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Abstract
Microorganisms have become an increasingly important platform for the production of drugs,
chemicals, and biofuels from renewable resources. Advances in protein engineering, metabolic
engineering, and synthetic biology enable redesigning microbial cellular networks and fine-tuning
physiological capabilities, thus generating industrially viable strains for the production of natural
and unnatural value-added compounds. In this review, we describe the recent progress on
engineering microbial factories for synthesis of valued-added products including alkaloids,
terpenoids, flavonoids, polyketides, non-ribosomal peptides, biofuels, and chemicals. Related
topics on lignocellulose degradation, sugar utilization, and microbial tolerance improvement will
also be discussed.
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Introduction
Microorganisms have been increasingly used to produce value-added compounds with
numerous applications in the food, agriculture, chemical, and pharmaceutical industries.
Examples of these value-added compounds include many antibacterial and anticancer drugs,
amino acids, organic acids, vitamins, industrial chemicals, and biofuels. Compared to
synthetic chemistry methodologies, microbial bio-synthesis has several advantages. First, it
avoids the use of heavy metals, organic solvents, and strong acids and bases, thus allowing
the synthetic process to take place through an environmentally benign route. Second,
enzymes usually have a relatively high substrate specificity, which helps reduce the
formation of byproducts. Third, some compounds with complex structures already have
natural synthetic pathways while establishing chemical synthetic routes for these complex
compounds is very difficult. Finally, metabolic engineering offers ways to further improve
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the yield and productivity of a target compound while combinatorial biosynthesis allows the
creation of novel derivatives.

It is straightforward to think about directly extracting natural products from their native
producers. However, most of these native producers are not cultivable in the laboratory and
many microorganisms grow very slowly and produce minute amounts of the target
compounds. It has been estimated that only 1% of bacteria and 5% of fungi have been
cultivated in the laboratory [16, 26, 27, 66]. Even when it is possible to cultivate the native
producers, their growth conditions have to be extensively optimized. In addition, due to the
lack of genetic tools to manipulate these hosts, it is very difficult to improve the product
yield and productivity. Therefore, well-characterized microorganisms that can be used as
universal platform organisms are highly desired. Escherichia coli and Saccharomyces
cerevisiae are two of the most widely used platform organisms due to their well-
characterized physiology and genetics, fast cell-growth rates, and the availability of
abundant genetic tools. Other platform microorganisms include Bacillus subtilis,
Pseudomonas putida, and Streptomyces species.

Recent advances in protein engineering, metabolic engineering, and synthetic biology have
revolutionized our ability to discover and construct new biosynthetic pathways and engineer
platform organisms or so-called microbial factories to produce a wide variety of value-added
products such as alkaloids, terpenoids, flavonoids, polyketides, non-ribosomal peptides,
biofuels, and chemicals in a cost-effective manner. This review will highlight a few
representative examples from the past 5 years. Related topics on lignocellulose degradation,
sugar utilization, and microbial tolerance improvement will also be discussed.

Natural products
Alkaloids

Alkaloids are nitrogen-containing compounds of low molecular weight produced by a large
variety of organisms, including bacteria, fungi, plants, and animals. Most alkaloids are
derived through decarboxylation of amino acids such as tryptophan, tyrosine, ornithine,
histidine, and lysine, and possess important pharmacological activities [84]. For example,
the antimicrobial agent berberine has cholesterol-lowering activity [62], sanguinarine has
shown potential as an anticancer therapeutic [60], bisbenzyliso-quinoline alkaloid
tetrandrine has been used to treat autoimmune disorders and hypertension [64, 65], and a
number of indolocarbazole alkaloids have entered clinical trials for diabetic retinopathy,
cancer treatment or Parkinson's disease [18]. They have a very high diversity and molecular
complexity in structure and can be classified into a number of groups, such as morphinane-,
protoberberine-, ergot-, pyrrolizidine-, quinolizidine- and furanoquinoline-alkaloids
according to the amino acids from which they originate [117]. Even for the plant alkaloids
alone, there are over 10,000 structurally characterized members. Due to their high structural
diversity and molecular complexity, chemical synthesis of alkaloids has not been very
effective. On the other hand, although metabolic engineering strategies have been tried in
plants to increase the amount of alkaloid products [3, 36, 116], success was limited and
difficult to generalize due to the lack of convenient tools for engineering biosynthetic
pathways in plants [115], the complexity of alkaloid biosynthetic pathways and their
regulation [150] and the unavoidable transport of synthetic intermediates in and out among
multiple intracellular organelles in plants [73].

Reconstitution of alkaloid biosynthesis in an engineered microbe has several advantages
including rapid growth and biomass accumulation, abundant availability of genetic tools for
pathway expression and optimization, and ease of characterizing and isolating final product
and key intermediates due to a relatively cleaner background and the lack of interference
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from other metabolites in plants [48]. To this end, E. coli and S. cerevisiae were recently
explored as production hosts. Sato and coworkers combined microbial and plant enzymes to
synthesize benzylisoquinoline alkaloids including magnoflorine and scoulerine from
dopamine via reticuline by co-culturing E. coli and S. cerevisiae [84] (Fig. 1a). The key
intermediate (S)-reticuline was synthesized from dopamine by crude enzymes from
recombinant E. coli, and was subsequently channeled into S. cerevisiae, generating
magnoflorine and scoulerine with final yields of 7.2 and 8.3 mg/l, respectively. Smolke and
coworkers engineered yeast alone expressing combinations of enzymes from different
sources to produce the key intermediate reticuline and downstream metabolites along with
two of the major branches from reticuline: the sanguinarine/berberine branch and the
morphinan branch (Fig. 1b). In this system, a galactose-inducible enzyme tuning strategy
was designed to balance enzyme expression and product yield, conserving cellular resources
without compromising pathway flux [48].

In addition to alkaloids produced naturally, combinatorial strategies were applied to further
diversify existing alkaloids with the goal of improving their potency as therapeutic
molecules. For example, indolocarbazole biosynthetic enzymes possess useful degrees of
substrate flexibility, thus they are able to accept different intermediates to yield novel
derivatives. More specifically, partial clusters of rebeccamycin and staurosporine
biosynthesis were combined and expressed together with additional sugar biosynthetic genes
in Streptomyces albus. This resulted in generation of a series of novel indolocarbazole
derivatives bearing different deoxysugars, some of which showed potent, subnanomolar, yet
selective inhibition against kinases, one of the major targets in current drug discovery and
development processes [113, 114]. It is believed that the sugar moieties play an important
role in the selectivity of protein kinase inhibition.

