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Abstract
The experimental study of individual macromolecules has opened a door to determining the details
of their mechanochemical operation. Motor enzymes such as the myosin family have been
particularly attractive targets for such study, in part because some of them are highly processive
and their “product” is spatial motion. But single-molecule resolution comes with its own costs and
limitations. Often, the observations rest on single fluorescent dye molecules, which emit a limited
number of photons before photobleaching and are subject to complex internal dynamics. Thus, it
is important to develop methods that extract the maximum useful information from a finite set of
detected photons. We have extended an experimental technique, multiple polarization illumination
in total internal reflection fluorescence microscopy (polTIRF), to record the arrival time and
polarization state of each individual detected photon. We also extended an analysis technique,
previously applied to FRET experiments, that optimally determines times of changes in photon
emission rates. Combining these improvements allows us to identify the structural dynamics of a
molecular motor (myosin V) with unprecedented detail and temporal resolution.

1. Overview
1.1. The changepoint problem

Many experiments in single-molecule biophysics seek to determine the time course of
discrete intramolecular motions (Michalet and Weiss, 2002). For example, we may wish to
know when in a mechanochemical cycle does one subunit of an enzyme move spatially
relative to another, when does a ligand bind, and so on. One popular method involves
Förster resonance energy transfer (FRET; Weiss, 1999). Oversimplifying somewhat, FRET
converts the spatial distance between two fluorescent probes attached to a macromolecule
(or on two molecules) into an observable signal, a photon emission rate. A second method,
and the main application to be discussed in this chapter, is polarized total internal reflection
fluorescence microscopy (polTIRF; Beausang et al., 2008; Rosenberg et al., 2005). The
method will be discussed in greater detail below, but again oversimplifying, it converts the
spatial orientation of a fluorescent probe into a set of distinct photon emission rates. Each
rate describes the probe’s average number of emitted photons per time with a particular
polarization, given a particular excitatory polarization and intensity.

In each of the situations just described, the experimenter hopes to observe discrete changes
of internal state as sudden changes in photon emission rate(s), and to interpret those jumps
as specific spatial movements. Ideally, such data will tell us the precise times of the changes,
for example, so that kinetic constants may be determined accurately, and also the number of
distinct states and the precise spatial distances or orientations in each state. (Different
methods based on hidden Markov modeling have been proposed to extract kinetic
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parameters directly from unbinned single-photon trajectories; Andrec et al., 2003;
McKinney et al., 2006). Such methods achieve high time resolution, but unlike ours, they
require knowledge of the underlying kinetic scheme.)

Single-molecule fluorescence measurements are limited, however, by shot noise: There are
only a finite number of photons available, either because each state is short-lived, or because
most fluorophores photobleach (stop fluorescing) after a finite number of excitations.
Increasing the photon count via stronger illumination generally hastens the eventual bleach.
Slowing the kinetic steps by any of various expedients can distort the natural functioning of
the enzyme under study. For all these reasons, we would like to make optimal use of the
available photons by employing a good change-point detection scheme.

The “changepoint problem” has a long history in probability theory (Chen and Gupta, 2001).
In its abstract form, we consider a time series of observations. We wish to compare the
hypotheses: (H0) The observations are independent draws from a single unknown
probability distribution, (H1) all the observations up to time τ are independent draws from
one unknown distribution, and those made later than τ are independent draws from a
different unknown distribution; …(Hp) there are p such sudden transitions. In this general
form, the changepoint problem has many applications (e.g., in finance). But it cannot be
attacked without specifying our assumptions more completely. For example, as stated, the
problem allows us to suppose that every observation is separated from the next by a change-
point—not a useful conclusion!

The rest of this overview section gives a concise, self-contained tutorial on changepoint
detection. The reader who wants to know what the method can do may wish to examine
Figs. 15.1 and 15.2 before proceeding. Succeeding sections give more implementation
details (see also Beausang, 2010). A glossary of abbreviations appears at the end.

1.2. Traditional approach
For applications to single-molecule biophysics, we can formulate a more specific version of
the general changepoint problem: We suppose that, in each quasi-stationary state S(a),
photons are emitted in a Poisson process with some stationary mean rate r(a). Given a time
series of photon arrivals, we then wish to find these rates and the times of the transitions
between them.

One way to address the question is to divide time into bins of size Δt large enough that every
bin contains many photons. Dividing the count in each bin by Δt gives an estimate of the
photon emission rate (intensity). We create a histogram of these estimated rates, identify cut
points between its peaks, and declare a changepoint in the data whenever two successive
estimates of the rates straddle a cut point. Although it is straightforward, this traditional
approach has several weaknesses in single-molecule work. Practically achievable photon
rates may not be high, forcing us into a dilemma: We must either take Δt to be large,
compromising temporal resolution, or small, giving few photons in each bin. In the former
case, most changepoints will lie in the middle of a bin, smearing out the transitions; we may
even miss some transitions altogether if a state is too short-lived. In the latter case, ordinary
Poisson fluctuations in photon counts become large enough to obliterate some transitions
between states with similar rates and conversely can create apparent transitions where none
took place.

Figure 15.1 illustrates the issues. The plot in panel (A) shows some simulated data, which
could represent the estimated photon emission rate of a single-molecule photobleaching
event. Clearly, there is a changepoint, but we cannot manually identify its time to very good
accuracy, nor can we identify the rates themselves very well. Section 1.3 gives an improved
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approach to this same data, and Section 1.4 explains how to convert this observation into a
useful statistic.

1.3. Improved approach: Heuristic
Clearly, the dilemma described in Section 1.2 rests with the random character of photon
emission; the rates r found in each time bin are just sample average rates. Nevertheless, if
we index the photons by sequence number m and plot their arrival times versus m, we should
get a bumpy line that eventually shows a well-defined slope 1/r. Changepoints should then
appear as kinks in that line. The curve in Fig. 15.1B shows that indeed the very same data
used to obtain panel (A) now display a visible kink at a well-defined time. The difference in
time resolution between Fig. 15.1A and B arises because in the traditional method, we
coarsen our data by binning, whereas in the improved method, every photon’s precise arrival
time is retained. Figure 15.1E and F shows the same phenomenon with real experimental
data.

One could simply take a time series with many changepoints and visually identify kinks in a
graph-like Fig. 15.1B by laying a ruler along straight stretches in the graph. In practice, we
would prefer a method that is both more automatic and more objective than that; the rest of
this chapter will develop such a method. It may be tempting to modify the visual method by
attempting a least-squares fit of Fig. 15.1B to a piecewise linear function, but least-squares
rests on assumptions about the statistical character of data that are not met in this context.
Section 1.4 and later sections will instead proceed from a more fundamental, maximum-
likelihood approach.

As mentioned earlier, we would also like to generalize changepoint analysis to handle
situations where several distinct streams of photons are observed, and each macromolecular
state a is characterized by the set (r1, r2, …, rnp). In our application, each observed photon is
tagged by its polarization and by the polarization of the incident radiation that gave rise to it.
For example, the data shown in Fig. 15.1E and F include separate traces for two of the
subpopula-tions in a particular experiment. (Other photon subpopulations were not displayed
because they were not as sensitive to the particular conformational change occurring at this
time.) Section 2.2 will pursue this generalization.

