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Potassium (K+) is an important nutri-
ent for plants. It serves as a cofac-

tor of various enzymes and as the major 
inorganic solute maintaining plant 
cell turgor. In a recent study, an as yet 
unknown role of K+ in plant homeostasis 
was shown. It was demonstrated that K+ 
gradients in vascular tissues can serve as 
an energy source for phloem (re)loading 
processes and that the voltage-gated K+ 
channels of the AKT2-type play a unique 
role in this process. The AKT2 channel 
can be converted by phosphorylation of 
specific serine residues (S210 and S329) 
into a non-rectifying channel that allows 
a rapid efflux of K+ from the sieve ele-
ment/companion cells (SE/CC) complex. 
The energy of this flux is used by other 
transporters for phloem (re)loading pro-
cesses. Nonetheless, the results do indi-
cate that post-translational modifications 
at S210 and S329 alone cannot explain 
AKT2 regulation. Here, we discuss the 
existence of multiple post-translational 
modification steps that work in concert 
to convert AKT2 from an inward-recti-
fying into a non-rectifying K+ channel.

Potassium (K+) is the most abundant min-
eral element in plants, and together with 
nitrogen and phosphorous, is limiting for 
plant production in many natural and 
agricultural habitats. Voltage-gated K+ 
channels are key players in the acquisition 
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of K+ ions from the soil and in its redis-
tribution within the plant.1 Structurally, 
these channels result from the assembly 
of four so-called a-subunits. The subunits 
are encoded by nine genes in Arabidopsis 
and both homo- and hetero-tetramers are 
expressed.2,3 The K+ channel a-subunits 
can be categorized into four different 
subfamilies, based on the voltage-gating 
characteristics of the exogenous K+ con-
ductance when expressed in an appropri-
ate heterologous expression system. K

in
 

a-subunits form hyperpolarization-acti-
vated channels that mediate K+ uptake.4-7 
K

out
 a-subunits form depolarization-acti-

vated channels that mediate K+ release 
from cells.8-10 K

silent
 subunits appear unable 

to yield functional homomeric channels, 
but can combine with K

in
 subunits and 

fine-tune the K+-uptake properties of the 
resulting heteromeric channels.11-14 Finally, 
K

weak
 a-subunits form channels with com-

plex voltage-gating; they allow both K+ 
uptake and release.15-19 In Arabidopsis, a 
single member is found in this subfamily, 
AKT2, and this channel can assemble in 
heteromeric channels with the K

in
 subunit 

KAT2.20

To date, only scarce and speculative 
information has been obtained for the 
function of K

weak
 channels. When expressed 

in heterologous expression systems, two 
different subpopulations of AKT2 chan-
nels differing in their sensitivity to voltage 
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in AKT2 loss-of-function mutant plants, 
assimilates leaking away from the sieve 
tube were not efficiently reloaded into the 
main phloem stream.

AKT2 expression is especially abun-
dant in phloem tissues and the root stele, 
both of which are characterized by a poor 
availability of oxygen.29,30 This local inter-
nal hypoxia impairs respiratory activity 
of the vascular tissue and concomitantly, 
respiratory ATP production is reduced.31 
As a consequence, phloem transport is 
very susceptible to decreasing oxygen sup-
ply to the plant.29,32 It is therefore compre-
hensible that the above mentioned support 
by the K+ driving force for sucrose retrieval 
is especially relevant in the phloem. 
Indeed Gajdanowicz et al.25 showed that 
transgenic plants lacking the AKT2 K+ 
channel were severely impaired in growth 
when exposed to mild hypoxia (10% 
v:v), whereas growth of wild-type plants 
was unaffected by this treatment. These 
observations illustrate the importance of 

channel is crucial for plants to overcome 
energy-limiting conditions. This function 
of AKT2 could be correlated to its expres-
sion in phloem tissues. Selective expres-
sion of AKT2 under the control of the 
phloem companion cell-specific AtSUC2 
promoter rescued the akt2-1 line, but con-
versely, selective expression of AKT2 under 
the control of the guard cell-specific GC1 
promoter,26 resulted in further impair-
ment of plant growth (Fig. 1). By com-
bining diverse experimental approaches 
with mathematical simulation methods, 
an existing model for phloem (re)load-
ing18,27 was fundamentally improved. This 
allowed the uncovering of a novel and 
interesting role of K+ in phloem physiol-
ogy: K+ gradients present between the sieve 
element/companion cell (SE/CC) complex 
and the apoplast can serve as an energy 
source in phloem (re)loading processes. 
This “potassium battery” can be tapped 
by means of AKT2 regulation. This clari-
fies the observation of Deeken et al.28 that 

were found.21 Channels of the first type 
showed gating properties and currents 
analogous to that of K

in
 channels, while 

the other sort enabled a non-rectified 
(leak-like) current; they were open over 
the entire physiological voltage range.

