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Abstract

Computational acceleration on graphics processing units (GPUs) can make advanced magnetic
resonance imaging (MRI) reconstruction algorithms attractive in clinical settings, thereby
improving the quality of MR images across a broad spectrum of applications. This paper describes
the acceleration of such an algorithm on NVIDIA’s Quadro FX 5600. The reconstruction of a 3D
image with 1283 voxels achieves up to 180 GFLOPS and requires just over one minute on the
Quadro, while reconstruction on a quad-core CPU is twenty-one times slower. Furthermore,
relative to the true image, the error exhibited by the advanced reconstruction is only 12%, while
conventional reconstruction techniques incur error of 42%.
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1 Introduction

Mainstream microprocessors such as the Intel Pentium and AMD Opteron families have
driven rapid performance increases and cost reductions in science and engineering
applications for two decades. These commaodity micro-processors have delivered GFLOPS
to the desktop and hundreds of GFLOPS to cluster servers. This progress, however, slowed
in 2003 due to constraints on power consumption. Since that time, accelerators such as
graphics processing units (GPUs) have led the advances in computational throughput for
science and engineering applications. Figure 1 illustrates this trend.

Recent advances in architecture have also increased the GPU’s attractiveness as a platform
for science and engineering applications. Prior to 2006, GPUs found very limited use in this
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domain due to their limited support for both IEEE floating-point standards and arbitrary
memory addressing. However, the recently released AMD R580 and NVIDIA G80 GPUs
offer strong support for IEEE single-precision floating-point values (with double-precision
soon to follow) and permit reads and writes to arbitrary addresses in memory [2,29].
Furthermore, modern GPUs use massive multithreading, fast context switching, and high
memory bandwidth to tolerate ever-increasing latencies to main memory by overlapping
long-latency loads in stalled threads with useful computation in other threads [25].

Increased programmability has also enhanced the GPU’s suitability for science and
engineering applications. For example, the G80 supports the single-program, multiple-data
(SPMD) programming model, in which each thread is created from the same program and
operates on a distinct data element, but all threads need not follow the same control follow
path. As the SPMD programming model has been used on massively parallel
supercomputers in the past, it is reasonable to expect that many high-performance
applications will port easily to the G80 [25,44]. Furthermore, general-purpose applications
targeting the G80 are developed using ANSI C with simple extensions, rather than the
cumbersome graphics application programming interfaces (APIs) [37,10] and high-level
languages layered on graphics APIs [7,5,43] that have been used in the past.

A wide variety of magnetic resonance imaging (MRI) applications, ranging from
quantitative imaging of the brain to dynamic imaging of the beating heart, can benefit
greatly from these increases in computational resources and advancements in architecture
and programmability. At present, many MRI experiments are specifically designed so that
the image can be reconstructed quickly and efficiently on a standard CPU, often by
acquiring the scan data on a uniform grid and applying a fast Fourier transform (FFT).
However, in many applications the combination of tailored data acquisition and advanced
image reconstruction significantly improves image quality. In particular, these techniques
can increase signal-to-noise ratio, decrease scan time, and/or reduce imaging artifacts.
However, advanced reconstruction algorithms often require several orders of magnitude
more computation than conventional reconstruction algorithms. In this paper, we accelerate
a reconstruction algorithm that can (1) generate MR images from arbitrary data sampling
trajectories, and (2) incorporate prior anatomical knowledge into the reconstruction process,
thereby increasing the signal-to-noise ratio while mitigating partial volume artifacts.

For these advanced reconstructions to be viable in clinical settings, dramatic and
inexpensive computational acceleration is required. We find that advanced reconstructions
from arbitrary scan trajectories are very well suited to acceleration on modern GPUSs. In
particular, an advanced reconstruction of an image comprising 1282 voxels completes in just
over one minute o the G80, while the same reconstruction requires nearly 23 minutes on a
quad-core CPU. Furthermore, relative to a conventional reconstruction, the advanced
reconstruction reduces the error in the reconstructed image from 42% to 12%. The 21X
acceleration achieved on the GPU makes the constrained reconstruction much more
appealing in clinical settings.

