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Commentary

The Elusive Spermatogonial Stem Cell Marker?1
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Spermatogonial stem cells (SSCs) are undifferentiated male
germ cells that have the potential to self-renew and differentiate
into committed progenitors that maintain spermatogenesis
throughout adult life. Rodent SSCs can be identified in
whole-mount preparations of testicular seminiferous tubules
(initially described by Clermont and Bustos-Obregon [1]) as
isolated Asingle spermatogonia. These Asingle SSCs are present
on the basement membrane of seminiferous tubules and can be
distinguished from committed, transit-amplifying progenitor
spermatogonia (some Apaired and Aaligned chains of 4–16 cells)
because committed cells are clonally arranged and connected
by intercellular cytoplasmic bridges. Here we define progen-
itors as undifferentiated spermatogonia that are committed to
differentiate and can undergo a finite number of self-renewing
divisions. SSCs can be definitively identified in a retrospective
manner by observing their ability to produce and maintain
spermatogenesis in a functional transplantation assay as
initially described by Brinster et al. [2, 3]. It has been widely
assumed that all Asingles (as the classically-defined SSCs)
possess stem cell properties [4–7]. However, it has never been
shown whether all or only some Asingles are bona fide SSCs,
and cells with a particular morphological/clonal arrangement
(e.g., Asingle) may or may not comprise the entire SSC pool [8].

Antibody-based studies using intact (whole-mount) semi-
niferous tubules have provided an avenue for defining proteins
with expression patterns that are limited to classically described
undifferentiated spermatogonia and, by extension, spermata-
gonial stem cells (SSCs). Such studies have revealed that
CDH1, GFRA1, LIN28, NANOS2, NANOS3, NEUROG3,
ZBTB16, and POU5F1 are expressed by undifferentiated stem
and progenitor spermatogonia, including Asingle, Apaired, and
Aaligned 4–16 [9–16]. However, a unique marker that distin-
guishes Asingle spermatogonia and perhaps spermatogonial
stem cells has been elusive.

In the present issue, Oatley et al. identified ID4 as a marker
restricted to Asingle spermatogonia in the testis and a protein
essential for normal spermatogonial stem cell renewal both in
vitro and in vivo [17]. The authors found that only a portion of
ID4þ spermatogonia also stained for ZBTB16 (i.e., PLZF) in
seminiferous tubule cross sections, indicating the presence of
both ID4þ/PLZF� and ID4þ/PLZFþ Asingle spermatogonia
(Fig. 1) and perhaps distinct subpopulations of SSCs. From the
data provided, it is not known what proportion of total Asingle

spermatogonia are marked by either ID4 or PLZF, so the
possible existence of ID4�/PLZFþ or ID4�/PLZF� Asingles

cannot be excluded (Fig. 1). These ID4 data support a growing
theory in the field that the pool of rodent Asingle spermatogonia
(and SSCs) is phenotypically heterogeneous, which may define
unique subpopulations of these cells with potential functional
differences. Heterogeneity among Asingles has been observed
for CDH1, LIN28, NANOS2, and NANOS3 [13, 16, 18, 19].
Heterogeneity among transplantable SSCs has been revealed
by studies on NEUROG3 and GFRA1 [10, 20]. While the
significance of this heterogeneity is not well understood, it
seems clear that a one-size-fits-all definition of Asingle

spermatogonia and SSCs oversimplifies the stem cell system
underlying spermatogenesis.

Oatley et al. used two approaches to posit a functional role
for ID4 in SSCs. First, ID4 knockdown in cultured SSCs
resulted in stunted stem cell renewal without changes in germ
cell amplification, suggesting a role for ID4 in maintenance of
the SSC pool (i.e., self-renewal). Second, ID4 null mice
showed progressive spermatogenic failure characteristic of a
SSC self-renewal defect. Based on these data, Oatley’s group
suggested a model whereby the phenotypically distinct
subpopulations of Asingle spermatogonia may represent func-
tionally discrete populations. For example, ID4þ/PLZF�
Asingle spermatogonia may represent Asingles that are quiescent
(Fig. 1, red nuclei) and/or that have self-renewing capacity and
that these cells acquire PLZF expression on entering the cell
cycle (green/yellow nuclei). Under this scenario, presence or
persistence of ID4 at the subsequent cell division would favor a
self-renewal fate decision, while absence or loss of ID4 might
favor commitment to differentiation (e.g., production of Apaired

and Aaligned spermatogonia).
The concept of a quiescent population of SSCs is similar to

the A0/A1 model that was originally advanced for mouse and
rat spermatogenesis [1, 21–23]. The A0/A1 model holds that
normal spermatogenesis is maintained by an ‘‘active’’ pool of
SSCs (A1) and that a quiescent ‘‘reserve’’ pool of A0 is
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mobilized following an insult to spermatogenesis. This model
is also consistent with the Adark/Apale ‘‘reserve stem cell’’
model of primate SSCs [24]. Ultimately, the A0/A1 model was
supplanted by the Asingle model [25, 26], in which a single
population of stem cells (Asingle spermatogonia) divides
regularly but infrequently and gives rise to the spermatogenic
lineage. Recent pulse-chase experiments lend support for
continual, steady-state renewal of the SSC pool in mice [27]
but do not rule out the possibility of a phenotypically distinct,
quiescent component. A model of rodent SSC contribution to
normal spermatogenesis that incorporates a quiescent interme-
diate (whether truly ‘‘reserve’’ or simply ‘‘long cycling’’ [28])
would help unify our disparate understanding of spermatogenic
lineage development in rodents and primates.

ID4 has the most restricted pattern of expression in
undifferentiated spermatogonia observed to date and clearly
delineates subpopulations of Asingle spermatogonia in the
mouse testis. It is likely that molecular heterogeneity in the
pool of Asingle spermatogonia have functional correlates that
will be the focus of ongoing investigations. Whether the stem
cell pool resides entirely in the population of Asingle

spermatogonia or might be extended to include some Apaired

or possibly larger chains, as suggested by Nakagawa et al. [8],
is the subject of ongoing debate.
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