found to be highly nitrotyrosi-
nated in the cerebrospinal fluid of HIV-infected indivi-
duals as compared to non-HIV-infected individuals, and
nitration of the protein diminished its activity [55]. Given
the ability of prostaglandins to modulate a wide variety of
regulatory pathways, it was hypothesized that nitration of
L-PGDS may play a role in the pathogenesis of HIV
dementia. Using mass spectrometry, we identified 17 pro-
teins in the 3-NT immunoprecipitate of METH-treated
NPCs. These proteins encompass diverse cellular func-
tions, including synthesis of proteins, formation and
maintenance of cytoskeletal structure, and energy pro-
duction. The varied functions of the proteins we identi-
fied are consistent with the wide functional range of
nitrated proteins identified in neurodegenerative disor-
ders. Interestingly, Gene Ontology analysis indicates that
the largest class of nitrated proteins found in in vivo dis-
ease models subserve energy metabolism, likely due to
involvement of these proteins with oxidative and nitrosa-
tive-stress generating redox reactions [56].

We focused on the M2 isoform of pyruvate kinase
because of its role in cellular energetics and its expres-
sion in proliferating cells. PKM2 is a glycolytic enzyme
that converts phosphoenolpyruvate to pyruvate with
phosphorylation of ADP to ATP. The M2 isoenzyme
PKM2 is expressed in cells with high rates of nucleic acid
synthesis, including tumor cells and progenitor cells, and
it has been suggested to play an important role in cell
proliferation [57]. Recent studies have shown that PKM2
expression is required for cancer metabolism and tumor
growth [58]. Interestingly, RNAi approaches to reduce
expression of PKM2 inhibit proliferation and tumor
growth in a lung cancer xenograft model [59] and in
glioma cells [60]. We found that nitration of PKM2 was
associated with reduced pyruvate kinase activity and
decreased proliferation of NPCs. Thus, post-translational
modification of PKM2 by nitration lowers its activity and
may be an important mechanism by which METH exerts
its inhibitory effects on proliferating NPCs. Notably,
nitration may be one of several post-translational modifi-
cations that affects PKM2 activity. PKM2 was recently
identified as undergoing oxidative modification, as evi-
denced by increased protein carbonylation, in the brains
of patients with mild cognitive impairment (MCI) in a
proteomics approach. Interestingly, the increased oxida-
tive modification of PKM2 was associated with reduced
enzymatic activity [61].

We found that only three of the nine tyrosine residues
of PKM2 were nitrated, consistent with the notion of bio-
logical specificity of nitration sites. The crystal structure
of pyruvate kinase demonstrates that the three nitrated
tyrosines are surface-exposed (Figure 7) [62], an apparent
prerequisite to nitration. However, not all exposed
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Figure 6 METH induces nitrotyrosination of PKM2 and inhibits its activity. A. NPC lysates were immunoprecipitated with antibody to
3-nitrotyrosine, and ratio of nitrotyrosinated to total PKM2 is quantified. B. Assessment of pyruvate kinase activity in NPC lysates. C. 3-nitrotyrosine
Western blotting (above) and pyruvate kinase activity (below) of recombinant PKM2 (control or peroxynitrite treated). *p <0.05, ***p <0.001 ANOVA.

tyrosine residues are capable of being nitrated. Although
there is no amino acid consensus sequence that defines
sites of tyrosine nitration, the presence of neighboring
acidic and turn-inducing amino acids as well as the rela-
tive paucity of neighboring cysteines and methionines
appears to favor nitration [63]. Examination of the
sequences from -5 to +5 amino acids relative to the three
nitrated tyrosines in PKM2 reveals the presence of six
acidic amino acids, four turn-inducing amino acids, and
only one cysteine and one methionine. Thus, the selective
nitration of these three PKM2 tyrosines is consistent with
previously described findings on the selectivity of protein
tyrosine nitration.