The remainder of this paper is organized as follows. Section 2 first describes the architecture
of the Quadro FX 5600 and its G80 GPU, then discusses the advantages of advanced MRI
reconstructions. Section 3 presents the GPU- based implementation of the advanced
reconstruction algorithm. Section 4 describes experimental methodology. Section 5 presents
results and discusses features of the Quadro that enable the advanced reconstruction to
achieve up to 180 GFLOPS in performance. Section 6 discusses related work in GPU-based
medical imaging. Section 7 concludes.
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2 Background
2.1 The Quadro FX 5600 Graphics Card

The Quadro FX 5600 is a graphics card equipped with a G80 graphics processing unit
(GPU). The Quadro has a large set of processor cores that can directly address a global
memory. This architecture supports the single-program, multiple-data (SPMD)
programming model, which is more general and flexible than the programming models
supported by previous generations of GPUs, and which allows developers to easily
implement data-parallel algorithms. In this section we discuss NVIDIA’s Compute Unified
Device Architecture (CUDA) and the architectural features of the G80 that are most relevant
to accelerating MRI reconstructions. Similar descriptions are found in [32,33].The interested
reader may refer to [29,27] for additional details.

From the application developer’s perspective, the CUDA programming model consists of
ANSI C supported by several keywords and constructs. CUDA treats the GPU as a
coprocessor that executes data-parallel kernel functions. The developer supplies a single
source program encompassing both host (CPU) and kernel (GPU) code. NVIDIA’s
compiler, nvcce, separates the host and kernel codes, which are then compiled by the host
compiler and nvcc, respectively. The host code transfers data to and from the GPU’s global
memory via API calls, and initiates the kernel code by calling a function.

Figure 2 depicts the Quadro’s architecture. The G80 GPU consists of 16 streaming
multiprocessors (SMs), each containing eight streaming processors (SPs), or processor
cores, running at 1.35 GHz. Each SM has 8,192 registers that are shared among all threads
assigned to the SM. The threads on a given SM’s cores execute in SIMD (single-instruction,
multiple-data) fashion, with the instruction unit broadcasting the current instruction to the
eight cores. Each core has a single arithmetic unit that performs single-precision floating
point arithmetic and 32-bit integer operations. Additionally, each SM has two special
functional units (SFUs), which perform more complex FP operations such as the
trigonometric functions with low latency. Both the arithmetic units and the SFUs are fully
pipelined. Thus, each SM can perform 18 FLOPS per clock cycle (one multiply-add
operation per SP and one complex operation per SFU), yielding 388.8 GFLOPS (16 SM *
18 FLOP/SM * 1.35 GHz) of peak theoretical performance for the GPU.

The Quadro has 76.8 GB/s of bandwidth to its 1.5 GB, off-chip, global memory.
Nevertheless, with computational resources supporting nearly 400 GFLOPS and each
multiply-add instruction operating on up to 16 bytes of data, applications can easily saturate
that bandwidth. Therefore, as depicted in Figure 2, the G80 has several on-chip memories
that can exploit data locality and data sharing to reduce an application’s demands for off-
chip memory bandwidth. For example, the Quadro has a 64 KB, off-chip constant memory,
and each SM has an 8 KB constant memory cache. Because the cache is single-ported,
simultaneous accesses of different addresses yield stalls. However, when multiple threads
access the same address during the same cycle, the cache broadcasts that address’s value to
those threads with the same latency as a register access. This feature proves quite beneficial
for the MRI reconstruction algorithm studied in this paper. In addition to the constant
memory cache, each SM has a 16KB shared memory for data that is either written and
reused or shared among threads. Finally, for read-only data that is shared by many threads
but not necessarily accessed simultaneously by all threads, the off-chip texture memory and
the on-chip texture caches exploit 2D data locality to substantially reduce memory latency.