Despite the mathematical complexity of the discussion to follow, we wish to emphasize the
underlying simplicity of the method: The almost trivial replotting of data in Fig. 15.1B
already contains the heart of changepoint detection.

1.4. Simple derivation of changepoint statistic
The single-channel case for detecting changepoints in single-photon counting (SPC) data
was developed by Watkins and Yang (2005), who applied it to single-molecule FRET
recordings (Watkins and Yang, 2006). This section gives a simple derivation of their key
formula.

We can think of successive observations by discretizing time into small slices δt. δt will be
sent to zero in the following discussion; it will not enter our final formulas. It is not a time-
binning parameter, because we do not lump groups of photons into batches. We then
imagine recording (photon)/(no photon) in each slice. This binary random variable is
supposed to be distributed as a Bernoulli trial with probability rδt to observe a photon, and
(in the limit δt → 0), zero probability to find more than one. If we observe over total time T,
we then wish to compare the hypotheses: (H0) Uniform photon emission rate r0 throughout
all T/δt time slices; (H1) Uniform rate r until time τ, then uniform rate r′ thereafter; etc.
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Consider first hypothesis (H0) (actually a one-parameter family of hypotheses). Suppose
that photons have been observed at times t1 < … < tN, all between 0 and T. From this
information, we would like to identify the best estimate of the rate r0. To do so, we calculate
and maximize a “log likelihood function” (r0), defined as the logarithm of the probability
that the observed photon times would have been observed, had the hypothesis (H0; r0) been
true:

(15.1)

Taking the limit δt → 0 gives (r0) = N ln(r0δt) − r0T. (Exponentiating this formula for ,
integrating over the allowed range of t’s, and summing over N confirms that the
corresponding probability distribution is properly normalized.) Maximizing over the rate r0
then gives the optimal choice N/T, as could have been expected.

We can now see why the slope of the cumulative photon distribution (Fig. 15.1B and F) tells
us a rate, and hence why the heuristic method of Section 1.3 works: The slope in any region
not containing a changepoint is just T/N, the reciprocal of the optimal choice just found for
the rate r0.

Turning now to hypothesis (H1), we would like to identify the best estimates of its three
parameters r, r′, and τ. For any choice of τ, partition the observed photons into m that arrive
prior to τ and m′ = N − m that arrive later than τ. The same steps as before now give

Maximizing over r and r′ gives r = m/τ, r′ = m′/(T − τ), and so

Our best estimate of the changepoint time is the value of τ that maximizes this quantity
(recall that m and m′ are themselves functions of τ).

We can get a more meaningful statistic by computing the ratio of likelihoods for the no- and
one-changepoint hypotheses, or equivalently, the difference of log-likelihoods (τ) −

, which we will simply call (τ):

(15.2)

The divergent constant ln(δt) has dropped out of this expression. Watkins and Yang obtained
Eq. (15.2), following different reasoning from that given here (Eq. (15.4); Watkins and
Yang, 2005). Instead of expressing  as a function of time, we may equally well regard it as
a function of the photon sequence number of the proposed changepoint m, and write . Let

 denote the absolute maximum of  overtime (or m).

1.5. Why read this article?
To illustrate the power of this approach, Fig. 15.1C shows the log likelihood ratio function
for the same dataset that was used to generate panels (A and B). (A similar plot appears
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when the method is applied to the experimental data in Fig. 15.1E; not shown.) The graph
shows that, at least for changepoints located well away from the starting and ending times,
the statistic not only precisely identifies the true changepoint, but also does not identify any
other (false) changepoints, provided enough photons have been collected. In fact, the
uncertainty in the changepoint, determined from those photons with  ≥  − 2, is ±2
photons and encloses the known location of the changepoint (Fig. 15.1C inset). Unlike the
traditional approach, no artificial time base due to binning is imposed on the data, and there
is no need for user adjustable thresholds that separate the rate trace into supposedly different
regions. As a result, different rate regions of the data are determined in a model-independent
way; afterward, the photon emission rates in these regions can be used to determine the
orientation of each macromolecular state.

Figure 15.2 illustrates the benefit of our improved analysis in the context of polTIRF studies
of myosin V; see Section 2.1. In the figure, the dots represent orientations determined by the
traditional method by binning the data into 80 ms intervals (Forkey et al., 2005). Although
they generally cluster around the results of our method (horizontal lines), the latter is cleaner
and eliminates the spurious outlier points that the traditional analysis generates close to
changepoints (Section 1.2).

The simple derivation given in Section 1.4 has not yet fully addressed the question of
distinguishing hypothesis (H0) from (H1). That is, assuming a single changepoint exists, we
found the best estimate of its time, but still have not answered the question of whether in
fact any changepoint is present. After all,  will always have some maximum; how large a
peak is enough to declare a changepoint? Section 3 will discuss this point.

2. Multiple Channels
2.1. Introduction to polTIRF method

Space does not allow a full review of the polTIRF method. For our purposes, however, a
simple characterization is sufficient (for details, see Beausang et al., 2008; Forkey et al.,
2000, 2003, 2005; Quinlan et al., 2005; Rosenberg et al., 2005).

Most fluorescent molecules absorb and emit light via dipole transitions. Thus, a
fluorophore’s dipole moment is a director (headless vector), anchored to a body-fixed frame
of reference; overall rotation of the molecule changes the dipole moment’s orientation in
space, and hence its ability to be excited by various incident polarizations, and also its
propensity to emit photons of various polarizations. Classic early applications to single
molecules include Ha et al. (19961998) and Sase et al. (1997).

TIRF excites only those fluorophores located within 100 nm or so of a chamber’s boundary
by setting up an evanescent wave that penetrates only that far into the chamber. This
evanescent wave has a polarization related to that of the propagating wave that created it.
Thus, by scanning over several incident beam directions and polarizations (typically 4 or 8),
the experimenter sequentially changes the illuminating beam’s character. By means of a
timing signal synchronized to the switching optics, each emitted fluorescence photon can be
tagged with the illuminating beam polarization that created it. Such SPC techniques have
recently begun to enter molecular biophysics (e.g., in Gopich and Szabo, 2009; Hinze and
Basché, 2010; Talaga, 2009; Yang and Xie, 2002).

Moreover, by sending the emitted photon beam through a polarization splitter prior to
detection, experiments can further subdivide them, for a total of np = 8 or 16 polarization
channels (photon types), each with its own emission rate. The collection of all these rates,
modulo an overall rescaling, can be computed as a function of the fluorophore’s spatial
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orientation by using Fermi’s Golden Rule. Conversely, if we measure all these rates, we can
use a maximum likelihood analysis to identify our best estimate of that orientation (Forkey
et al., 2000, 2005).

The above discussion assumed that only one fluorophore is illuminated at a time, and also
that the fluorophore is rigidly anchored. In reality, of course, everything in the nanometer
world undergoes thermal motion. In fact, a fluorophore anchored to an enzyme may have
differing amounts of thermal motion at different steps in the kinetic cycle, revealing changes
in the mobility of the probe or of the protein to which it is attached. Thus, the goal of
polTIRF is to deduce both the mean of the fluorophore orientation and its variance
(“wobble”), as functions of time, from records of photon arrivals (Forkey et al., 2000, 2005).