Terpenoids
Terpenoids (also called isoprenoids), derived from five-carbon isoprene units assembled and
modified in thousands of ways, compose the largest class of naturally occurring molecules
with important medicinal and industrial properties. They are found in all classes of living
organisms and approximately 25,000 structures have already been elucidated [40]. Despite
the enormous structural diversity, terpenoids are synthesized from two basic isoprene
building blocks, isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate
(DMAPP), originated through either the mevalonate pathway or the non-mevalonate
pathway depending on the species [22]. They serve a wide variety of functions such as
respiration and electron transport (quinones), membrane fluidity and hormone signaling
(steroids), and photosynthesis and antioxidant agents (carotenoids). Many terpenoids,
especially the ones isolated from plants and marine invertebrates, are bioactive and are used
in the pharmaceutical, cosmetic, and food industries [88]. The transformation of IPP and its
derivatives to terpenoids of high complexity has been an active area in synthetic biology and
metabolic engineering [22]. For example, S. cerevisiae has been engineered to produce
artemisinic acid, a key precursor for the anti-malarial drug artemisinin [105] (Fig. 2a). The
farnesyl pyrophosphate (FPP) biosynthetic pathway was engineered to increase FPP
production and its use for sterols was decreased. The amorphadiene synthase (ADS) gene, a
cytochrome P450 monooxygenase and its redox partner from Artemisia annua were
introduced to convert FPP to amorphadiene, which was further converted to artemisinic acid
through a three-step oxidation, with a titer of 115 mg/l. This production was further
improved to reach 250 mg/l in shake-flask conditions and 1 g/l in bioreactors by modulating
the selection markers and the culture composition [104].

One of the most important classes of enzymes involved in plant-derived natural products is
the membrane-bound cytochrome P450 superfamily, which is ubiquitously involved in
terpenoid biosynthesis and takes part in a wide variety of reactions. For example, eight out
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of the approximately 20 steps in paclitaxel biosynthesis are catalyzed by P450 enzymes [23].
Despite their essential nature, functional expression of plant P450 s in bacteria is extremely
challenging and hinders the biosynthesis of many functional molecules by recombinant
bacteria. This is mainly due to the absence of cytochrome P450 reductase (CPR) redox
partners in bacteria for electron transfer [119] and the absence of an endoplasmic reticulum,
which results in the translational incompatibility of the membrane signal modules [141]. In
order to enable E. coli for production of functionalized terpenoids using plant P450 s,
Keasling and coworkers cloned the codon optimized 8-cadinene hydroxylase (CAH) along
with a CPR from Candida tropicalis in E. coli and obtained production of 8-
hydroxycadinene at approximately 25 ± 2 mg/l. The N-terminal membrane anchor was
subsequently replaced with various N-terminal sequences from three heterologous P450 s,
two secretion/ solubilization sequences, or a self-assembling membrane protein, among
which the N-terminal sequence of the bovine CAH [11] yielded an additional fiefold
improvement in productivity to 105 ± 7 mg/l [21]. Such a strategy of generating a chimeric
P450 with a fie-tuned N-terminal domain has also been successfully applied in isoflavone
production in E. coli [70].

Another successful example of combining protein engineering, metabolic engineering, and
synthetic biology strategies to design microbes for production of value-added compounds
was demonstrated in the biosynthesis of taxadiene, a taxol precursor (Fig. 2b). Taxol and its
structural analogs are potent and commercially successful anticancer drugs [61], originally
isolated from the bark of the Pacific yew tree [136]. The traditional direct extraction method
[100], the later-developed method of total chemical synthesis [96], and the currently used
semisynthetic route [100] all suffered from low productivity and the accompanying
constraints of being generalized to other derivatives in the search for more efficacious drugs
[53, 106]. As the first step towards the production of Taxol in S. cerevisiae, co-expression of
Taxus chinensis taxadiene synthase (TStc) and geranylgeranyl pyrophosphate synthase
(GGPPStc) only resulted in a production of 204 μg/l taxadiene [33]. In yeast, the isoprenoid
building blocks are mostly used for steroid biosynthesis, and the mevalonate pathway is
subject to complex feedback regulation, with HMG-CoA reductase as the major regulatory
target [29]. Expression of a truncated version of yeast HMG-CoA reductase (tHMG1) in
combination with Sulfolobus acidocaldarius GGPPS, which does not compete with steroid
synthesis and the codon-optimized TStc led to a 40-fold increase in taxadiene to 8.7 mg/l
[33]. To further improve it, Stephanopoulos and coworkers designed a multivariate modular
approach and succeeded in increasing the titer of taxadiene to approximately 1 g/l [1]. In this
approach, the pathway was partitioned into two modules at IPP: the upstream native
methylerythritol phosphate (MEP) pathway and the downstream heterologous taxadiene
pathway. Systematically varying promoters of different strengths and plasmid copy-numbers
resulted in identifying conditions that optimally balance the two pathway modules, such that
the taxadiene production was maximized with minimal accumulation of any toxic
intermediate. Such a modular pathway engineering strategy has the potential for engineering
other terpenoid biosynthesis.