Threads executing on the G80 are organized into a three-level hierarchy. At the highest
level, each kernel creates a single grid, which consists of many thread blocks. The
maximum number of threads per block is 512. Each thread block is assigned to a single SM
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for the duration of its execution. Threads in the same block can share data through the
shared memory and can perform barrier synchronization by invoking the __syncthreads
primitive. Threads are otherwise independent, and synchronization across thread blocks is
safely accomplished only by terminating the kernel. Finally, threads within a block are
organized into warps of 32 threads. Each warp executes in SIMD fashion, with the SM’s
instruction unit broadcasting the same instruction to the eight cores on four consecutive
clock cycles.

SMs can interleave warps on an instruction-by-instruction basis to hide the latency of global
memory accesses and long-latency arithmetic operations. When one warp stalls, the SM can
quickly switch to a ready warp in the same thread block or in some other thread block
assigned to the SM. The SM stalls only if there are no warps with all operands available.

2.2 Advanced MRI Reconstruction

Magnetic resonance imaging (MRI) is commonly used by the medical community to safely
and non-invasively probe the structure and function of biological tissues from all regions of
the body, and images generated using MRI have a profound impact in both clinical and
research settings. MR imaging consists of two phases, acquisition (scan) and reconstruction.
During the scan phase, the scanner samples data in the k-space domain (i.e., the spatial-
frequency domain or Fourier transform domain) along a predefined trajectory. These
samples are then transformed into the desired image during the reconstruction phase.

MRI is often limited by high noise levels, significant imaging artifacts, and/or long data
acquisition times. In clinical settings, short scan times not only increase scanner throughput
but also reduce patient discomfort, which tends to mitigate motion-related artifacts. High
image resolution is equally important because it can enable earlier detection of pathology,
leading to improved prognoses for patients. However, the goals of short scan time, high
resolution, and high signal-to-noise ratio (SNR) often conict; improvements in one metric
tend to come at the expense of one or both of the others.

The sampling trajectory used by the MRI scanner can significantly affect the quality of the
reconstruction. Figure 3(a) and 3(c) depict a Cartesian scan trajectory and a non-Cartesian
(spiral) scan trajectory, respectively. The Cartesian trajectory samples k-space on a uniform
grid, which allows image reconstruction to be performed quickly and efficiently by applying
a fast Fourier transform (FFT) directly to the acquired data. Although the reconstruction of
Cartesian scan data is computationally efficient, non-Cartesian scan trajectories can be
preferable because they are often faster and less sensitive to imaging artifacts caused by
non-ideal experimental conditions. For these reasons, non-Cartesian trajectories with radial
[23] and spiral [1] sampling patterns are becoming increasingly common in MRI.

Image reconstruction from non-Cartesian scan data presents both challenges and
opportunities. In the most common approach, gridding, the samples are first interpolated
onto a uniform Cartesian grid and then reconstructed in one step via the FFT (see Figure
3(b)) [20,36]. While gridding is computationally expedient, it satisfies no optimality
criterion and cannot leverage prior information such as anatomical constraints. By contrast,
statistically optimal image reconstructions can more accurately model imaging physics (e.g.,
[31,12,42]) and can also incorporate additional prior information. For example, anatomically
constrained reconstruction [16] incorporates anatomical information to reduce noise while
preserving the resolution of known image features, enabling brief scans to yield high quality
images. While such reconstructions have been impractical for large-scale 3D problems due
to computational constraints, this paper shows that these reconstructions become viable in
clinical settings when accelerated on GPUs. Anatomically constrained reconstruction of
non-Cartesian scan data enables brief scans to achieve high SNR, thereby decreasing
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imaging artifacts and increasing SNR simultaneously. While such advanced reconstructions
have been impractical for large-scale problems due to computational constraints, this paper
shows that these reconstructions become viable in clinical settings when accelerated on
GPUs.

