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Jasmonates (JAs) induce leaf senes-
cence in many plant species. The 

Arabidopsis F-box protein coronatine 
insensitive 1 (COI1) is required for vari-
ous JA-regulated plant responses includ-
ing plant fertility, defense responses and 
leaf senescence. However, the molecular 
basis for COI1-dependent JA-induced 
leaf senescence remains unknown. In 
our Plant Physiology paper, we identified 
a COI1-dependent JA-repressed protein, 
Rubisco activase (RCA) in Arabidopsis. 
Further genetic and physiological analy-
ses showed that the COI1-dependent 
JA repression of RCA correlated with 
JA-induced leaf senescence, and that loss 
of RCA led to typical senescence-asso-
ciated features. Therefore, we suggested 
that the COI1-dependent JA repres-
sion of RCA played an important role 
in JA-induced leaf senescence. In this 
addendum, we made a relatively deep dis-
cussion on RCA function in JA-induced 
leaf senescence and JA-mediated defense 
responses. We also discussed the possible 
role of JA in plant natural senescence.

Jasmonates (JAs), as a plant signal, func-
tion in induction of leaf senescence. 
Exogenous application of JA has been 
shown to stimulate leaf senescence1-5 and 
to control a serious of senescence-related 
genes expression.6,7 The Arabidopsis F-box 
protein coronatine insensitive 1 (COI1),8 
as a JA receptor,9 is essential for JA-induced 
leaf senescence. Upon JA treatment, the 
senescence phenotype was observed in the 
leaves of wild type (WT) but not in the 
coi1 mutants.3,5

We recently identified a COI1-
dependent JA-repressed protein, 
Rubisco activase (RCA) in Arabidopsis5 
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(Fig.  1A  and B). The transcript level of 
RCA was also decreased under JA treat-
ment in a COI1-dependent manner, which 
preceded the reduction of RCA protein5 
(Fig. 1A and C). In addition, we found 
that the levels of RCA transcript and pro-
tein were unchanged in the WT leaves 
treated with synthetic auxin 2,4-dichlo-
rophenoxyacetic acid (2,4-D) (Fig. 1D), 
confirming that the repressed RCA/RCA 
expression is rather a specific response to 
the JA signal than general response to hor-
mone overexposure.

We further observed that the COI1-
dependent JA-repression of RCA correlated 
with JA-induced leaf senescence. Upon JA 
treatment for 5 days, severe senescence-
associated features were induced in the WT 
leaves compared to that in the coi1-1 and 
coi1-2 mutants5 (Fig. 2A). Simultaneously, 
the RCA protein level was dramatically 
reduced in the WT leaves, but not in the 
coi1 mutants5 (Fig. 2B). Furthermore, 
we isolated the null mutant rca-1 and the 
leaky mutant rca-2, and found that these 
mutants showed typical senescence-related 
symptoms such as yellowing leaf, lower 
chlorophyll content, increased expression 
of senescence-induced genes and decreased 
expression of senescence-reduced genes at 
different degrees.5 Thus, we suggested that 
the COI1-dependent JA repression of RCA 
played an important role in JA-induced 
leaf senescence.

It has been reported that the RCA-
deficient plants had a lower CO

2
 assimi-

lation rate correlated with their defects 
in growth and photosynthesis, and that 
exogenous application of high CO

2
 

could restore these deficiency.10,11 It 
remains to be elucidated that whether 
the senescence symptoms in these rca 
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analysis showed that the expression levels 
of LOX2 were not induced in these rca 
mutants (Fig. 3), indicating that the leaf 
senescence in these rca mutants might not 
associate with upregulation of JA content.

To investigate whether the decrease 
in RCA is a specific JA-related effect or a 
common feature of other senescence types 
promoted by various developmental sig-
nals and environmental stresses,13,14 we 
detected the RCA expression pattern in 
dark-induced senescent WT plants, and 
found that downregulation of RCA was 
also involved in dark-induced senescence.5

In conclusion, we set up a model for 
JA-induced leaf senescence: JA signal is 
perceived by COI1, subsequently trig-
gers the COI1-dependent degradation of 
jasmonate ZIM-domain proteins (JAZs), 
then releases the JAZs-interacting proteins 
to activate (or repress) the JA-responsive 
transcription repressors (or activators) 
essential for the expression of RCA, which 
thereby downregulates RCA resulting 
in JA-induced leaf senescence. It is pos-
sible that other types of senescence includ-
ing dark-induced senescence might also 
accompanied by the reduction of RCA 
RNA and RCA protein.

As a member of the ATPases associated 
with a variety of cellular activities (AAA+) 
protein family, RCA functions in diverse 
stress-related processes including UV-B 
exposure, ozone, heat stress, drought and 
herbivore resistance in different plant sys-
tems.15-21 The rca-1 and rca-2 mutants dis-
played obviously decrease in the JA-induced 
expression of two defense-responsive genes 
plant defensin 1.2 (PDF1.2) and thionin 2.1 
(Thi2.1),5,22,23 suggesting that RCA may 
also play a role in JA-mediated defense 
responses. The multi-function of RCA 
in defense responses indicates that there 
might be some common elements in these 
processes, which is worthy to be identified.

There was no sufficient evidence to 
support the possible role of JA in natu-
ral senescence except that the JA-signal 
deficient coi1 mutant plants exhibited 
relatively delayed natural senescence phe-
notypes including elongated flowering 
time and higher chlorophyll content.24 It 
deserves a more thorough analysis to study 
the role of JA in plant natural senescence: 
do the natural senescence-associated phe-
notypes also occur in the JA-biosynthesis 

JA biosynthetic genes expression.3,12 We 
examined the expression pattern of JA 
biosynthetic gene lipoxygenase 2 (LOX2) 
in the rca-1 and rca-2 mutants. RT-PCR 

mutants could be rescued by growth at 
high CO

2
.

Many types of senescence usually asso-
ciate with upregulation of JA content and 

Figure 1. RCA was downregulated at the levels of transcript and protein abundance by JA in a 
COI1 dependent manner. (A) Quantitative analysis of RCA RNA levels and RCA protein levels in 
6-week-old WT and coi1-1 mutant leaves treated with methl jasmonate
(MeJA) or water for indicated time-periods. The RCA RNA level and RCA protein level in WT upon 
water-treatment for 0 days were set to 1 respectively, and the relative RCA RNA levels and RCA 
protein levels in other samples were calculated accordingly. This figure was the modification 
to the Figures 3A and 4B in reference 5. (B) Western blot for RCA in 6-week-old WT and coi1-1 
mutant leaves treated with MeJA (+) or water (-) for 3 days. The immunoblot was detected with 
GST antibody as a protein loading control. This figure was the supplementation to the Figure 3A 
in reference 5. (C) Northern blot for RCA in 6-week-old WT and coi1-1 mutant leaves treated with 
MeJA (+) or water (-) for 3 days. The EB staining of rRNA was used as loading control. This figure 
was the supplementation to the Figure 4B in reference 5. (D) Semi-quantitative RT-PCR (left) and 
western blot for RCA (right) in 6-week-old WT leaves treated with 2,4-D (+) or water (-) for 5 days. 
The amplified actin1 was shown as an internal control (left). The immunoblot was detected with 
GST antibody as a protein loading control (right).
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