Flavonoids
Flavonoids are an important group of plant secondary metabolites, which in general have
linear C6-C3-C6 skeletons derived from a phenylpropanoid (C6-C3) starter and three C2
elongation units [31]. Such a 15-carbon phenylpropanoid core is extensively modified by
rearrangement, methylations, methoxylations, alkylation, oxidation, C- and O-glycosylation,
and hydroxylation [74, 132], forming a fascinating group of over 9,000 members exhibiting
antioxidant, antibacterial, antiviral, and anti-cancer activities [35]. Through the
phenylpropanoid pathway, phenylalanine ammonia lyase (PAL) deaminates phenylalanine
to cinnamic acid, which is hydroxylated by cinnamic-4-hydroxylases (C4H), activated by 4-
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coumarate/cinnamate coenzymes, and condensed with three malonyl-CoA units to form a
chalcone catalyzed by chalcone synthase (CHS). Chalcones are converted by chalcone
isomerases (CHI) in a ring closing step to form the heterocyclic C ring [55]. The variability
in molecular structure further divides flavonoids into flavones, flavanones, flavonols,
isoflavones, anthocyanins, and catechines [74]. Similar to the production of alkaloids and
terpenoids, E. coli and S. cerevisiae are widely used as model systems to produce
flavonoids. However, in many cases, the biosynthetic efficacy is greatly limited by precursor
and cofactor availability in the host. Therefore, alternative carbon assimilation pathways
such as the malonate utilization pathway were introduced and competitive reactions
including fatty acid synthesis and UDP-glucose consumption were inhibited and deleted,
respectively, in order to improve the availability of malonyl-CoA and UDP-glucose. Such a
strain expressing plant 4-coumarate:CoA ligase (4CL), CHS, CHI, anthocyanin synthase
(ANS) and 3-O-glycosyltransferase (3-GT) produced flavanones up to 700 mg/l and
anthocyanins up to 113 mg/l [74] (Fig. 3).

In another study, overexpression of the four acetyl-CoA carboxylase (ACC) subunits under a
constitutive promoter resulted in an over fivefold increase in flavanone production. Acetate
assimilation pathways were also amplified to convert acetate to malonyl-CoA via acetyl-
CoA. Auxiliary expression of ACC with a chimeric biotin ligase (BirA) consisting of the N-
terminus of E. coli BirA and the C terminus of Photorhabdus luminescens BirA further
increased the production of pinocembrin, naringenin, and eriodictyol to 429, 119, and 52
mg/l, respectively [71].

Due to the relatively broad substrate specificity of the flavonoid biosynthetic genes,
providing the pathway with unusual precursors could result in generation of new flavonoids.
For example, UDP-glucose dehydrogenase (CalS8) and UDP-glucuronic acid decarboxylase
(CalS9) from Micromonospora echinospora spp. calichensis and 7-O-glycosyltransferase
(ArGt-4) from Arabidopsis thaliana were expressed together with an integrated copy of E.
coli K12 UDP-glucose pyrophosphorylase (GalU) in background strain E. coli BL21 (DE3)
with the glucose-phosphate isomerase (Pgi) gene deleted. When the resulting strain was fed
with naringenin and naringenin 7-O-xyloside, a glycosylated naringenin product, was
detected [124]. Due to the importance of flavonoids for human health, further derivatization
might offer a chance to create new members with improved or novel properties.

Polyketides and non-ribosomal peptides
Polyketides, mostly derived from bacteria, Wlamentous fungi, and plants, are among the
most important metabolites in human medicine, used clinically as antibiotics (erythromycin
A, rifamycin S), antifungals (amphotericin B), anticancer drugs (doxorubicin, epothilone),
antiparasitics (avermectin), cholesterol-lowering agents (lovastatin), and
immunosuppressants (rapamycin) [138]. They are synthesized by a family of multifunctional
enzymes known as polyketide synthases (PKSs). The core structures of polyketides are
assembled through sequential Claisen-like condensations of extender units derived from
carboxylated acyl-CoA precursors mainly including malonyl-CoA, methyl-malonyl-CoA,
methoxy-malonyl-CoA, and ethyl-malonyl-CoA [126]. PKSs are classified into types I, II
and III based on their biochemical features. The products synthesized by different types of
PKSs can undergo different sets of tailoring modifications such as oxygenation,
hydroxylation, cyclization, methylation, acylation, and glycosylation to form products with a
great level of structural diversity [34, 98].

Research has been directed towards reconstitution of PKS biosynthetic pathways in more
technically amenable microbes including E. coli, S. cerevisiae, B. subtilis, P. putida, and
various Streptomyces species [13]. Despite several obvious advantages, E. coli and S.
cerevisiae have their own drawbacks as heterologous hosts, including unavailability of some
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biosynthetic building blocks and lack of post-translational enzymes to modify PKSs [39,
89]. In addition, difficulties in efficient translation and functional folding of key enzymes
including megasynthases and the P450 family of enzymes were encountered in E. coli.
These limitations have to be addressed before synthesis of a wider range of molecules is
attempted in these hosts. In fact, some of them were already addressed to a certain degree
through metabolic engineering and protein engineering efforts. Nowadays, examples of
polyketides synthesized by all three types of PKSs have been reported in E. coli, although
the titers do vary case by case [39]. On the other hand, P. putida has a high GC content in its
genome, suggesting it could better support the heterologous expression of genes with a high
GC content, especially for the clusters isolated from actinomycetes [13]. Several
Streptomyces species [10] and B. subtilis possess a native ability to provide needed
substrates, which is an advantage as a heterologous host. However, the genetic
manipulations of these three organisms are not as easy and convenient as the ones developed
for E. coli and S. cerevisiae.

The most successful example of in vivo PKS reconstitution is the biosynthesis of 6-
deoxyerythronolide B (6-dEB), the 14-membered macrocyclic core of erythromycin, in E.
coli. The native and heterologous metabolism were engineered, and the resulting strain
BAP1 could supply the required starter unit propionyl-CoA and the extender unit (2S)-
methylmalonyl-CoA. The three 6-deoxyerythronolide B synthase (DEBS) proteins catalyze
six chain extension cycles, converting exogenous propionate into 6-dEB with a specific
productivity that compares well with a high-producing mutant of the original host [99]. The
titer was further improved by overexpressing the S-adenosylmethionine synthetase MetK
from Streptomyces spectabilis to increase the synthesis of signaling molecules [135] or by
deleting the propionyl-CoA: succinate CoA transferase [147]. The DEBS system could serve
as a paradigm model to study and engineer modular type I PKSs. Numerous 6-dEB and
erythromycin derivatives were synthesized through domain or module insertions, deletions,
and replacements [20, 83, 138].

The epothilone PKS currently represents the largest modular type I PKS reconstituted in E.
coli. The epothilone family is synthesized by a hybrid non-ribosomal peptide synthetase
(NRPS)/polyketide synthase in the myxobacterium Sorangium cellulosum. The cluster is
composed of one NRPS module and eight PKS modules, and the largest gene, the 21.8 kb
epoD encodes a protein larger than 760 kDa. Through codon optimization, lowered growth
temperature, chaperone coexpression, and replacement of the T7 promoter by the arabinose-
inducible PBAD promoter, all pathway proteins except EpoD were solubly expressed. The
expression of EpoD was finally achieved by dividing the large enzyme into two
polypeptides, each consisting of two modules and the compatible linker pairs from related
polyketide synthases. The entire cluster was expressed in the strain BAP1 mentioned above,
resulting in the production of epothilones C and D. The success of the epothilone example
provides an ideal platform for generation of novel epothilone derivatives and shows the
importance of using protein engineering strategies to redesign a large gene cluster [90].