We implemented the anatomically constrained reconstruction algorithm of [16]. This
algorithm finds the the solution to the following quasi-Bayesian estimation problem

— . » ”
p=arg min|| Fp — d|3+{ W3
P —e— e e —

data fidelity  prior info (1)

where p is a vector containing voxel values for the reconstructed image, F is a matrix that
models the imaging process, d is a vector of data samples, and W is a matrix that can
incorporate prior information such as anatomical constraints. In clinical settings, these
anatomical constraints are derived from one or more high-resolution, high-SNR scans of the
patient, which reveal features such as the location of anatomical structures. The matrix W is
derived from these reference images. The first term in the above cost function imposes that
data simulated from the reconstructed image should match somewhat closely with the real
acquired data; the second term is used to impose prior information regarding the image
statistics.

Because Eq. 1 defines a linear least squares problem, the solution is

p=(F"E+W"W) " Fd. @

However, the size of the matrix (FHF +WHW) makes direct matrix inversion impractical for
high-resolution reconstructions. For the 1283-voxel reconstructions examined in this paper,
the inverted matrix contains well over four trillion complex-valued elements (the number of
elements in the inverted matrix equals the square of the number of voxels in the
reconstructed image). An iterative method for matrix inversion, such as the conjugate
gradient (CG) algorithm [19], is therefore preferred.

The conjugate gradient algorithm reconstructs the image by iteratively solving Eq. 2 for p.
During each iteration, the CG algorithm updates the current image estimate p to improve the
value of the quasi-Bayesian cost function (Eq. 1). The computational effciency of the CG
technique is largely determined by the efficiency of matrix-vector multiplication operations
involving FHF andWHW, as these operations are required during each iteration of the CG
algorithm. Fortunately, matrix W often has a sparse structure that permits efficient
multiplication by WHW, and matrix FHF has a convolutional structure [45,12] that enables
efficient matrix multiplication via the FFT.

The advanced reconstruction algorithm described in this paper therefore consists of three
primary computations. First, the algorithm computes each element of Q, given by

M

O(x)= ) (ke 2o
m=1 (3)

where Q is the convolution kernel that facilitates multiplication operations involving FHF
and ¢ () is the Fourier transform of the voxel basis function.
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There are M k-space sampling locations, with k,, denoting the location of the mt sample.
Likewise, there are N voxel coordinates, with x,, denoting the coordinates of the n' voxel.
Because Q depends only on the scan trajectory (not the scan data) and the size of the image,
it can be computed before the scan occurs and can be reused during any reconstruction that
shares the same scan trajectory and image size.

Second, the algorithm computes the vector FHd, defined as

M

[F7d] = 6" (kn)d(ke@™no).
m=1 (4)

Although Eq. 3 and Eq. 4 are quite similar, the former necessitates significantly more
computation because the Q algorithm oversamples the image space by a factor of two in
each dimension. Therefore, during a 3D reconstruction, Eg. 3 is evaluated at 8N values of
Xn, While the Eq. 4 is evaluated at only N values of x,,. Finally, the CG solver performs
iterative matrix inversion to solve Eq. 2.

The complexity of the advanced reconstruction far exceeds the complexity of a
conventional, gridded reconstruction. Given a reconstruction problem of N voxels and M
scan data points, the computations of Q and FHd have O(MN) complexity, compared to O(N
log N) complexity for reconstructions based on gridding and the FFT. For this reason,
advanced reconstruction of high resolution, three-dimensional images has been impractical
in clinical settings, despite the technique’s clear advantages over conventional
reconstructions. Our work demonstrates that these advanced reconstructions can be
performed quickly and efficiently on modern GPUs, increasing their viability in clinical
settings.

2.3 Example Application: 3D Full-Brain Multi-Echo Acquisition

We illustrate one potential application of this work with real experimental data acquired
using a novel acquisition scheme. The new multiparametric 3D structural imaging sequence
provides several volumes with varying contrast in a multi-echo acquisition to assist in
automatic brain segmentation, and we obtain volumes with T1-weighting and To-weighting
simultaneously and in complete registration.