Nitrotyrosination of PKM2 may affect both the active
site and the allosteric site of the enzyme. The active site
of PKM2 is at the cleft between domains A and B of
each subunit, and the conformational flexibility of these

domains results in the opening and closing of the active
site cleft, thereby modulating enzymatic activity [64].
Nitration of Tyr 175 may result in hydrogen bonding to
the guanidinium group of Arg 339 in a neighboring sub-
unit (Figure 7B). This is likely to result in changes in
mobility or positioning of domain A, thereby modifying
enzymatic activity. Notably, a precedent for changes in
domain mobility affecting PK enzymatic activity has
been established [65]. Nitration of Tyr 105 may affect
the allosteric site which, when bound by phenylalanine
results in an inhibition of enzymatic activity [66]. At the
interface between domains B and C, Tyr 105 is close to
the Phe binding site identified in the PKM1 isoform.
The nitro group at the benzyl 3 position of Tyr 105 may
induce local distortions in a similar manner to the bind-
ing of the bulky phenyl group, thus affecting the domain
B/C interface [66]. Our model of the nitrated tyrosine

Table 2 Summary of the identification of nitrated tyrosines of PKM2 identified by mass spectrometry

Peptide sequence Charge Xcorr score m/z (Da) MH+(Da) Delta M (ppm)
ITLDNAY \o2MEK 2 2.16 621.788 1242.569 113
VYno2VDDGLISLQVK 2 2.16 747.394 1493.780 -2.90
TATESFASDPILY \,RPVAVALDTK 3 340 837428 2510.269 -342
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Figure 7 Modeling of the nitrated tyrosine residues of PKM2. A) Location of the nitrated tyrosines on one subunit of the PK tetramer.
Nitrated tyrosine residues are represented as sticks colored by atom type (green, carbon; blue, nitrogen; red, oxygen). Detailed view of the
environment of the nitrated tyrosines. B) Tyr 175 at the interface of the A-domain (green) and B-domain of neighbor subunit (magenta). C) Tyr
105 at the B/C interface. Possible and actual hydrogen bonds are represented as dashed blue lines. Steric contacts are indicated with dashed red
lines. Modeling and figures were done with the program PyMOL (TM Schrodinger, LLC).

(Figure 7C) shows that the addition of the nitro group
to Tyr 105 generates steric conflicts with Pro 107 (B
domain) and Val 473 (C domain). In addition, the nitro
group may form additional hydrogen bonds with Lys
475, His 457 and Arg 461 of the C domain (Figure 7C),
thereby potentially altering the structure of the allosteric
site.

Conclusions

Overall, the observation that hippocampal neurogenesis is
impaired by METH has several important implications.
Given the emerging evidence suggesting a role for contin-
uous hippocampal neurogenesis in cognitive functioning, a
METH-induced reduction in newly generated neurons
may impair the maintenance of hippocampal-dependent
learning and memory [19,67,68]. Indeed, spatial working
memory, a task dependent upon hippocampal integrity, is

impaired by METH [69]. In addition to countering the
deleterious effects of METH on mature neuronal cells,
therapeutic strategies may need to be directed at increas-
ing and optimizing neurogenesis in this patient popula-
tion. More importantly, however, our studies point to a
role for METH-induced oxidative and nitrosative stress in
impacting NPC proliferation and survival. A better under-
standing of the effects of nitrotyrosination on NPC protein
function will likely yield insights into the pathogenesis of
neurodegeneration in the setting of METH abuse and
other CNS disorders in which oxidative and nitrosative
stress play important roles.

Materials and methods

Cell culture

The adult hippocampal NPCs used in this study were
clonal stem cells derived from the hippocampus of adult
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Fischer 344 rats, and have been previously shown to ful-
fill the characteristics of multipotent neural precursor
cells both in vitro and in vivo [70]. NPCs were propa-
gated in proliferation media (DMEM/F12 medium con-
taining N2 supplement, L-glutamine [2mM], and FGF-2
[20 ng/mL]), as previously described [70]. For differen-
tiation, NPCs were trypsinized and plated in DMEM/
F12 containing N2 supplement, L-glutamine (2mM),
fetal bovine serum (FBS) (1%; v/v), and retinoic acid (1
uM) for up to four days. For most experiments, NPCs
were plated directly on laminin-coated 24-well plates to
minimize detachment of cells during toxicity assays.
Initial plating density was 25,000 cells/cm?®. Cells from
passage numbers 15 through 21 were used in all
experiments.