Although examples of nearly all major classes of natural products have been synthesized and
engineered in E. coli, a noticeable exception is type II PKSs from actinomycete, which
produce pharmaceutically important aromatic polyketides such as tetracyclines and
anthracyclines [50]. The main obstacle is the inability to express the ketosynthase (KS)-
chain length factor (CLF) heterodimer in soluble form. To bypass this obstacle using
bacterial type II PKSs, Tang and coworkers targeted fungal iterative nonreducing PKSs,
dissected and extracted the minimal PKS components of Gibberella fujikuroi PKS4, and
reassembled it into a synthetic PKS, which synthesized a spectrum of aromatic polyketides
in E. coli with cyclization regioselectivity not observed among fungal polyketides [148].
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The products of the type III PKSs can be categorized into three groups based on their
specific activities [39]. Chalcone synthase cyclizes the intermediates into flavanones, the
synthetic precursors of a variety of flavonoids [137]. Stilbene synthase (STS) catalyzes the
cyclization of the intermediate polyketide to form a stilbene backbone, which is further
modified to stilbenoids [8]. Curcuminoid synthase (CUS) only catalyzes condensation
reactions without cyclization, producing curcuminoids [58, 59]. Coexpression of
phenylalanine ammonia lyase (PAL) and 4CL with different type III PKSs produced various
compounds such as resveratrol, pinosylvin [57], bisdemethoxycurcumin, and
dicinnamoylmethane [59]. Precursor-directed biosynthesis [57, 58] and coexpression of
post-PKS modification enzymes [85, 144] further led to the generation of a variety of
unnatural compounds.

As mentioned earlier, Streptomyces are naturally better host microorganisms for the
production of polyketides [69]. About half of the bioactive microbial metabolites discovered
to date are produced by actinomycetes, with the genus Streptomyces being the primary
producer [98]. The recent progress on synthesis of bioacitve compounds or their precursors
by metabolic engineering of Streptomyces was summarized recently in other reviews [69,
97, 98].

Similar to polyketides, non-ribosomal peptides (NRPs) are synthesized by large modular
non-ribosomal peptide synthetases and represent a diverse family of secondary metabolites
exhibiting a broad range of biological activities. This family includes antibiotics such as
vancomycin and bacitracin, antibiotic precursors like ACV, immunosuppressive agents such
as cyclosporine, and siderophores [122]. Baltz and coworkers expanded the modification of
the daptomycin amino acid core by replacing single or multiple modules in the DptBC
subunit with modules from daptomycin and A54145 NRPSs. A combination of module
exchanges, NRPS subunit exchanges, and inactivation of tailoring enzymes enabled
Streptomyces roseosporus and Streptomyces fradiae to generate libraries of novel
lipopeptide antibiotics related to daptomycin and A54145 [2, 94, 95]. Nielsen and coworkers
initiated the development of a yeast platform for heterologous production of NRPs using
ACV as a model NRP. ACV synthetase was expressed in S. cerevisiae in a high-copy
plasmid together with phosphopantetheinyl transferases (PPTase) from three sources, all
leading to production of ACV. The synthesis was improved by lowering the cultivation
temperature and integrating the cluster into the genome. This work represents the first
success in production of an NRP in yeast [123].

Biofuels
Due to environmental, economic, and energy security considerations, there is an increasing
interest in the development of bio-derived fuel alternatives [78]. Dominant biofuel
alternatives, such as corn-derived ethanol, however, proved to be only marginally profitable
even with the application of governmental subsidies [51]. Thus, the current biofuel
production scheme must be modified through the use of cheaper, non-edible lignocellulosic
biomass as feedstock or via the production of advanced biofuels (Fig. 4).

Utilization of lignocellulosic feedstocks
Lignocelluloses, the non-edible portion of plant-derived biomass, are considered preferable
feedstock for biofuel production due to their low requirement for energy, fertilizer, and
pesticide input [77]. Unfortunately, the recalcitrant structure of plant cell wall presents a
great challenge for the efficient deconstruction and complete utilization of lignocellulosic
feedstocks. Lignocellulosic biomass has a very distinctive structure, with its most abundant
component, cellulose, tightly surrounded by a hemicellulose and lignin complex that
protects the inner cellulose from hydrolytic enzymes [139].
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Considerable research effort has been dedicated to breaking down the crystalline structure of
cellulose to release the fermentable monosaccharide glucose for use in biofuel production.
The most recent breakthrough in this area is the development of a microorganism capable of
consolidated bioprocessing (CBP). CBP is a process where enzyme production, cellulose
hydrolysis, and monosaccharide fermentation for fuel production are combined into a single
step. CBP has been proposed to significantly lower biofuel production cost as it eliminates
the large-scale production of cellulases [133]. One common strategy to develop a CBP
microorganism is to introduce cellulolytic ability into ethanol producing, non-cellulolytic
organisms [79].

Gram-negative bacterium Zymomonas mobilis is one attractive candidate for CBP
microorganism development due to its high ethanol productivity and tolerance. Darzins and
coworkers successfully expressed two cellulolytic enzymes, E1 and GH12, from
Acidothermus cellulolyticus, in Z. mobilis. Furthermore, both cellulolytic enzymes can be
secreted extracellularly due to the inclusion of native Z. mobilis secretion signals. Functional
expression and secretion of cellulolytic enzymes in Z. mobilis indicate its high potential for
serving as a CBP platform microorganism [76].