Specifically, a 3D stack of spirals sequence was designed using the method of [14] with a
256 x 256 x 176 matrix size, 1 mm isotropic resolution, 17 spiral shots per slice, and with a
TR of 350 ms. The sequence was acquired with multiple echos to obtain a range of different
contrasts during a single acquisition. Specifically, we acquired a short echo time (2.2 ms)
gradient echo spiral-out acquisition (GRE, T1-weighted), followed by spiral-in/spiral-out
acquisitions centered around two spin echo times at 46 ms (SE1) and 92 ms (SE2),
respectively. All three images were acquired simultaneously with the same data acquisition
trajectories and bandwidth, and therefore are coregistered. Subjects were scanned on a
Siemens 3 T Allegra headscanner in accordance with the institutional review board using a
single-channel head coil.

Advanced reconstructions and gridded reconstructions were performed with this data,1 and
the results are shown in Fig. 4. The advanced reconstruction’s noise variance is more than 3
times better than that of the gridded reconstruction. The constraints used in the advanced

1Before processing, this data was filtered and resampled so that it could be reconstructed on a 256 x 256 x 32 voxel grid. The purpose
of this preprocessing was to reduce the size of the CG solver's working set by a factor of 8 so that it could reside in the Quadro’s 1.5

GB DRAM.
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reconstruction were obtained similarly to the technique described in [17], utilizing the whole
image sequence to estimate a shared anatomical structure.

3 Advanced MRI Reconstruction

3.1 FHd

The advanced MRI reconstruction algorithm described in Section 2.2 consists of three steps:
computing the data structure Q (which depends only on the scan trajectory), computing the
vector FHd (which depends on the scan trajectory and the scan data), and finding the image
iteratively via a conjugate gradient linear solver. As Figure 5 shows, the algorithms for FHd
and Q are quite similar.2 The most significant difference is that the Q algorithm requires
more computation because its outer loop executes 8N iterations, compared to N iterations
for FHd. Otherwise, Q suffers from the same bottlenecks and benefits from the same code
transformations as FHd.

Because Q can be computed prior to acquiring an image’s scan data, the critical path for a
given reconstruction consists only of computing FHd and executing the linear solver.
Therefore, the remainder of this section describes the algorithms for FHd and the linear
solver, focusing on the implementation of the FHd algorithm on the GPU. The interested
reader may refer to [40] for more detailed discussion of Q.

As Figure 5(b) shows, the algorithm for FHd is an excellent candidate for acceleration on the
GPU because it contains substantial data-parallelism. The algorithm first computes the real
and imaginary components of mu at each sample point in the trajectory space (k-space),
then computes the real and imaginary components of FHd at each voxel in the image space.
The value of FHd at any voxel depends on the values of all sample points, but no elements
of FHd depend on any other elements of FHd. Therefore, all elements of FHd can be
computed independently and in parallel.

Despite the algorithm’s inherent parallelism, potential performance bottle necks are evident.
First, in the loop that computes the elements of FHd, the ratio of floating-point operations to
memory accesses is at best 3:1 and at worst 1:1. The best case assumes that the sin and cos
operations are computed using five-element Taylor series that require 13 and 12 floating-
point operations, respectively. The worst case assumes that each trigonometric operation is
computed as a single operation in hardware. In either case, the GPU-based implementation
of the algorithm must conserve memory bandwidth and tolerate memory latency. Second,
the ratio of FP arithmetic to FP trigonometry is only 13:2. Thus, GPU-based implementation
must tolerate or avoid stalls due to long-latency sin and cos operations.

The GPU-based implementation of the FHd algorithm (see Figure 5(c)) uses the G80’s
constant memory caches to eliminate the potential bottleneck posed by memory bandwidth
and latency. To overcome the memory bottleneck, the scan data is divided into many tiles,
with each tile containing a distinct subset of sample points. For each tile, the host CPU loads
the corresponding subset of sample points into constant memory before executing the
cmpFhD function. Each thread then computes a partial sum for a single element of FHd by
iterating over all the sample points in the tile. This optimization significantly increases the
ratio of FP operations to global memory accesses.