2.2. Multiple-channel changepoint analysis
The previous section motivated the study of multiple streams of distinct photons. (FRET
experiments also involve photon streams with two distinct colors. Xu et al. (2008)
developed a correlation analysis for finding simultaneous changepoints in two FRET
intensities, different from the one implemented here.)

We thus suppose that each photon is tagged with an index μ running from 1 to np. Our
experimental data then consist of pairs (t1, μ1), …, (tN, μN). Let the total number of photons

of type μ be Nμ, so , Nμ = N.

Hypothesis (H0) now involves a set of np photon emission rates {r0,μ}, and Eq. (15.1)
becomes

We optimize over each rate as before to obtain . Similarly, generalizing the one-
changepoint log likelihood, and subtracting, gives the analog of Eq. (15.2):

where mμ is the number of photons of type μ detected prior to the proposed changepoint and
m′μ = Nμ − mμ; thus, Σμmμ = m. As before, we will often regard  as a function of the
sequence number m (not time τ) of a proposed changepoint. (Thus, each of the mμ and m′μ is
a function of m.) Rearranging gives our key formula:

(15.3)

The peaks of  identify potential changepoints in multiple-channel data.

The two pieces of information recorded in polTIRF experiments can be viewed as separate
contributions to Eq. (15.3): The time stamp information reports on the overall emission rate
of the fluorophore and is contained in the second term, which depends only on the arrival
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time of each photon and not its polarization. The polarization information, which consists of
a tag μ = 1, 2, …, np for each photon, is contained in the first term.

3. Detailed Analysis
An earlier section raised the issue of false positives, which we now explore.

3.1. Threshold for false positives detection
Again, let  denote the absolute maximum of  overtime (or m). The probability that  is a
false positive can be determined from the distribution of  values when no changepoint is
present. A threshold for false positives can be defined such that for example, 95% of the 
are below the threshold and correctly report no change. In data where the presence of a
changepoint is unknown,  that exceed the threshold are taken to be valid changepoints
with 95% confidence. Letting α denote the fraction of acceptable false positives, then the
desired threshold ρ0 is set by requiring that

(15.4)

Note that the threshold does not depend on the absolute rate of photon emission, but it does
depend on the total number of photons in the interval as expected because Eq. (15.2)
increases with increasing N.

Remarkably, Eq. (15.4) can be computed exactly for the single-channel case by using an
algorithm developed by Noé (1972). The threshold is then found by solving Eq. (15.4) for
the threshold that yields the desired α. The dependence of the threshold on N is found by
repeating the calculations over the range of photon counts that will be encountered
experimentally (Owen, 1995; Watkins and Yang, 2005). The threshold is also easy to
compute via simulations, which will be necessary in multiple-channel data because Noé’s
algorithm only applies to the one-channel case. Thresholds corresponding to α = 0.05 were
simulated (see Section 4.1.2) over a wide range of N and fit to a power law function (see
Table 15.1) for use in the changepoint algorithm (see np = 1 curve in Fig. 15.3A).

3.2. Correct for nonuniform distribution of false positives
Even though the technique outlined in Section 3.1 successfully determines the number of
false positives, the location of these false positives across the interval is highly nonuniform.
The probability of detecting a changepoint is ~10× higher in a region near the boundary of
the interval (containing ~1–5% of the total photons) than in the center of the interval. This
problem has been addressed for single changepoints, and a two-step solution proposed, by
Henderson (1990).

Qualitatively, the phenomenon is not unexpected: For changepoints near the edge of the
interval, a random fluctuation in the region with a small number of photons is easily fit with
a rate that differs from that estimated in the larger region. As a result, changepoints are more
likely to be identified near the boundaries of the interval. This bias arises because photons in
the middle of the interval can arrive with a relatively wide distribution of times, all of which
are centered about t/T ≈ 0.5, whereas photons near the boundaries of the interval have a
relatively narrow distribution of times, either close to zero or close to T. Thus, even when
we generate photons in a stationary Poisson process, nevertheless the log likelihood ratio 
is larger on average near the boundaries than in the middle.
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In order to correct for this effect, the distribution of  at each m is normalized so that it has
zero mean and unit standard deviation. This is accomplished by subtracting the mean of the
log likelihood ratio, E[ ], and dividing by its standard deviation σm at each value of m:

(15.5)

If the initial distributions of  at each m were different size Gaussian distributions, then the
fraction of false positives would now be uniform across the interval. Actually, however, the

 are beta-distributed random variables (Henderson, 1990); thus, renormalization alone is
not sufficient. An additional weighting function Wm = 0.5 ln (4m(N − m)/N2) is applied to
further penalize the likelihoods near the edge of the interval, resulting in the final form of
the corrected log likelihood function :

(15.6)

For the single-channel case, the E[ ] and σm can be evaluated analytically (Henderson,
1990), and thus, the threshold for false positives (using Eq. (15.4) with ρα in place of ρα0)
can still be calculated using Noé’s algorithm (Watkins and Yang, 2005). These analytic
solutions, however, are not readily extended to multiple channels and so are not repeated
here. As will be discussed in Section 4, the E[ ] and σm can be obtained from simulations
for any number of channels. Determining these correction factors requires numerous
simulations over the desired range of photons N and a number of polarization channels np
(see Section 4.1.1), but they only need to be performed once, tabulated, and then the results
referenced by the algorithm.

3.3. False positives, multiple-channel case
As with the single-channel case,  for the multiple-channel case also suffers from a
nonuniform distribution of false positives, which is corrected for in the same way as in
Section 3.2. This time the simulations start with a fixed overall number of photons N, then
partition it randomly into the counts Nμ in each channel, distribute each Nμ randomly within
the time interval, evaluate the changepoint likelihood function, and repeat. The resulting
correction factors and weighting function are different from the single-channel case and
remove most of the bias, except for a small peak very close to the boundary. In order to
avoid this residual bias, we estimated the width of the peak and arranged for the MCCP
algorithm to accept only those changepoints that occur within the center 95% of the interval.
That is, changepoints are neglected if they occur within a buffer region of 0.025 N photons
on either end of the interval (see, e.g., Fig. 15.4 vertical-dashed lines for the np = 16 channel
case).

The procedure for locating the peak, finding its confidence interval, and testing for its
significance is the same as for the single-channel case, except that a new threshold for false
positives must be computed for multiple channels. As mentioned in Section 3.1, the
threshold for false positive detection depends on N, but it also depends on the number of
polarization channels np among which the photons are divided. The new threshold values
with the correction factors E[ ] and σm, are determined from simulations similar to the
single-channel case but with the photons divided among the different polarization channels.
The details of the simulations will be discussed in Section 4.1.2, but the thresholds for np =
1, 2, 8, and 16 polarization channels and α = 0.05 are shown in Fig. 15.3. We summarized

the simulated values with interpolating functions of the form  for the
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uncorrected likelihoods and ρ5% = a/(1 + b(log10N)c) for the corrected likelihoods; see Table
15.1 for the values of the best-fit parameters.