A given channel can be converted from 
one type to the other by post-translational 
modifications.21 A voltage-dependent 
phosphorylation was found to be an essen-
tial step for this switch,22,23 although the 
kinase responsible for this conversion still 
needs to be uncovered.24 In biophysical 
studies, mutant versions of the Arabidopsis 
K

weak
 channel subunit AKT2 have been 

created that showed impaired gating 
mode settings.22,23 Recently, Gajdanowicz 
et al. generated transgenic Arabidopsis 
thaliana plants that express these mutant 
AKT2 channels in the background of the 
akt2-1 null-allele plant.25 The major con-
clusion from analyses of these mutants is 
that the status switching of AKT2 from 
an inward-rectifying to a non-rectifying 

Figure 1. AKT2 expressed only in guard cells delays plant development. (A–C) Representative wild-type, akt2-1 and akt2-1+pGC1:AKT2 complementa-
tion plants grown for 7 weeks (A), 9 weeks (B) and 12 weeks (C) under 12-h day/12-h night conditions at normal light intensity (150 μmol m-2 s-1). (D) 
akt2-1+pGC1:AKT2 developed a similar number of leaves as the akt2-1 knock out plants, but bolting-time was delayed. (B and E) After 9 weeks, wild-
type plants were at an advanced bolting stage, akt2-1 plants had started bolting, but only initial signs of bolting were visible in akt2-1+pGC1:AKT2 
plants. (C and F) At 12 weeks, akt2-1 plants had caught up with the wild-type and akt2-1+pGC1:AKT2 was just starting to bolt, although rosette-leaves 
were showing clear signs of senescence. For the generation of akt2-1+pGC1:AKT2, the AKT2 cDNA was fused to the guard cell-specific GC1 promoter26 
kindly provided by J.I. Schroeder, San Diego. The pGC1:AKT2 construct was cloned into pGreen0229-35S by replacing the 35S promoter and then 
transformed into the akt2-1 knockout plant. All seeds were cold-treated for 24 h at 4°C. Plants were grown on artificial substrate (type GS-90, Einheit-
serde). After 2 weeks, seedlings were transferred to single pots. Plants were grown in 60% relative humidity at 21°C during the day and 18°C at night. 
Phenotypical analyses were done in the middle of the day. Data are shown as means ± SD of n ≥ 9 plants. Statistical analyses using Student’s t test: (D, 
WT/akt2-1: p < 2e-08; D, WT/pGC-AKT2: p < 2e-08; D, akt2-1/pGC-AKT2: p < 5e-03; E, WT/akt2-1: p < 4e-06; E, WT/pGC-AKT2: p < 1e-10; E, akt2-1/pGC-
AKT2: p < 5e-04; F, WT/akt2-1: p = 0.51; F, WT/pGC-AKT2: p < 1e-10; F, akt2-1/pGC-AKT2: p < 1e-10).
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yet unknown mechanisms, must con-
tribute to the switch in the AKT2 gating 
mode. Such a concept would correspond 
to results that would otherwise be hard 
to explain. For instance, when both ser-
ine residues were replaced by glutamate, 
the mutant AKT2-S210E-S329E still 
showed wild-type characteristics.22 The 
S to E substitution is expected to mimic 
the phosphorylated state better than the S 
to N replacement. Furthermore, position 
AKT2-K197 has a fundamental influ-
ence on the AKT2 gating mode.23 AKT2 
mutants with that particular lysine sub-
stituted with a serine are far less sensitive 
towards (de)phosphorylation; they dis-
play the characteristics of a pure inward-
rectifying K+ channel,23 and transgenic 
Arabidopsis plants expressing AKT2 
channels with this substitution showed 
the characteristics of akt2-1 knock-out 
plants.25 Initially, it was proposed that the 
positive charge is important for sensitiz-
ing AKT2 to phosphorylation. However, 
the charge-conserving mutant AKT2-
K197R is similar to the charge inverting 
mutant AKT2-K197D,23 a purely inward-
rectifying channel (Fig. 3). We therefore 
need to take into account that in plants, 
K197 may also be a target of post-transla-
tional modification.35 At present, we can 
explain the beneficial effect of the AKT2-
S210N-S329N mutant on plant growth 
only by a multiple step regulation of 
AKT2 (Fig. 4). The double-N mutation 
would then bypass the phosphorylation 
step, but AKT2-S210N-S329N could still 

if surrounding cells take up the apoplas-
tic K+ for their own use. A K+/Suc anti-
port will not occur in obvious sink or 
source tissues since the energy balances 
in such cells are fundamentally differ-
ent. Consequently, in these tissues only 
the coupled symport of K+ and Suc can 
be observed. However, the computational 
predictions allowed the identification of 
the experimental conditions under which 
the effect of the K+/Suc antiport system is 
empirically observable at the whole plant 
level.