Another very attractive CBP organism candidate is S. cerevisiae, which has served as the
major producer of ethanol for thousands of years [134]. van Zyl and coworkers first
demonstrated that introducing the endoglucanase of Trichoderma reesei and the β-
glucosidase of Saccharomycopsis fibuligera into S. cerevisiae can result in a recombinant
strain with the ability to grow on phosphoric acid-swollen cellulose (PASC) as its sole
carbon source and produce up to 1.0 g/l of ethanol [28]. Inspired by the structure of
cellulosomes, Zhao and coworkers developed a recombinant yeast strain in which
endoglucanases, cellobiohydrolases, and β-glucosidases were assembled into a trifunctional
minicellulosome through cohesin and dockerin. In the recombinant yeast strain, a
miniscaffoldin composed of a cellulose-binding domain and three distinct cohesin modules
were expressed using yeast surface display, while three cellulolytic enzymes, each fused
with a C-terminal dockerin corresponding to a different cohesin, were co-expressed in the
same strain. The cellulolytic enzymes were assembled into minicellulosomes through
cohesin–dockerin interaction onto miniscaffoldings anchored onto the yeast's surface. The
recombinant yeast exhibited a higher cellulolytic activity due to enzyme–enzyme and
enzyme–substrate synergistic effects. As a result, recombinant strains can simultaneously
break down and ferment PASC to ethanol with a titer of 1.8 g/l [140]. Around the same
time, Chen and coworkers reported their work involving another CBP process that utilized a
minicellulosome. In their study, instead of creating a single recombinant strain, a synthetic
yeast consortium was used for the expression and assembly of its minicellulosome. The
synthetic consortium was composed of four different recombinant yeast strains: a strain
displaying a trifunctional scaffoldin and three strains each expressing a dockerin-tagged
cellulolytic enzyme. After optimization of the ratio of different populations in the synthetic
consortium, a 1.87 g/l ethanol titer was achieved, which is 93% of the theoretical yield
[131].

A similar effort was carried out to tackle the problem of hemicellulose utilization.
Hemicellulose is the second-most abundant component of lignocellulosic biomass and can
make up to 20–30% of the total feedstock. Unlike cellulose, which is composed of glucose,
hemicellulose is primarily composed of five-carbon sugars (pentoses) such as D-xylose and L-
arabinose [111]. Unfortunately, the industrial microorganism currently used for large-scale
production of ethanol, S. cerevisiae, cannot utilize pentoses contained within the
hydrolysates of the hemicellulose component of biomass feedstocks [49]. The incomplete
utilization of sugar substrates present in lignocellulosic biomass hydrolysates is one of the
major causes of elevated bioethanol production cost, making this environmentally friendly
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energy alternative typically far less economically competitive compared to fossil fuels [38,
46]. To be utilized by ethanol producing S. cerevisiae, pentose sugars need to be first
transported into cells and then converted into D-xylulose-5-phosphate, which can then be
further metabolized through the pentose phosphate pathway. In order to enable the effcient
conversion of D-xylose and L-arabinose into D-xylulose-5-phosphate, heterologous pathways
need to be introduced into S. cerevisiae and further optimized [46, 63]. For example, to
improve the fermentative ability of the fungal D-xylose utilization pathway, much effort was
devoted to identify heterologous enzymes with better catalytic efficiency and cofactor
specificity [109], balance the cofactor usage of the pathway [75], and optimize ethanol
production using more robust industrial ethanol-producing yeast strains [80].

Another factor hampering effcient production of lignocellulosic ethanol in S. cerevisiae is
the “glucose repression” that occurs during mixed sugar fermentation. Because S. cerevisiae
preferably utilizes glucose over other carbon sources, utilization of pentose sugars is
severely repressed before glucose is depleted [107]. A novel approach was recently
developed to overcome glucose repression by introducing a cellobiose transporter and a β-
glucosidase into recombinant xylose-utilizing S. cerevisiae strains [45, 75] (Fig. 5). In these
strains, cellobiose, an incomplete hydrolysis product of cellulose, is fermented instead of
glucose in the presence of xylose. Since cellobiose enters S. cerevisiae cells through a
dedicated cellobiose transporter, the competition of glucose and xylose at the sugar uptake
step is eliminated. Cellobiose is then hydrolyzed into glucose intracellularly and
continuously consumed for the production of ethanol. The simultaneous hydrolysis and
utilization of cellobiose avoids intracellular accumulation of glucose, thus alleviating
glucose repression. In the engineered cellobiose and xylose co-utilization strains, cellobiose
and xylose are consumed simultaneously and synergistically with an ethanol productivity of
0.65 g/l h and overall ethanol yield of 0.39 g/g glucose.

Production of advanced biofuels
The development of biologically derived ethanol has achieved significant success in the past
few decades [4, 9]. However, ethanol exhibits some intrinsic limitations, such as low energy
content and corrosiveness, which hampers its large-scale application as a fuel alternative. In
contrast, advanced biofuels, such as higher alcohols, fatty acid derived fuels, and
hydrocarbons, are considered to be better fuel alternatives as their physiochemical properties
are more compatible with the current gasoline-based infrastructure [145].

Isopropanol and n-butanol are both better fuel alternatives compared to ethanol due to their
higher energy content, higher octane number, and lower water solubility. Fortunately, unlike
other long-chain alcohols, both isopropanol and n-butanol can be produced by Clostridium
species in nature. However, since Clostridium species are Gram-positive anaerobes with a
relatively slow growth rate and spore-forming life cycles, it is hard to control the yield of
desired long-chain alcohols in industrial fermentation [145]. To address this issue, long-
chain alcohols were produced in non-native hosts such as E. coli and S. cerevisiae [6, 7, 127,
145]. For heterologous production of isopropanol, various combinations of genes from
different Clostridium and E. coli species have been introduced into E. coli for production
through the coenzyme-A-dependent fermentative pathway. The resulting optimized
recombinant strain can achieve an isopropanol production titer of 5 g/l with a yield of 43.5%
mol/mol glucose [47]. Similarly, the n-butanol production pathway from a Clostridium
species has also been introduced into E. coli and extensive metabolic engineering efforts
have been dedicated to increasing the titer. However, the highest titer for n-butanol
production only achieved 552 mg/l, most likely due to limitations imposed by low
heterologous enzyme activity, insuffcient carbon precursors and inadequate reducing power
[6]. At the same time, Keasling and coworkers introduced a similar pathway into S.
cerevisiae and achieved an n-butanol production titer of 2.5 mg/l through the optimization of
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isozymes used in the pathway [127]. One reason for the low efficiency in the heterologous
production of long-chain alcohols may be the cytotoxicity caused by the accumulation of
intermediate metabolites as well as redox imbalance due to the introduction of heterologous
pathways [6]. To address this issue, Liao and coworkers investigated the production of long-
chain alcohols through existing non-fermentative keto acid pathways. Using this strategy, 2-
keto acids, which are intermediates in amino acid biosynthesis pathways, are converted into
aldehydes by broad range 2-keto-acid decarboxylases (KDC) and then reduced to alcohols
by alcohol dehydrogenases (ADH). Compared to fermentative pathways, only two
heterologous steps need to be introduced for alcohol production through 2-keto-acid
pathways. Through the choice of different KDCs, 2-keto acids from various amino acid
synthesis pathways can be used to produce long-chain alcohols including isobutanol, 1-
butanol, 2-methyl-1-butanol, and 2-phenylethanol [5, 7, 25].