3.4. Automated, multiple-channel changepoint detection algorithm
In experimental data (Beausang et al., 2008; Forkey et al., 2003), a processive myosin V
molecule is recorded for multiple steps and consequently multiple changes in orientation of
the attached fluorophore are contained within the data, not just a single changepoint as has
been discussed so far. One way to proceed would be to let q be the number of changepoints
and test hypothesis (Hq; τ1, …, τq; r, r′,…) for all possible values of its parameters. This
quickly becomes impractical, however, as q grows large.

Fortunately, we can apply our method iteratively to the entire data set (Watkins and Yang,
2005), even though the assumption of constant photon emission rates on either side of any
given changepoint is clearly not true. After the changepoints are found in this rough manner,
they are optimized one at a time in order to eliminate the influence of neighboring change-
points. More precisely:

1. For a single recording, which includes N photons, np polarization channels and
multiple changepoints, the MCCP algorithm is applied as follows: (a) Calculate 
for each photon m in the interval, using Eq. (15.3); (b) Apply the correction and
weighting factors E[ ], σm, and Wm to each value of  to obtain the corrected log
likelihood function for each photon in the interval ; (c) Within the interval 0.025–
0.0975N, find the most likely changepoint as the location m★ of the likelihood
peak; (d) Test the candidate changepoint for significance by comparing it with the

false-positive threshold ; (e) If the peak exceeds the threshold, record its
location as a changepoint.

2. On the next iteration, only those photons occurring prior to the peak m★ just found
are analyzed, and the location of the largest peak above the threshold is again
determined. Similarly, the largest peak in the region between m★ and the end of the
data set is also found. This process is repeated on each subregion of the data,
creating a list of candidate changepoints, until no more peaks exceed their
respective thresholds.

3. The location of each candidate changepoint is reevaluated over just the range
limited by its nearest neighbors. More precisely: (a) Confidence intervals are
determined for each changepoint time as those photon sequence numbers with log
likelihoods greater than ; (b) Each changepoint time is reevaluated using
only the region that starts at the upper confidence limit of the preceding
changepoint and ends at the lower confidence limit of the succeeding one. If the
changepoint no longer exceeds the significance threshold over this reduced range,
then the region is combined with its neighbor and then that neighbor is evaluated.
Regions containing fewer than 50 photons are not expected to yield reliable rate
information and so are always combined with the neighboring region.

4. After refining the location of each changepoint, the intervals between all adjacent
changepoints are tested for any additional changepoints.

5. Steps 2–4 are repeated four times to optimize the location and number of
changepoints.

After the changepoints are determined, the photon rates in each interval are used to estimate
the maximum likelihood orientation and wobble of the fluorophore, as outlined in Section
2.1. In order to assess the sensitivity of the inferred orientation to the precise location of the
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changepoint, four additional sets of rates are determined for each interval by using the edges
of the confidence intervals as the boundary instead of the changepoint. For example,
consider two changepoints at sequence numbers mi

★ and  with confidence intervals
(mi

−, mi
+), etc. Five sets of orientations are then determined for the ith interval by using the

five ranges:

The five corresponding inferred orientations give us an estimate of the uncertainty of our
determination; see Fig. 15.2.

3.5. Critique of multiple-channel changepoint algorithm
The MCCP algorithm makes several simplifying assumptions that will be elaborated here
before discussing the simulations.

For single-molecule experiments, the time between photons due to the rate of the
fluorophore emission provides an absolute limit on the achievable time resolution. Typical
count rates are 20–50 photons/ms.

The statistical model that underlies the multiple-channel log likelihood function (Eq. (15.3))
assumes that photons in each polarization channel are emitted independent of one another
and detected simultaneously. In practice, however, polTIRF experiments alternately
illuminate the sample so that only one excitation polarization state is active at a time.
Artifacts may arise if the molecule moves on time scales comparable to the polarization
switching time, but this is not typically the case for biological macromolecules and >10 kHz
cycling frequencies.

The threshold for false positives is clearly a crucial parameter, as it determines the validity
of a particular changepoint. An advantage of the changepoint analysis is that this threshold is
not a user-defined value, but is instead determined by the desired limit α on false positives.
The analytic method used to calculate the single-changepoint threshold is not readily applied
to multiple photon channels, but we found it was easy to instead find the threshold by using
computer simulations. Furthermore, the threshold is a smooth function of the number of
photons in the interval (Fig. 15.3), so only a few values of N need to be calculated and the
rest can be obtained from an equation fit to the simulations.

In the multiple-channel case, our assumption in Section 3.3 that the photon rates were
randomly chosen deserves discussion. For applications to polTIRF experiments, a better
assumption might be that the photons are randomly distributed among the channels with an
average that is consistent with an isotropic distribution of fluorophores. Because the log
likelihood function (Eq. (15.3)) depends on the number of photons in each channel, the
false-positive threshold in these two scenarios would not be the same. Distribution of the
photons equally in the different channels, however, results in the largest magnitude
likelihood (on average), and so, the threshold determined in this way is a conservative
estimate of whether or not a false positive occurred. Also, assuming an equal distribution of
photons is advantageous because it is independent of the model used to represent the
molecule’s fluorescence emission and detection.

The weighting function W, and the 2.5% buffer zone used to remove the remaining bias, are
easy to apply to the changepoint analysis with minimal additional computation. The origin
of the weighting function appears to be somewhat ad hoc (Henderson, 1990); however, it is
effective (Fig. 15.4) and has been used by other groups (Watkins and Yang, 2005). A key
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feature of the weighting function is that although it suppresses detection of changepoints
near the edge of the interval, still it does not preclude them entirely; a legitimate
changepoint will be detected if its likelihood is large enough. The additional buffer zone on
either end of the interval, however, precludes the detection of changepoints in this small
region. Short-duration events that precede or follow a long-duration event may be missed,
but in typical experiments, events longer than 10,000 photons are not common, and the
resulting dead time equivalent of 250 photons is near the limit of detection in our
application. In cases where this trade-off is not desirable, the MCCP algorithm would be
useful for identifying the long-duration dwells, which could then be subjected to a local
analysis at the two ends to test for additional changepoints.

Estimating the 95% confidence intervals from the log likelihood surface is a common
statistical practice (Bevington and Robinson, 2003; Edwards, 1972); however, more rigorous
confidence intervals can also be defined (Watkins and Yang, 2005). For example, all
photons adjacent to a change-point for which hypothesis (H1) is at least 5% likely to be true
would be included in the 95% confidence interval. In the single-channel case, Watkins and
Yang (2005) found that the fraction of changepoints that fell within the confidence interval
depended on the magnitude of the change-point. Simulations to determine the confidence
interval in the multiple-channel case would be more expensive than those used to determine
the false positive threshold, because both the magnitude of the changepoint and the number
of photons in the interval would need to be varied. Given these limitations, simply
estimating the 95% confidence interval from −2 offset on the log likelihood surface (i.e., all
photons i with ) is a practical compromise.

In single-molecule polTIRF experiments, changepoints are expected to occur when the
probe changes orientation, but changepoints will also be detected when the total photon rate
changes magnitude, similar to the scenario in single-channel changepoint analysis.
Typically, genuine reorientations incur little change in the total photon rate, but fluctuations
in the total rate do occur. For example, the changepoint algorithm easily detects the step
decrease in rate when the single-molecule bleaches to background, as well as the occasional
double bleach and blinking events where the fluorophore turns off and then back on again.