Immunocytochemistry and quantification of cell types
NPCs were fixed with 4% (w/v) paraformaldehyde (PFA)
and washed with Tris buffered saline (TBS), prior to incu-
bation in blocking solution (TBS with0.25% (v/v) Triton-X
and 0.5% (v/v) FBS). Primary antibodies were diluted in
blocking solution as follows: anti-bromodeoxyuridine
(BrdU) (1:400, rat; Accurate, City, State), anti-nestin
(1:1,000, mouse; Sigma, St Louis, MS), anti-f-tubulin
(1:1,000, mouse, BAVCO, City, State), anti-RIP (give full
spelling) (1:25, mouse, Hybridoma Bank, City, State), anti-
glial fibrillary acidic protein (GFAP) (1:1,000, rabbit, Dako,
City, State), and incubated with NPCs overnight at 4°C.
The detection of BrdU required treatment of cells with
1M HClI at 37°C for 30 min prior to application of the pri-
mary antibody. After washing twice with TBS, NPCs were
incubated with the appropriate Alexa-fluor conjugated
secondary antisera (1:250, Invitrogen), followed by washing
and counterstaining with DAPI to label all nuclei. Positive
cells were quantified in at least 10 randomly selected fields
(20X magnification) in each of at least three wells per con-
dition using a fluorescent microscope, and each experi-
ment was performed in triplicate.

Assays of cell viability and apoptosis

NPCs maintained under proliferative conditions were
exposed to METH (+), which was obtained from the
National Institute of Drug Abuse. Cell viability was
assessed by exclusion of either trypan blue or 7-amino
actinomycin D (7-AAD). Trypan blue was added to a final
concentration of 0.2% (w/v) to treated cells, followed by
direct visualization of cells under a light microscope (give
magnification). The percentage of dead cells with blue
nuclei were quantified in at least 10 randomly selected
fields in each of at least three wells per condition. Alterna-
tively, treated cells were trypsinized, resuspended in phos-
phate buffered saline, pH = 7.4 (PBS), and incubated with
7-AAD (1 ug/mL, Calbiochem, City, State) for 15 minutes,
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followed by flow cytometric analysis (Becton-Dickinson,
City State). The percentage of cells that stained with 7-
AAD (dead cells) was quantified in at least three separate
experiments.

To assess for apoptosis, cells were fixed, washed, and
terminal deoxynucleotide nick end labeling (TUNEL)
staining was performed using the Promega DeadEnd
Fluorescent TUNEL Labeling Kit according to manufac-
turer’s instructions. Cells that had undergone apoptotic
DNA fragmentation incorporated FITC-labeled dUTP.
TUNEL positive cells were detected by fluorescence
microscopy (give magnification).

Detection and inhibition of oxidative stress in NPCs
Oxidative and nitrosative stress-induction was measured
by several methods. Carboxy H2 DCFDA (10 uM, Invi-
trogen Molecular Probes) is an indicator compound that
passively diffuses into cells and is trapped inside upon
cleavage by intracellular esterases. Upon interaction with
reactive oxygen species, the fluorescent product DCF is
formed. NPCs maintained under proliferative conditions
were treated with several concentrations of METH for
varying time points, followed by incubation with Carboxy
H2DCFDA at 37°C for 30 minutes in a 5% (v/v) CO,
incubator. DCF formation was visualized by fluorescence
microscopy (give magnification). Nitrite production was
measured from the supernatants of METH-treated NPCs
using the Promega Griess Reagent System (Cat # 2930)
as per the manufacturer’s directions.

Alternatively, the formation of nitrotyrosination
adducts on proteins, which represents a common end-
product of several oxidative and nitrosative stress path-
ways [38] was assessed. NPCs were incubated with either
METH or three potent inducers of oxidative stress, staur-
osporine (0.2 pM, Sigma), 3-nitropropionic acid (1 mM,
Sigma), or 2,3-dimethoxy-1,4 naphthoquinone (1 mM,
Sigma). Cell lysates were collected at varying time points
and subjected to either slot-blot analysis (BioRad) or
Western blot analysis with antibody to 3-nitrotyrosine
(1:1000, Upstate, Charlottesville, VA) and beta-actin
(1:5000, Sigma). Blots were developed using the ECL Plus
kit (Amersham) followed by quantitative densitometry
(Image J, NIH). Each experiment was conducted at least
three separate times.

To determine whether antioxidants protect against
METH-induced NPC death, NPCs were preincubated
for 2 hrs with either Trolox or Uric acid, followed by
addition of METH (250 uM). Cell lysates were analyzed
by Western blot 48 hours later. The concentrations of
Trolox (10 uM) and uric acid (25 pM and 250 pM)
used were typical of that employed in the literature; of
note, levels of uric acid present in the serum of normal
humans range from 250 uM to 350 uM [71,72].
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Mass spectrometric analysis