Likewise, the G80’s special functional units (SFUs) enable the algorithm to avoid the
potential bottleneck of long latency trigonometric operations. When the use_fast_math

2n this work, we compute Q and FHd exactly, excluding numerical effects. These quantities have previously been calculated using
fast approximations (e.g. [13,45]) due to the past impracticality of solving the exact problem.
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compiler option is invoked, the sin and cos operations are not linked to long-latency library
calls, but rather are executed as individual, low-latency instructions on the SFUs. The speed
of the SFU comes at the expense of some loss in accuracy when the argument to the sin or
cos is very small, but, as we show in Section 5, this optimization does not necessarily
decrease the overall accuracy of the algorithm.

3.2 Linear Solver

The final phase of the image reconstruction consists of a linear solver that implements the
preconditioned conjugate gradient (PCG) algorithm [9,24]. As described in Section 2, the
solver iteratively solves Eq. 2 to find the desired image p. When the iterations converge or
the number of iterations exceeds a threshold, the solver terminates. During each iteration,
the solver performs a large FFT and inverse FFT, several BLAS and sparse BLAS
operations (including multiplication of sparse matrices and vectors, as well as addition,
scaling, and scalar multiplication of vectors), and several other computations (such as
summation reduction, shifting, and sampling).

We ported the PCG algorithm from MATLAB to C/CUDA, using NVIDIA’s CUDA
CUFFT Library [28] for the FFT and inverse FFT operations, implementing the BLAS and
sparse BLAS operations in CUDA, and orchestrating the control flow and data marshaling
in C. Complex-valued objects are represented using CUDA'’s cufftComplex data type, as
required by the CUFFT Library. Sparse matrices are stored in compressed row format [11]
to facilitate efficient GPU-based execution of the expression A * x, where A is a sparse
matrix and x is a vector. Although we have not rigorously analyzed the performance of the
CUDA-based solver, it is roughly 25 times faster than a MATLAB-based version of the
same algorithm. We use the CUDA-based solver for all experiments presented in Section 5
and view its performance as acceptable.

4 Methodology

To quantify the effects of the Quadro’s architectural features on the performance and quality
of the reconstruction, we implemented seven versions of the algorithm for FHd, five of
which are depicted in Figure 6. The base version (GPU.Base, see Figure 6(a)) simply
executes in data-parallel fashion on the GPU, without using even the simplest optimizations
to conserve memory bandwidth or tolerate long latency loads and trigonometric operations.
The second version (GPU.RegAlloc, see Figure 6(b)) register allocates the voxel data,
thereby conserving some memory bandwidth and reducing the latency of all voxel accesses.
GPU.Layout (Figure 6(c)) register allocates the voxel data and changes the layout of the
scan data in the Quadro’s global memory so that accesses to the scan data make more
effcient use of the memory bandwidth. GPU.ConstMem (Figure 6(d)) register allocates the
voxel data and places the scan data in the Quadro’s constant memory so that accesses to the
scan data are cached. The fifth version (GPU.FastTrig, see Figure 6(¢)) additionally uses the
G80’s special functional units to compute fast, approximate versions of the trigonometric
operations. The sixth version, GPU.Tune, also uses experimentally-tuned settings for three
code transformations: loop unrolling, data tiling (scan points per thread), and number of
threads per block. The tuned settings balance allocation of GPU resources to improve
hardware utilization and thread efficiency. Finally, GPU.Multi executes the tuned version on
multiple Quadros.

To obtain a reasonable baseline, we implemented two versions of FHd on the CPU. Version
CPU.DP uses double-precision for all floating-point values and operations, while version
CPU.SP uses single-precision. Both CPU versions are compiled with Intel’s icpc (version
10.1) using flags -O3 -msse3 -axT- vec-report3-fp-model fast=2, which (1) vectorizes the
algorithm’s dominant loops using instructions tuned for the Core 2 architecture, and (2)
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links the trigonometric operations to fast, approximate functions in the math library. Based
on experimental tuning with a smaller data set, the inner loops are unrolled by a factor of
four and the scan data is tiled to improve locality in the L1 cache.