4. Simulation Results
Three types of simulations were performed to test the algorithm: (1) No-changepoint
simulations tested the null hypothesis (H0) and were used to determine the correction factors
E[ ] and σm and the threshold for false positives; (2) Single-changepoint simulations
assessed the false negative rate of the algorithm over a range of changepoint magnitudes and
duration; (3) Double-changepoint simulations of a large transition followed by a short-lived
state with a second transition tests the algorithm’s sensitivity to detect substeps within the
myosin V cycle. The various photon rates for a simulation are generated either arbitrarily to
give intuition on the detection algorithm or by calculating the polarized fluorescent photon
rates that correspond to actual fluorophore orientations using a simple model of the probe
(Section 2.1).

Our simulations of the MCCP analysis rely on generating a specified number of interphoton
arrival times from an exponential distribution. Each photon is randomly assigned to one of
the independent polarization channels (usually np = 8 or 16, which correspond to the typical
number of channels in experimental data) with a probability that is weighted according to its
relative rate. For example, if the probe model assigns rate κ to six polarization channels, and
rate 2κ to the remaining two, then the photon arrival times are generated with κtot = 10κ, and
each photon is randomly assigned to one of the six low-rate polarization channels with
probability 0.1 and to one of the two high-rate channels with probability 0.2. This two-step
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process ensures that the total rate is constant and that each of the individual polarization
channels has the proper relative rate with exponentially distributed arrival times.

A changepoint is introduced after the mth photon by using one set of weights from 1, …, m
and second set of weights from (m + 1), …, N. The MCCP algorithm (Section 3.4) is then
applied to the simulated data, and any statistically significant changepoints are recorded.
This process is repeated, typically 500–10,000 times depending on the simulation, to
minimize statistical fluctuations.

4.1. No-changepoint simulations

The peak log likelihood  calculated from Eqs. (15.3) and (15.6) must exceed a threshold
to be considered a valid changepoint (with false positive rate α). The threshold is determined
from simulations over a range of photons N and polarization channels np for α = 0.05.

4.1.1. Correction factors—As discussed in Section 3.2, the distribution of peak log
likelihoods simulated under conditions of the null hypothesis (i.e., no changepoint) is not
uniform across the interval and results in a bias for detecting false-positive changepoints
preferentially near the boundaries of the search inter-val. The distribution of  can be
empirically determined by repeatedly applying Eq. (15.3) to a constant rate simulation. The
mean and standard deviation of  at each point across the interval are then used to
normalize the likelihood. The process is repeated over a range of N to generate a lookup
table for the two correction factors. Values of N not in the lookup table are linearly
interpolated between the two nearest values. Determining the correction factors from
simulations is computationally expensive, but can be performed on a PC in a few days. Also,
it is a one-time cost that can be referenced by the algorithm in a look-up table.

The resulting correction factors E[ ] and σm for various N follow similar trends across the
interval as N is increased (Fig. 15.5). In order to compare simulations with different numbers
of photons on the same graph, the photon index m is normalized by the total number x = m/N
and plotted on a logarithmic scale to emphasize the region close to the boundary of the
interval. Because the correction factors are symmetric about x = 0.5, the counting statistics
are improved twofold by superimposing the results from the two halves of the interval. As
the number of polarization channels increases from 8 to 16 (data not shown), the magnitude
of both E[ ] and σx increase, as expected since the number of ln terms in Eq. (15.3)
doubles. When N is 500, all of the correction factors show a plateau in the center of the
interval that increases as the edge of the interval is approached and then falls abruptly
immediately at the edge. The increase in both the mean and the standard deviation near the
edge of the interval reflects the observed increase in the fraction of false positives. Unlike
the correction factors for changepoints with multiple photon channels, the correction factors
in the single-channel case (not shown) increase monotonically at the edge of the boundary.
The reason that the multiple-channel correction factors experience a sharp decrease
immediately at the boundary is that the magnitude of the  depends on the number of terms
in Eq. (15.3) that contribute to the sum. If enough photons are present in each region (before
and after a changepoint), then every term can contribute to the sum. But, as the algorithm
tests points that are closer to the boundary, eventually the number of photons in some of the
polarization channels will drop to zero, and the corresponding terms will drop out and lower

 proportionally (because 0 ln 0 = 0).

The final result, including the correction factors, weighting function and buffer, is a uniform
distribution of false positives, at least in the range considered here (N = 50–50,000 and np =
8) (Fig. 15.4 dotted curves).
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4.1.2. False-positive threshold—We found the threshold for false positives from a set
of constant rate simulations similar to the ones just described. Instead of recording the first
and second moments of , however, the peak log likelihood  and its location m★ is
recorded for each of the M simulations. This list of  is sorted and the value that separates
the largest Mα from the remaining M (1 − α) is the desired threshold. The functional
dependence on N is obtained by repeating the calculation over a range. Because actual data
can have any value of N, the simulated values of ρ are fit to the interpolating function ρα = a/
(1 + b(log10N)c) to determine a, b, and c. Finally, the entire process is repeated for different
numbers of polarization channels. The results for np = 1, 2, 8, 16 are shown in Fig. 15.3B,
and the corresponding values of a, b, and c for each fit are summarized in Table 15.1. All
thresholds used here correspond to a 5% false positive rate (α = 0.05).

For comparison, we used the same set of simulations to determine the threshold for the
uncorrected log likelihood function  (see Fig. 15.3A).

4.2. Single-changepoint simulations
4.2.1. Power to detect arbitrary rate change—A low false positive rate is important
for confidence in the results; however, a low fraction of false negatives (i.e., the power of a
test) is also crucial in order to detect a majority of the changepoints.

The power of the MCCP algorithm is determined from simulations performed with np = 8
and 16 polarization channels for various total photon counts N and rate change magnitudes χ
= max(r′/r, r/r′). The photon rates were not based on any assumed orientation of the probe;
half of the rates changed from r to χr and the other half change from χr to r, thus ensuring a
constant total rate. The simulation placed the changepoints at the midpoint of the interval (N/
2) and the MCCP was successful if the  confidence interval enclosed the true location.

We ran simulations over a range of changepoint magnitudes χ and photon counts N, for np =
8 (Fig. 15.6A) and np = 16 (Fig. 15.6B). Five thousand simulations for each combination of
{N, χ, np} were run and the fraction of trials with a changepoint are recorded (solid lines), as
well as the fraction of changepoints whose confidence interval includes the true location
(dotted lines). As expected, simulations with a large N and χ resulted in a higher fraction of
detected changepoints, and larger rate changes required fewer photons to identify the
changepoint. At the larger χ and N, nearly 100% of the changepoints are detected. Even
though an interval corresponding to the 95% confidence interval was chosen, the actual
accuracy of the method exceeded 98% depending on N and χ. The nonzero fraction of
detected events at χ = 1 indicates the false positive error rate.

Increasing the number of polarization channels from 8 to 16 (Fig. 15.6A and C and B and D,
respectively) decreases the power of the test slightly due to the increase in the photon
counting noise that occurs when N photons are divided into twice as many polarization
channels. The sensitivity to additional photon channels is mitigated in the arbitrary rate
model used here (Fig. 15.6A vs. B), because all of the rates contribute equally to the change-
point. This is not true when the rate change arises from probe reorientations (Fig. 15.6C vs.
D), because some of the photon rates respond more strongly to a particular change than
others.