An essential role in the regulation of 
AKT2 is played by (de)phosphoryla-
tion events of serine residues at positions 
S210 and S329. The replacement of both 
serines by asparagine (AKT2-S210N-
S329N) resulted in a K+-selective leak 
that is locked in a continuously open 
mode when the channels are expressed 
in Xenopus oocytes. Under certain con-
ditions, plants expressing the AKT2-
S210N-S329N mutation showed growth 
benefits over wild-type plants; akt2-
1+AKT2-S210N-S329N plants reach 
the generative state faster, possess an 
increased number of leaves and increased 
fresh weight (Fig. 2). Intuitively, one 
would expect a continuously open chan-
nel to cause severe problems for the plant, 
not a benefit as was observed here. We 
therefore have to postulate that phos-
phorylation at residues AKT2-S210 and 
AKT2-S329 is insufficient for convert-
ing AKT2 from an inward-rectifying 
into a non-rectifying channel; other, as 

biochemical flexibility in plant cells to 
cope with the energetic consequences of 
the steep oxygen concentration gradients 
that generally occur in plant stems and 
roots.

In fact, the role of K+ gradients in driv-
ing sugar, amino acid and organic acid 
transport across plant cell membranes was 
first suggested several decades ago.33,34 
Experimental evidence for this concept 
was provided by various tests in which 
pieces of plant tissue were incubated in 
solutions with different K+ concentrations 
and pH levels.33,34 Unfortunately, at that 
time the lack of genetic information to 
support this hypothesis (e.g., identifying 
transporter proteins that could provide 
a molecular mechanism to explain the 
working mechanism of substrate trans-
port driven by a K+-motive force) resulted 
in this idea falling into oblivion. Indeed, 
the unequivocal experimental observation 
of this new role of K+ gradients in phloem 
reloading is extremely challenging. Under 
normal experimental conditions, K+ 
fluxes and sucrose fluxes are coupled dur-
ing phloem loading in source tissues and 
unloading in sink tissues. Nonetheless, 
computational simulations predict that 
under certain conditions, a local K+/Suc 
antiport is also thermodynamically pos-
sible. In this antiport system, the energy 
from the K+ gradient is used to transport 
Suc into the phloem. This process is only 
transient; flooding the apoplast with K+ 
will decrease the K+ gradient. However, 
the gradient can be maintained for longer 

Figure 2. Plants expressing the AKT2-S210N-S329N mutant reach the generative state faster than wild-type plants. The mutant channel AKT2-S210N-
S329N was expressed under the control of the native AKT2 promoter in the akt2-1 knock-out background. (A) Photos of representative Arabidopsis 
thaliana plants grown 7 weeks under short day conditions (12-h day/12-h night, light intensity = 150 μE m-2s-1). Seven weeks after sowing, plants 
expressing only AKT2-S210N-S329N mutant channels (n = 22) differed significantly (Student’s t test, p < 4e-05) from wild-type plants (n = 20) in the 
height of the main inflorescent stalk (B) and fresh weight (C). At later time points, these differences decrease.25
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Note

The work on AKT2 is dedicated to the 
memory of Prof. Claude Grignon (1942–
2010) who headed for some 30 years the 
“Biochimie et Physiologie Moléculaire 
des Plantes” Laboratory in Montpellier, 
France. There, the biophysical study of the 
AKT2 channel was initiated by I.D., E.M. 
and J.B.T. in the late ‘90s.
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be deregulated into an inward-rectifying 
channel. Thus, AKT2 can be considered 
as a highly specialized K

in
 channel that 

can be converted into a leak-like channel 
by a cascade of post-translational modifi-
cation steps.
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Figure 3. The mutant AKT2-K197R channel is inward-rectifying. Steady-state current-voltage 
characteristics measured at the end of activation voltage steps. Currents were normalized to the 
current values measured at -145 mV in 10 mM K+ and are shown as means ± SD (n = 6).

Figure 4. Minimal model for AKT2 gating-mode regulation. To switch AKT2 from an inward-
rectifying into a non-rectifying channel, at least two post-translational steps are postulated. (1) 
Phosphorylation at residues AKT2-S210 and AKT2-S329 (transitions [1]→[2] and [3]→[4]) and (2) a 
yet unknown modification that most likely involves the residue AKT2-K197 (transitions [1]→[3] and 
[2]→[4]). Only after both modifications will AKT2 allow the efflux of K+ (state [4]).
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