In addition to alcohols, fatty acid-derived fuel alternatives such as fatty acid esters and fatty
alcohols are also potential fuel alternatives. In a recent study by Keasling and coworkers
[128], recombinant E. coli strains were engineered to overproduce free fatty acid through
cytosolic expression of a native E. coli thioesterase and the deletion of fatty acid degradation
genes. Furthermore, the chain length and saturation of the fatty acid chain can be controlled
by simply altering the thioesterase used in the pathway. The recombinant strain was further
modified to directly produce fatty acid ethyl esters (FAEEs) via the introduction of ethanol
production genes from Z. mobilis and overexpression of endogenous wax-ester synthase.
Finally, hemicellulases from various species were expressed in recombinant fatty acid
derivative producers and secreted into the medium to realize consolidated bioprocessing of
hemicellulose biomass directly into biodiesels.

Aliphatic hydrocarbons, such as alkenes and alkanes, are highly attractive targets for
advanced biofuel production as they are currently the major constituents of jet fuel, gasoline,
and diesel. Though alkenes are naturally produced by many species, the genetic and
biochemical mechanism for alkene synthesis remains unclear. Keasling and coworkers
achieved long-chain alkene production through the expression of a three-gene cluster from
M. luteus in a fatty acid-overproducing E. coli strain. After a series of biochemical
characterizations of the strain, a metabolic pathway for alkene biosynthesis was proposed
involving acyl-CoA thioester and decarboxylative Claisen condensation catalyzed by OleA
[12]. In another report, del Cardayre and coworkers elucidated an alkane biosynthesis
pathway from cyanobacteria [118]. In this pathway, intermediates of fatty acid metabolism
are converted to alkanes and alkenes by an acyl-acyl carrier protein reductase and an
aldehyde decarbonylase. Heterologous production of C13–C17 mixtures of alkanes and
alkenes was achieved in E. coli by the expression of this pathway.

Chemicals
While issues such as the recurring oil crisis and global climate change have spurred the
development of new fuel alternatives, they have also led to an increased awareness of the
world's traditional petroleum-based chemical production processes. Consequently, clean,
mild, and safe chemical synthesis processes utilizing renewable resources are highly
desirable.

Organic acids
The wide application of organic acids as platform chemicals, along with the few catalytic
steps required for their production, has led to intensive investigation into the microbial
synthesis of organic acids. One prominent example is the production of lactic acid and its
derivatives. Lactic acid is commercially produced by glucose fermentation using
Lactobacillus species [15]. Additionally, recent studies have reported the production of
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lactic acid from other renewable substrates such as glycerol, cellobiose, and even cellulose
[81, 125].

Succinic acid, a compound commonly used as a surfactant, is another widely investigated
platform chemical. Succinic esters are precursors to many known petrochemical products
(e.g., 1,4-butanediol). Succinate acid can be biochemically produced using bacteria such as
Actinobacillus succinogenes, Mannheimia succiniproducens, as well as recombinant E. coli
[68, 112]. Lang and coworkers reported the production of succinic acid in recombinant S.
cerevisiae with an interrupted TCA cycle that resulted from a quadruple gene deletion. This
engineered strain can produce succinic acid at a titer of 3.62 g/l with a yield of 0.11 mol/mol
glucose [101].

3-Hydroxypropionic acid (3-HPA) has received significant attention mainly due to its
applications in the polymer industry. 3-HPA can be produced from glucose or glycerol
through various pathways [54]. Park and coworkers achieved production of 3-HPA from
glycerol in a recombinant E. coli strain that expresses heterologous glycerol dehydratase and
aldehyde dehydrogenase with a titer of 0.58 g/l. However, the imbalanced enzyme activity
and instability of glycerol dehydratase hampers the efficient production of 3-HPA in the
recombinant strains. Further study has shown that the use of an α-ketoglutaric semialdehyde
dehydrogenase instead of aldehyde dehydrogenase, along with proper fermentation
condition optimization, could improve the 3-HPA production to a titer of 38.7 g/l [103].

D-Glucaric acid, a compound found in fruits, vegetables and mammals, has been investigated
for a variety of therapeutic purposes. D-Glucaric acid can be synthesized by the mammalian
D-glucuronic acid pathway initiated with D-galactose or D-glucose. Prather and coworkers
constructed a recombinant D-glucaric acid producing E. coli strain by heterologous
expression of the myo-inositol-1-phosphate synthase (Ino1) from S. cerevisiae and
myoinositol oxygenase (MIOX) from mice with a titer of 0.3 g/l [87]. The activity of MIOX
was identified as rate limiting in the pathway, resulting in the accumulation of both myo-
inositol and D-glucuronic acid. Co-expressing the urinate dehydrogenase from Pseudomonas
syringae that facilitates the conversion of D-glucuronic acid into D-glucaric acid improved the
production titer to more than 1 g/l. In a follow-up study, synthetic scaffolds were introduced
into the recombinant system to help improve the effective concentration of myo-inositol
[86]. Specifically, polypeptide scaffolds built from protein–protein interaction domains were
used to co-localize three heterologous pathway enzymes involved in D-glucaric acid
synthesis in a complex. The synthetic scaffolds significantly increased the specific activity
of MIOX and resulted in a recombinant strain with a Wvefold improved D-glucaric acid
production titer.