4.2.2. Power to detect myosin lever arm change—In order to determine the power
of the MCCP in experiments of myosin V stepping, we performed simulations of the probe
angle before and after a step using the values in Table 15.2. Instead of an arbitrary rate ratio
χ, the simulations were performed by assuming base rates given by a dipole model with
specified angles (Table 15.2) plus a base rate representing background fluorescence. We
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varied the background and present results as a function of the signal-to-background ratio
(SBR), defined as (rate of fluorophore + rate of background)/(rate of background).
Otherwise, the simulation conditions were similar to those in Section 4.2.1.

As in the arbitrary rate case (Section 4.2.1), the power of the algorithm to detect
changepoints increases with increasing SBR and the number of photons (Fig. 15.6). The
reduction in sensitivity when the number of polarization channels is increased from np = 8
(Fig. 15.6C) to 16 (Fig. 15.6D) is larger than in the arbitrary rate case, because some of the
additional polarization channels are not sensitive to the angle change yet still “steal” a
fraction of the total number of photons from the other channels. Experiments with SBRs of 3
require ~200 and ~400 photons for ~90% detection in the 8 and 16 channel configurations,
respectively. If the fluorophore emits photons at rate ~30 ms−1, then the corresponding time
resolution in the two cases would be 7–10 ms and 13–25 ms. The shortest-duration
detectable events will be tested directly in Section 4.3.

4.3. Two-changepoint detection
Substeps in the myosin V ATPase cycle are predicted to occur in a short period of time
immediately before or after a step is taken; that is, a second changepoint adjacent to the
large one that accompanies the tilting motion of a step. We ran simulations to determine the
sensitivity of the MCCP algorithm to detecting these short-lived states over a range of
photon counts in the transient state, Nt = 1 − 1000, and various SBRs.

The simulation consists of a long-lived state with a well-defined orientation, followed by a
short-lived state with large wobble (no well-defined orientation), and ends in a long-lived
state also with a well-defined orientation. Specifically, the angles from Table 15.2 are used
to represent a myosin in the (prestep)/(detached head)/(poststep) configurations. The number
of photons in the pre- and poststep states is held fixed at 2000 each, and the number of
photons in the transient state is varied. Each combination of Nt and SBR is simulated 500
times, and the fraction of trials resulting in single, double, and triple changepoints is
recorded for both 8 (Fig. 15.7A–C) and 16 polarization channels (Fig. 15.7D–F).

The simulation technique was outlined in previous sections. To find the changepoints in
each trial, the algorithm is applied three times: first to the entire interval of Nt photons, and
if the peak log likelihood exceeds the threshold, the regions to the left and right of the peak
are interrogated for changepoints in these shorter regions. In the event that three
changepoints are detected, the middle one is reevaluated on the interval between the other
two and only retained if its peak exceeds the required threshold.

As the number of photons in the transient state increases, the fraction of trials with single
changepoints decreases (Fig. 15.7A and D), while the fraction with two changepoints
increases to ~90% (Fig. 15.7B and D). The fraction of trials with a spurious third inferred
changepoint is relatively constant at ~10%. When there is no transient state, the fraction of
trials with single changepoints is ~90%, indicating an ~10% false positive rate.

If the known locations of the simulated changepoints are used to determine the accuracy of
the detected changepoints, then fewer of the trials will be considered successes. For
example, if the overlap between the detected and the actual interval of the transition is
required to be between 90 and 110%, then two to three times more photons in the transition
are required to detect the same fraction of events. If a fluorophore emits ~30 photons/ms,
then only 300 photons will be recorded during a 10-ms transient state. If the SBR is assumed
to be 3, then ~500 photons are required to detect 50% of the events in the 8-channel
configuration, and ~700 photons with 16 polarization channels, approximately twice as
many as was required in the single-changepoint simulations.
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5. Discussion
5.1. Single photon counting in single-molecule biophysics

The main points of our method are summarized in Section 1. Fluorescence experiments that
utilize SPC technology can achieve very high time resolution by recording the arrival time
of each detected photon. There is no binning of the raw data (i.e., lumping photons into
groups); afterward, the experimentalist can choose any bin size for analysis. This chapter has
described an alternative approach that never imposes a bin size on the data and uses the
photon arrival times directly. Changepoint detection algorithms meet both of these
requirements and are particularly powerful because they do not require any user-defined
threshold that separates high and low rate states (Watkins and Yang, 2005). All parameters
within the changepoint algorithm are statistically defined once a desired false positive error
rate is chosen.

The high time resolution polTIRF experiments discussed in Section 2.1 are an example of
fluorescence experiments that implement SPC technology. In addition to recording photon
arrival times, a polarization tag is also recorded for each detected photon. In these
experiments, most change-points do not involve any change of the overall photon rate;
instead, we must find the times when the photon rates change relative to one another.
Because of this distinction, we developed a new multiple-channel change-point (MCCP)
analysis to analyze high time resolution polTIRF data.

The basic idea of the method is to test whether two adjacent regions of the data are better
described by two different photon emission rates or by one constant rate. Because three free
parameters m, r, r′ will always fit the data better than one r0, we defined a threshold
consistent with a specified false positive rate that requires the two-rate hypothesis to be
significantly better than one rate. If that condition is met, the location in the interval with the
largest log likelihood above this threshold is identified as a chan-gepoint. All of the
changepoints in the data can be determined by applying this test recursively to the intervals
between previously determined changepoints.

In recordings with only one channel, the log likelihood simplifies to just the second term of
Eq. (15.3) (Watkins and Yang, 2005); changes in the total photon rate can be located within
a few photons of the actual change (see Fig. 15.1). Qualitatively, this precision is consistent
with the abrupt change in slope when the arrival times are plotted versus the corresponding
sequence numbers (Fig. 15.1B).

In recordings with two photon channels, analogous to FRET or to a simplified polarization
measurement, the location of the changepoint is often determined predominantly by the first
term in Eq. (15.3), because the total photon rate is often approximately constant (see Fig.
15.1D), although the individual photon rates change abruptly (e.g., Fig. 15.1E). Despite the
relative coarseness of the polarization information, change-points can still be accurately
identified (Fig. 15.1C).

We noted that the uncorrected log likelihood function Eq. (15.3) has the disadvantage that
its magnitude is not uniform across the interval and is higher on average near the boundary,
even if no changepoint exists. The peaks in the log likelihood function (and thus the
changepoints) are therefore biased near the edge of the interval, especially for large numbers
of photons (solid line, Fig. 15.4). Analytical corrections for this effect have been derived
(Henderson, 1990) for the single-channel case and successfully applied to fluorescence data
(Watkins and Yang, 2005). We found analogous correction factors from simulations for the
multiple-channel case and used them in the MCCP algorithm. Modifying the likelihood
function using the correction factors, a weighting function, and a narrow exclusion region
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that prohibits changepoints from occurring within the first and last 2.5% of the data, nearly
eliminates the bias across a wide range of photons (dotted lineFig. 15.4). Correcting for this
effect is particularly relevant for finding substeps in myosin V polTIRF experiments because
the intervals of interest are adjacent to a prominent changepoint—the same region that is
sensitive to a false positive.