Each GPU version of FHd is compiled using nvce -O3 (CUDA version 1.1) and executed on
a 1.35 GHz Quadro FX 5600. The Quadro card is housed in a system with a 2.4 GHz dual-
socket, dual-core Opteron 2216 CPU. Each core has a 1 MB L2 cache. The CPU versions
use pthreads to execute on all four cores of 2.66 GHz Core 2 Extreme quad-core CPU,
which has peak theoretical capacity of 21.2 GFLOPS per core and a 4 MB L2 cache. The
CPU versions perform substantially better on the Core 2 Extreme quad-core than on the
dual-socket, dual-core Opteron.

All reconstructions use the GPU version of the linear solver, which executes 60 iterations on
the Quadro FX 5600. Two versions of Q were computed on the Core 2 Extreme, one using
double-precision and the other using single- precision. The single-precision Q was used for
all GPU-based reconstructions and for the reconstruction involving CPU.SP, while the
double-precision Q was used only for the reconstruction involving CPU.DP. As the
computation of Q is not on the reconstruction’s critical path, we give Q no further
consideration.

To facilitate comparison of the advanced reconstruction with a conventional reconstruction,
we also evaluated a reconstruction based on gridding and the FFT [20]. Our version of the
gridded reconstruction is not optimized for performance, but it is fair to assume that an
optimized implementation would execute in several seconds [40].

All reconstructions are performed on sample data obtained from a simulated, three-
dimensional, non-Cartesian scan of a phantom image [22]. There are 284,592 sample points
in the scan data set, and the image is reconstructed at 1283 resolution, for a total of 221
voxels. In the first set of experiments, the simulated data contains no noise. In the second set
of experiments, we added complex white Gaussian noise to the simulated data. When
determining the quality of the reconstructed images, the percent error and peak signal-to-
noise ratio metrics are used. The percent error is the root-mean-square (RMS) of the voxel
error divided by the RMS voxel value in the true image (after the true image has been
sampled at 1283 resolution). To permit fair comparison of the gridded and advanced
reconstructions, we adjusted the scale of each gridded image to match the scale of the true
image before computing the gridded image’s percent error and PSNR.

The data (runtime, GFLOPS, and images) presented in Section 5 were obtained by
reconstructing each image once with each of the 11 implementations of the FHd algorithm
described above. There are two exceptions to this policy. For GPU.Tune and GPU.Multi, the
time required to compute FHd is so small that run-time variations in performance may
become non-negligible. Therefore, for these configurations we computed FHd three times
and reported the average performance. Also, when performing multiple reconstructions of
the same data set back-to-back on the same computer, we do not clear the caches between
successive calculations of FHd or successive executions of the linear solver. In the case of
the FHd algorithm, which has a relatively small working set, the runtime increases by
roughly 10% when the caches are cold. By contrast, the linear solver, which has a relatively
large working set, exhibits a 30% increase in runtime when the caches are cold. However,
given that (1) some data in the working sets depend only on the scan trajectory, and (2)
clinicians are likely to use the same computer to perform several successive reconstructions
on the same patient or with the same scan trajectory, it is difficult to determine the extent to
which cold caches are an accurate reflection of clinical conditions. Finally, the

J Parallel Distrib Comput. Author manuscript; available in PMC 2011 July 25.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Stone et al.

Page 10

reconstruction times reported in Section 5 exclude the time required to create an image from
the reconstructed data (roughly one second).

Finally, the advanced reconstruction leverages two optimizations that are not evident
elsewhere in our discussion. First, the scan trajectory is symmetric, and the advanced
reconstruction uses prior knowledge of that symmetry to mitigate the effects of numerical
imprecision on the reconstruction’s accuracy. Second, we manually balanced the resolution
and the noise in the advanced reconstruction by performing the reconstruction multiple
times while adjusting a regularization parameter. Adjustment of the regularization parameter
can be performed prior to acquiring the sample data, given the sampling trajectory, noise
levels, and other readily available prior information [15].