Rare sugars and sugar alcohols
Xylitol is a favorable sugar substitute with low caloric content and anticariogenic properties.
The traditional xylitol production method involves chemical or enzymatic hydrogenation of
hemicellulosic hydrolysate and extensive puri-Wcation of non-specific reduction products.
However, one of the major impurities, L-arabinitol, is an epimer of xylitol, and the
subsequent complex impurity separation process ultimately culminates in a prohibitively
high cost for xylitol production. To overcome this obstacle, Zhao and coworkers developed
a recombinant E. coli strain to produce pure xylitol from hemicellulose hydrolysate. First, an
engineered aldose reductase was constructed to specifically reduce D-xylose. This engineered
enzyme was obtained through rounds of directed evolution on a promiscuous aldose
reductase using an in vivo selection method. The resulting enzyme exhibits a 50-fold lower
catalytic efficiency toward L-arabinose while maintaining most of its D-xylose activity [91].
Furthermore, the recombinant strain was subjected to extensive metabolic engineering to
further improve the selective reduction of D-xylose to xylitol. The resultant engineered E.
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coli strain was capable of production of nearly 100% pure xylitol from an equiweight
mixture of D-xylose, L-arabinose, and D-glucose [92].

L-Ribose, a rare sugar in nature, is a very important intermediate for the preparation of
pharmaceutical, food, and agrochemical products. Woodyer and coworkers developed a new
synthetic platform for production of L-ribose involving the use of a unique NAD-dependent
mannitol-1-dehydrogenase (MDH). The recombinant E. coli strain expressing this enzyme
can be used as a whole-cell catalyst for the production of L-ribose from ribitol. As a result, L-
ribose productivity of 17.4 g/l day was achieved using this system at 25°C in one-liter
fermentation [142]. In a follow-up study, a directed evolution strategy was applied to
improve the activity and thermal stability of MDH. The recombinant strain harboring the
improved MDH achieved a conversion rate of 46.6% and a productivity of 3.88 g/l day in
shake Xasks at 34°C with a overall 19.2-fold improvement. Since MDH can catalyze the
interconversion of several polyols and their L-sugar counterparts, the L-ribose production
system can be potentially applied in the production of other rare sugars as well [24].

1,3-Propanediol
1,3-Propanediol (1,3-PD) is a platform chemical with applications in the production of
plastics, cosmetics, lubricants, and drugs. Production of 1,3-PD was achieved in E. coli
using either glucose or glycerol as a substrate with a high production titer of 135 and 104 g/
l, respectively [93, 129]. yqhD from E. coli and dhaB from Citrobacter freundii were cloned
into a temperature-inducible vector and introduced into a recombinant E. coli strain to
enable the heterologous production of 1,3-PD. Through optimization of the cultivation and
supplementation of vitamin B12 (a coenzyme required for 1,3-PD production), heterologous
production of 1,3-PD with a titer of 43.1 g/l could be achieved in E. coli [149]. In a more
recent study, introduction of dhaB1 and dhaB2 genes from C. butyrium and yqhD from E.
coli, along with a novel two-stage fed-batch fermentation strategy, achieved 1,3-PD
production with a titer of 104 g/l in E. coli using glycerol as a substrate [129]. In addition to
E. coli, S. cerevisiae, a well-known glycerol producer, was also engineered to produce 1,3-
PD from glucose. In a recent study, both dhaB from K. pneumonia and yqhD from E. coli
were introduced into S. cerevisiae via the Agrobacterium tumefaciens genetic transfer
system [102]. It was shown that stable expression of the 1,3-PD production genes can be
achieved in S. cerevisiae. However, the production titer of 1,3-PD only reached 0.4 g/l due
to low glycerol availability.

Vitamins and amino acids
Vitamins and amino acids are important food supplements and microbial production of these
compounds has been extensively investigated [17, 30]. Recently, new metabolic engineering
tools have been applied to improve the production of vitamins and amino acids. For
example, the carbon storage regulator (Csr), a global regulatory system of E. coli, was
engineered to improve phenylalanine biosynthesis [130]. In a follow-up study, Madhyastha
and coworkers explored the effects of csrA and csrD mutations and csrB overexpression on
phenylalanine production in E. coli NST37 (NST) and discovered that the overexpression of
csrB led to a significantly greater phenylalanine production than csrA and csrD mutations.
Together with tktA overexpression, a phenylalanine production titer of 2.39 g/l was achieved
[143].

Improving cellular properties
To achieve a high-level of value-added compound production, a microorganism must exhibit
a high tolerance towards any substrate inhibitors and toxic products as well as the currently
utilized strict industrial fermentation conditions. One good example for engineering
microbial tolerance towards substrate inhibitors is the improvement of lignocellulosic
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hydrolysate tolerance in biofuel producing microorganisms. Lignocellulosic hydrolysate
contains a variety of cell-growth inhibitors due to the harsh chemical/enzymatic hydrolysis
process. These inhibitors mainly consist of acetic acid, furan derivatives, and phenolic
compounds. Different engineering approaches, such as long-course adaptation, genomic
library selection, and rational design, have all been applied to improve microbial tolerance
and have each yielded different results [14, 44]. In a recent study, Brown and coworkers
investigated the hydrolysate inhibitor tolerance of both Z. mobilis and S. cerevisiae in
regards to the expression level of a conserved bacterial member of the Sm-like family of
RNA-binding proteins Hfq and its homologue Lsm. Their results indicate that these
regulator proteins are very important for pretreatment inhibitor tolerance [146].

Extensive investigation has been carried out to explore the tolerance of Wnal products. The
understanding and engineering of microbial ethanol and butanol tolerance is a particularly
active and interesting example. For example, Keasling and coworkers examined the
transcript, protein, and metabolite levels in E. coli to construct a cell-wide view of the n-
butanol stress response. Their results indicate that butanol stress includes the perturbation of
respiratory, oxidative, heat shock, and cell envelope stresses, as well as disrupting general
metabolite transport and biosynthesis [110]. Jin and coworkers studied alcohol tolerance in
S. cerevisiae using transformation of a genomic DNA library and serial subculture into
media containing isobutanol. Sequence analysis revealed overexpression of INO1, DOG1,
HAL1, or a truncated form of MSN2 in the enriched population and provided a potential
target for the understanding and engineering of an alcohol-tolerant phenotype [52].