For intervals with a sufficient number of photons N is 500, the shape of the correction
factors across the interval follows a pattern as N is increased. Their average values are
relatively constant in the center region, peak near the edge, and then drop precipitously at
the boundary. The reason for this drop is that the log likelihood (Eq. (15.3)) is proportional
to the number of polarization terms; if there are too few photons in a region, then some of
the terms drop out and the log likelihood function decreases. This effect is clearly seen when
comparing the distribution of correction factors for various number of polarization channels
np (not shown), where in the single-channel case, there is no decrease at the edge and it
becomes more pronounced as the number of channels increases.

Simulated single changepoints with np = 8 and 16 polarization channels were accurately
identified over a range of photon counts N and SBR (Fig. 15.6). The number of photons
required to detect an event was inversely proportional to the size of the transition, that is,
large magnitude changepoints events were easier to detect. Simulations that assume that
each of the channels participates equally in the changepoint were used to compare the 8 and
16 polarization channel cases (Fig. 15.6A and B). For a given N and SBR, there is a small
reduction in the sensitivity when the number of polarization channels is increased, but often
this is a useful trade-off because the orientation of the probe is better defined with 16
polarizations.

The accuracy of our method can be determined by comparing the changepoint with its
known location. The confidence limits are expected to enclose the known location for 95%
of the trials. The actual accuracy depended on the number of photons and SBR, but was
often greater than 98% for most of the conditions (dashed lines, Fig. 15.6).

By using the dipole model for the probe to determine the photon rates (Forkey et al., 2005),
instead of distributing the photons according to an arbitrary change χ, we assessed the
sensitivity of the analysis for experimental data. Because the experiment entails a single
molecule of myosin V translocating along actin, we simulated the orientation of the probe
before and after the myosin steps (see Table 15.2). The detection of events improves as the
number of photons and the SBR increases (Fig. 15.6C and D); however, the sensitivity
decreased when the number of polarization channels was increased from 8 to 16. An
optimistic value of the SBR in polTIRF experiments is ~3, indicating that ~200 photons are
required to detect 95% of the changepoints in the 8-channel case. This number
approximately doubles when the number of channels increases to 16. The reason for this is
that only a few channels are sensitive to the orientation change; thus, the number of photons
contributing to the changepoint can be fewer than expected based on the SBR. For example,
a probe that rotates 90° from being aligned along the x-axis to the z-axis would be obvious if
the polarizations were aligned along those two directions, but would be invisible to
polarizations aligned at 45° to those directions.

Figure 15.2 shows another way to underscore the usefulness of the method: Changepoint
analysis lets us identify the widest possible bins for accumulating photon statistics, leading
to more reliable estimates of orientations (in polTIRF) or distances (in FRET). In polTIRF,
the improvement can be especially significant, because the inferred probe orientation is a
highly nonlinear function of the photon rates, and those rates are never exactly known.
Suppose that a particular set of photon rates define an orientation uniquely (apart from the
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unavoidable 180° dipole ambiguity). Nevertheless, in practice, that set of rates may be near
enough to a degenerate point that the unavoidable statistical fluctuations in estimating the
rates create spurious jumps between two very different inferred orientations. Changepoint
analysis addresses this problem by maximizing the number of photons used in each
orientation determination, thus minimizing the statistical uncertainty in rate estimates and
keeping them away from such degeneracies.

5.2. Vista: Transient state detection
A bigger challenge is to detect a relatively short-lived state immediately adjacent to a large
changepoint. Such a pattern is expected during a step of myosin V where the large
changepoint corresponds to the tilting of the lever arm before and/or after a step and the
small changepoint is the short-lived transient state of the detached head before it rebinds to
actin. Our simulations emulated this scenario by modeling three states: (1) a long-lived state
(with 2000 photons) corresponding to the prestep head orientation with relatively little
wobble since both heads are attached to actin, (2) a variable duration transient state (0–1200
photons) of large probe wobble due to the detached head rapidly diffusing toward the next
binding site, and (3) a long-lived state (also with 2000 photons) in the leading head poststep
orientation with relatively little wobble.

When there is no such transient state, the algorithm detects 90% of the single changepoints
(Fig. 15.7A and D) representing the step, similar to Fig. 15.6C and D. As the number of
photons in the transient state increases, the probability to detect it also increases (Fig. 15.7B
and E) but plateaus at ~90% due to a relatively constant ~10% probability to detect a
spurious third changepoint (Fig. 15.7C and F). For large N, the 3-changepoint cases almost
always involves a correct determination of the transient state plus an additional false positive
somewhere else in the interval. Detecting the transient state requires more photons in the 16
polarization channel case (Fig. 15.7E) than it does with 8 channels (Fig. 15.7B), similar to
the results discussed for single-changepoint detection. For SBR = 3, approximately 750 and
1100 photons are required to detect 80% of the intervals in the 8 and 16 polarization channel
cases, respectively. It is important to realize that these simulations give useful estimates for
the design of experiments, but the actual sensitivity may be different for different
orientations.

Determining the probe orientation and wobble in the interval between changepoints (Section
3.4) can be used to validate whether a particular changepoint is physically relevant or not. In
polTIRF experiments, for example, a small change in the overall rate may result in a
statistically significant changepoint, but if the corresponding inferred orientation does not
also change, then it is not likely to be biologically relevant. The usefulness of this approach,
however, is compromised by spurious changes in the orientation that arise from overfitting
to photon counting noise. The MCCP algorithm minimizes this problem by ensuring that the
maximum number of photons is included in each dwell, but the effect still remains for short-
duration dwells.

6. Conclusion
Our conclusions were already summarized in Section 1.5; Figs. 15.1 and 15.2 apply our
method to experimental data. We extended a change-point analysis for single-channel
fluorescence experiments like FRET (Watkins and Yang, 2005) to make it applicable to
multiple-channel data, for example, from polTIRF. Our method dramatically improves the
time resolution potential of such experiments and also their accuracy in determining
orientation changes in molecular motors.
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We tested the method’s accuracy and power to detect changepoints over a range of photon
numbers and SBRs. Our simulations indicate that approximately 700 and 1100 photons are
required to detect the detached state between myosin V steps in 8- and 16-channel polTIRF
configurations. With 8 polarization channels, fewer photons are required to locate the short-
lived state; however, 16 channels are required to accurately identify the increase in wobble
cone.
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A List of Symbols

a discrete macromolecular state index; Sa: the state indexed by a

α acceptable fraction of false positives (Section 3.1)

α, β body-frame angles describing orientation relative to an actin filament

θ, φ laboratory-frame angles describing orientation of a fluorophore

E[ ], σm2 expectation and variance of uncorrected log like-lihood function

i indexes which of several changepoints is under discussion

κ simulated photon rate

(r0) log likelihood for no changepoint; : its maximum over r0

(r, r′, τ) log likelihood for one changepoint; (τ): its maximum over r, r′

(τ) or log of the likelihood ratio; : its absolute maxi mum; m★: position of the
maximum

 and corrected log likelihood ratios (Section 3.2)

m photon sequence number, from 1 to N; also m, m′: how many of the
observed photons came before (resp. after) a proposed changepoint