NPC cell lysate was mixed with 3 pg of monoclonal anti-
nitrotyrosine antibody (Millipore #05-233) in an end-over-
end mixer for 1 hour at room temperature. The mixture
was then added to Protein G beads that had been pre-
washed with PBS, and mixed for 1 hour at room tempera-
ture. The beads were then centrifuged and washed exten-
sively, and the protein bound to the beads was eluted with
25ul of 1x SDS sample buffer. Eluted proteins were sepa-
rated on NuPage 4-12% Bio-Tris gels (Invitrogen NP0335)
and stained with the SilverQuest Staining kit (Invitrogen
#1L.C6070). Bands were cut and sliced into 1 x 1 mm
pieces; then rinsed with methanol and ammonia biocarbo-
nate. After incubation with Trypsin at 37C overnight, the
tryptic peptides were extracted and the supernatant was
collected for LCMS-MS analysis using an LTQ Orbitrap
(Thermo Fisher). A C18 column (75um id, YMC ODS-
AQ 5um particles with 120A pore size) was used in 2D
nanoLC with gradient (5-60% of 0.1% Fomic acid/90%
acetonitrile) over 30 minutes with a flow rate of 300nL/
min. Data-dependent MS/MS mode was applied and the
resulting MS/MS spectra were analyzed using Mascot
(Matrix Science, London, UK; version Mascot) and X!
Tandem (The GPM, thegpm.org; version 2007.01.01.1).
They were set up to search the NCBInr (selected for
Rodentia, version 2007.10.15, 137641 entries) with
dynamic modification oxidation of Met (+15.995 Da) (pep-
tide and MS/MS tolerance 0.1 and 0.8 Da).

In vitro nitrated rabbit pyruvate kinase and control rab-
bit pyruvate kinase were desalted with desalting spin col-
umns (Pierce), dried using a speed vacuum instrument,
resuspended in 100 mM ammonium bicarbonate and
digested with trypsin (1:20, w/w). The peptides were
resuspended in 0.1% formic acid and separated by on-line
reversed-phase nanoscale capillary liquid chromatogra-
phy (Eksigent, Dublin, CA) over a 120 min gradient (Sol-
vent A, 0.1% formic acid, solvent B 0.1% formic acid in
90% acetonitrile) followed by analysis by ESI-tandem
mass spectrometry using a LTQ-Orbitrap mass spectro-
meter (Thermo Fisher, San Jose, CA). The tandem mass
spectra of rabbit pyruvate kinase sample set were
extracted and initially analyzed by Thermo Proteome
Discoverer 1.1. MS/MS spectra were analyzed using
Sequest (Thermo Fisher Scientific, San Jose, CA, USA;
version 1.1.0.263) and X! Tandem (The GPM, thegpm.
org; version 2007.01.01.1). The rabbit pyruvate kinase
database (1 entry) was searched with the following para-
meters: enzyme, trypsin; precursor ion mass tolerance,
0.100 Da; fragment ion mass tolerance, 0.800 Da; maxi-
mum missed cleavage sites, 2; and dynamic modifica-
tions, oxidation of Met (+15.995 Da) and nitration of Tyr
and Trp (44.985 Da). The nitrated peptide hits were
manually validated. Scaffold (version Scaffold_3_00_03,
Proteome Software Inc., Portland, OR) was used to
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validate all MS/MS based peptide and protein identifica-
tions. Peptide identifications were accepted if they could
be established at greater than 95.0% probability as speci-
fied by the Peptide Prophet algorithm [73]Protein identi-
fications were accepted if they could be established at
greater than 99.0% probability and contained at least 2
identified peptides. Protein probabilities were assigned by
the Protein Prophet algorithm [74].

Nitrotyrosination and activity of native PKM2 protein
Peroxynitrite (Cayman Chemicals) was used for nitration
of rabbit PKM2 native protein (GenWay Biotech). 89 ug
of PKM2, 10 pl of 10mM NaHCO3 and 1 pl of OONO-
were placed in an eppendorf tube for 10 min at RT, fol-
lowed by addition of beta mercaptoethanol to terminate
the reaciton. Samples were then analyzed by western blot..
Two sets of samples were incubated separately with Anti-
Nitrotyrosine (3-NT; Cat # 16-163, Millipore) primary
antibody (1:500) followed by horseradish peroxidase-con-
jugated Anti Mouse (1:5000), and with PKM2 primary
antibody (1:1000) followed by horseradish peroxidase-con-
jugated Anti-Rabbit Secondary Antibody (1:5000), and
both were detected using ECL Plus.

The Bio Vision Pyruvate Assay Kit (Cat # K709-100)
was used to measure the activity of pyruvate kinase as
per manufacturer’s instructions.
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