For industrial microorganisms, resistance to stress is highly desirable due to the
simultaneous or sequential combinations of different environmental stressors present in
biotechnological processes. The molecular basis of stress resistances is very complicated,
making it difficult to engineer stress resistances by rational approaches. However, using
evolutionary engineering approaches, engineered strains with multiple-stress resistances are
possible. Sauer and coworkers tested various selection procedures in chemostats and batch
cultures systematically for a multiple-stress resistant S. cerevisiae phenotype. Mutant
populations harvested at different time points as well as clones were randomly chosen and
grown in batch cultures to be exposed to high-temperature, oxidative, freeze–thaw, and
ethanol stresses. A unique high-throughput procedure utilizing 96-well plates combined with
a most-probable-number assay was developed for the selection of multi-stress resistant
strains. In this research, the best selection strategy to obtain highly improved multiple-stress-
resistant yeast was found to be batch selection for freeze–thaw stress. Mutants not only
significantly improved in freeze–thaw stress resistance but also in the other stress resistances
identified by this strategy. The best isolated clone exhibited a 102-, 89-, 62-, and 1,429-fold
increased resistance to freeze–thaw, high-temperature, ethanol, and oxidative stress,
respectively [19].

Transport issues
Efficient uptake of a substrate into microbial cells and export of a product outside microbial
cells are critical to value-added compound production. Recently, some progress has been
made to improve substrate uptake, especially lignocellulose hydrolysate product uptake in
biofuel producing microorganisms.

Pentose uptake through sugar transporters is the Wrst step of pentose utilization in S.
cerevisiae. However, pentose sugars only enter S. cerevisiae cells through the hexose uptake
system, a system that has two orders of magnitude lower affinity for pentose sugars than
hexoses [63]. As a result, pentose uptake in pentose-assimilating yeast strains is very slow
and inhibited by the presence of D-glucose in the growth media. To improve D-xylose uptake,
heterologous D-xylose transporters were introduced into recombinant S. cerevisiae strains.
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Spencer-Martins and coworkers discovered one high affinity D-xylose/D-glucose symporter
(GXS1) and one low affinity D-xylose/D-glucose facilitator (GXF1) from Candida intermedia
and characterized them at the molecular level in S. cerevisiae [67]. It was observed that
overexpression of the Gxf1 transporter improved fermentation performance in a
recombinant D-xylose-utilizing S. cerevisiae strain [108]. Similarly, S. cerevisiae strains
overexpressing heterologous D-xylose transporters from Arabidopsis thaliana showed up to
2.5-fold increased D-xylose consumption and 70% increased ethanol production [49]. In
addition, overexpression of the D-glucose transporter Sut1 from Pichia stipitis was also
shown to improve ethanol productivity during D-xylose and D-glucose co-fermentation by a D-
xylose-assimilating S. cerevisiae strain [56]. However, all of the transporters mentioned
above still have a lower affinity for D-xylose when compared to glucose. Recently, two D-
xylose-specific transporters from pentose assimilating fungal species N. crassa and P.
stipitis were discovered, heterologously expressed, and characterized in S. cerevisiae.
Although the overexpression of these two D-xylose-specific transporters failed to improve D-
xylose utilization in recombinant S. cerevisiae strains, the sequencing of these types of
transporters may provide some insight that could eventually lead to the discovery and
engineering of highly active pentose-specific sugar transporters [32].

Cellodextrins are glucose polymers with various lengths that cannot be metabolized by
ethanol-producing S. cerevisiae. Cate and coworkers discovered a group of cellodextrin
transporters from hemicellulose-assimilating species N. crassa through a microarray study.
By introducing the newly discovered cellodextrin transporters along with β-glucosidase into
S. cerevisiae, cellodextrin-assimilating recombinant strains could be constructed [37].
Follow-up studies have shown that by enabling intracellular cellodextrin utilization, the
long-lasting glucose repression that occurs during mixed sugar utilization can be
circumvented through the use of cellobiose instead of glucose as the carbon source [75].
Simultaneous and synergistic utilization of cellobiose and xylose could significantly reduce
the cost of biomass-based fuel alternatives [45].

Conclusions and future prospects
Numerous impressive accomplishments have been made in the engineering of microbial
factories for synthesis of value-added products in the past few years. However, continuous
efforts towards exploring new production hosts, creating novel enzymes that catalyze
unnatural reactions, and developing more powerful tools for functional genomics and
proteomics will be necessary to expand the range of products that can be synthesized by
microbial factories. Of special note, innovative synthetic biology approaches for pathway
and genome engineering are expected to play an increasingly important role in this effort.

For example, Zhao and coworkers developed a DNA assembler approach for rapid
construction and engineering of a biochemical pathway either on a plasmid or on a
chromosome in S. cerevisiae in a single-step fashion [121]. This approach was further
extended for discovery, characterization, and engineering of natural product biosynthetic
pathways [120]. In this method, the entire expression vector containing the target
biosynthetic pathway and the genetic elements required for DNA maintenance and
replication in various hosts is synthesized. Because the DNA fragments to be assembled are
completely mobile and amenable to all sorts of sophisticated genetic manipulations
accessible to PCR, or can be chemically synthesized de novo with optimized codons, this
strategy offers the ultimate versatility and Xexibility in characterizing and engineering a
biochemical pathway. More importantly, the recent success in chemical synthesis of entire
bacterial genomes implies the possibility of constructing artificial organisms [41–43].
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In the future, synthetic biology could become as powerful as synthetic chemistry, and could
greatly expand the range of products that can be produced from renewable sources. In
particular, a combination of synthetic biology platforms with current protein and metabolic
engineering tools is expected to give rise to a new generation of organisms that function as
highly robust and programmable biological machines [72, 82].
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Fig. 1.
Production of benzylisoquinoline alkaloids either by a co-culturing system of E. coli and S.
cerevisiae (a) or by S. cerevisiae alone (b)
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Fig. 2.
Utilizing S. cerevisiae to synthesize artemisinic acid (a) and taxol (b)
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Fig. 3.
Engineered pathways for increased flavanone and anthocyanin biosynthesis in E. coli
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Fig. 4.
Production of fuels and chemicals from lignocelluosic biomass
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Fig. 5.
Co-fermentation of cellobiose and xylose using recombinant S. cerevisiae co-expressing a
cellobiose transporter and an intracellular β-glucosidase. This novel approach eliminates the
use of exogenously added β-glucosidase and alleviates glucose repression on xylose uptake
and utilization (shown in blue)
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