M number of simulation runs

μ index labeling the np distinct polarization channels; mμ, m′μ: how many of
the observed photons of type μ came before/after a proposed changepoint

q number of proposed changepoints in an interval

r0 assumed photon rate under the assumption of no changepoint (or r0,μ in the
multiple-rate case)

r, r′ assumed photon rates before and after a changepoint (or rμ, rμ′ in the
multiple-rate case)

ρα0 and ρα thresholds to reject false positives for uncorrected and corrected log
likelihood ratio

tm arrival times of individual photons, in increasing order in the range from 0
to T

τ proposed value of changepoint time
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δt fictitious time slice, eventually taken → 0; k: index of time slices from 0 to
T/δt

Δt finite bin duration in traditional method

x photon sequence number as a fraction of the total, = m/N

χ ratio of photon rates before/after a changepoint

Glossary

FRET Forster resonance energy transfer

MCCP Multiple-channel changepoint

polTIRF Polarized total internal reflection fluorescence microscopy

SBR Signal to background ratio

SPC Single photon counting
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Figure 15.1.
(A–C) Illustration of changepoint detection methods on simulated data with N = 200 photons
and a ratio between the high and low rates of χ = 3. (A) The photons are binned into 20
constant-width temporal bins. Examining the graph by eye, we may guess that there is a
change in photon rate somewhere around the vertical-dashed line, but neither this change
time nor the initial and final rates (I1 and I2), nor even the existence of a changepoint, are
clear. (B) As described in Section 1.3, the kink in the cumulative distribution of photon
arrival times gives a much clearer indication of changepoint time, and the two slopes
flanking that point yield the corresponding photon rates. Because these are simulated data,
we can compare the actual (triangle) and inferred (dashed line) changepoint times. This
chapter describes a quantitative implementation of this simple observation. (C) The peak of
the log-likelihood surface occurs at photon sequence number m = 99 (vertical-dotted line),
and the 95% confidence intervals at m = 98 and 102 enclose the actual changepoint (inset,
vertical lines). (D–F) Illustration on real experimental data. A bifunctional fluorescent dye
molecule was attached to one of the two lever arms of a myosin-V molecular motor. The
motor bound to an immobilized actin filament and began its mechanochemical cycle in the
presence of 10-μm ATP. The dye was excited by polTIRF in each of the several incident
polarizations (see Section 2.1), and individual emitted photons were detected after passing
through a polarization splitter. (Time-stamped data also arise in FRET measurements.) (D)
shows the photon counts in a set of 20-time bins (total of N = 1280 photons recorded). No

Beausang et al. Page 21

Methods Enzymol. Author manuscript; available in PMC 2011 July 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



changepoint is visible to the eye. (E) separates the total counts into the several “flavors,” or
tagged subpopulations, of emitted photons. Of these, two have been selected for display as
solid and dashed curves. A changepoint is visible, but its time cannot be established to
greater accuracy than about two time bins. (F) shows the cumulative distribution described
in Section 1.3. Each photon time series displays a sharp kink, and moreover, the two curves’
kinks occur at the same time (vertical position).
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Figure 15.2.
Application of changepoint analysis to experimental data on the motions of the molecular
motor myosin V. Dots show polar (θ) and azimuthal (φ) angles of a fluorescent probe
attached to one lever arm of the motor inferred from photon rates obtained by the traditional
time-binned method. The angles are defined in a system whose polar axis is the optical axis
of the microscope. There are many outlier points, in part reflecting transitions that occur in
the middle of a time bin. Solid lines show those same angles inferred from all the photons
that lie between successive changepoints (dashed lines), indicating a clear alternating stride
between well-defined values of φ. For each state, five lines are drawn to indicate the
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uncertainty in the fit angles, as described in Section 3.4. Generally, these lines are too close
to distinguish.
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Figure 15.3.
Values of the threshold ρ for 5% false positive rate (error fraction) for the uncorrected (A)
and corrected (B) log likelihood function, as a function of the number N of photons in the
interval. The correction procedure is discussed in Section 3.2. The curves for np > 1
polarization channels are discussed in Section 3.3.
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Figure 15.4.
The solid curve shows the distribution of false positives for np = 16 polarization channels
across the interval for uncorrected log likelihoods ; it is strongly peaked near the edge of
the interval, then decays slowly to a minimum at the center. The distribution becomes
increasingly peaked as N is increased from N = 1000 (panel A) to 10,000 (panel B). The
fraction of the total probability lying within the first and last 5% of each interval is 30% and
60% (instead of 10%) for N = 1000 and 10,000, respectively. Applying the correction factors
(see Eq. (15.6)) to the log likelihood and excluding 2.5% of the photons from near the edges
(vertical-dashed lines, see Section 4.1.1) result in a nearly uniform distribution of false
positives (dotted curve). For comparison, a uniform distribution with total false positive rate
5% would look like the horizontal-dashed line.
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Figure 15.5.
MCCP correction factors for (A) the expected value E[ ] and (B) the standard deviation σx
of the log likelihood function  (Eq. (15.3)) for N = {50, 100, 500, 1000, 5000, 50,000} and
np = 8. The horizontal axis x = m/N indicates the position of the mth photon across the
interval normalized to the total number of photons. Only half the distribution is shown; the
correction factors are symmetric about x = 0.5. These functions are needed to evaluate the
correction given in Eq. (15.5).
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Figure 15.6.
Power of the MCCP algorithm to detect changepoints of different magnitudes, as a function
of the number of polarization channels np = 8 (A and C) and np = 16 (B and D) and the
number of photons in the interval. Top row, solid lines, and symbols: The fraction of
changepoints detected versus an arbitrary relative photon rate change of χ and various N.
Dotted lines: The fraction of changepoints that were detected and assigned a time lying
within the  confidence interval of the true time. The high fraction meeting this
condition indicates that these confidence intervals are conservative. Bottom row: The
fraction of changepoints detected for an angle change corresponding to the tilting motion of
a probe attached to the myosin V lever as it steps (see Table 15.2), as a function of signal-to-
background ratios (SBR) for various N.
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Figure 15.7.
The power of the MCCP algorithm to detect short-duration (transient) states in the myosin V
ATPase cycle, specifically, the short-lived detached state after the motor head releases from
actin but before it steps and rebinds, is determined from photon emission rates simulated
using the angles in Table 15.2. Simulations with np = 8 (left) and np = 16 polarization
channels (right) indicate one (top), two (middle), or three (bottom) detected changepoints as
the number of photons in the transient state is increased from 0 to 1200 for various SBRs.
Requiring that the interval be detected with at least 90% accuracy (dashed curves, middle
panels) significantly increases the number of photons needed to identify the state reliably
(see text).
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Table 15.2

Orientation and wobble (δ) used in the simulations of myosin V stepping (see Section 2.1)

State {θ, φ} {β, α} δ

Prestep {96.7, 168.8} {20, −20} 40

Detached head – – 90

Poststep {18.9, 23.3} {80, −85} 40

The orientations are represented in polar coordinates, in the microscope (θ, φ) and actin (β, α) frames. That is, β is the polar angle of the probe with
respect to the actin filament and α is the azimuthal angle around the filaments, where α = 0 is parallel to the microscope stage and α = 90 is parallel
to the optical axis of the microscope. All angles are in degrees.
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