5 Evaluation

To be useful in clinical settings, the advanced reconstruction must satisfy two criteria. First,
the quality of an image obtained via the advanced reconstruction should significantly exceed
the quality of an image obtained via a gridded reconstruction. Second, the reconstruction
must complete quickly. After image acquisition, the patient typically remains in the scanner
during image reconstruction. The scanner operator then decides whether the image is
acceptable or whether it should be acquired again. Any delays therefore increase patient
discomfort and decrease scanner throughput. Also, when the administration of a medical
treatment depends on the MR images, any delay is at best frustrating and at worst harmful to
the patient’s health.

Our experiments indicate that the advanced reconstruction definitely satisfies the first
criterion. As Figure 7(a) shows, advanced reconstruction of the noiseless data yields
significantly better images than gridded reconstruction. Relative to the true image (Figure
7(a)(1)), the advanced reconstructions (Figure 7(a)(3-11)) exhibit 12% to 13% error and 27
dB to 28 dB PSNR, compared to 42% error and 17 dB PSNR for the gridded reconstruction
(Figure 7(a)(2)).There are no significant differences among the images obtained from the
advanced reconstruction, despite the use of single-precision floating-point in Figures 7(a)(4—
11) and approximate trigonometric operations in Figure 7(a)(3, 4, and 9-11).

The images reconstructed from the noisy data (Figure 7(b)) further demonstrate the
superiority of the advanced reconstruction. Relative to the true image, the advanced
reconstruction exhibits 16% error and 25 dB PSNR, while the error and PSNR for the
gridded reconstruction are 47% and 16 dB, respectively. Again, there are no significant
differences among the images obtained from the various versions of the advanced
reconstruction.

In addition to producing significantly better images than the gridded reconstruction, the
GPU-accelerated advanced reconstruction arguably satisfies the second criterion for clinical
use: speed. As Figure 8(a) shows, the fastest single-GPU version of the advanced
reconstruction completes in 66 seconds. This reconstruction time is clearly much more
appealing for clinical applications than the fastest CPU-based reconstruction, which
completes in nearly 23 minutes.

The fastest single-GPU version of the advanced reconstruction computes FHd in 49 seconds,
compared to 22.5 minutes for the fastest CPU-based reconstruction. The remainder of this
section describes how the advanced reconstruction leverages the GPU’s resources to achieve
such impressive acceleration when computing FHd. We find that the constant memory
caches are quite effective in reducing the number of accesses to global memory, while the
special functional units provide substantial acceleration for the trigonometric computations
in the algorithm’s inner loops. We also find that experimentally-tuned code transformations
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have a significant impact on the algorithm’s performance. Specifically, the algorithm’s
performance increases by 47% when the tiling factor, the number of threads per block, and
the loop unrolling factor are experimentally tuned.

5.1 GPU.Base

As Figure 8(b) shows, GPU.Base is significantly slower than CPU.SP, the optimized, single-
precision, quad-core implementation of FHd. In GPU.Base (see Figure 6(a)), the inner loops
are not unrolled. There are 256 threads per block and 256 scan points per tile. Because
GPU.Base leverages neither the constant memory nor the shared memory, memory
bandwidth and latency are significant performance bottlenecks. With one 4-byte global
memory accesses for every three FP operations, and with memory bandwidth of 76.8 GBI/s,
the upper limit on the kernel’s performance is only 57.6 GFLOPS. Due to other performance
bottlenecks, the kernel actually achieves only 7.0 GFLOPS, less than half of the 16.8
GFLOPS achieved by CPU.SP.

5.2 GPU.RegAlloc

Relative to GPU.Base, GPU.RegAlloc (see Figure 6(b)) decreases the time required to
compute FHd from 53.6 minutes to 34.2 minutes. In short, register allocating the voxel data
increases the computation intensity (the ratio of FP operations to off-chip memory accesses)
from 3:1 to 5:1. This substantial reduction in required off-chip memory bandwidth translates
into increased performance. Eliminating the two stores to global memory during every loop
iteration is particularly beneficial.

5.3 GPU.Layout

By changing the layout of the scan data in global memory (see Figure 6(c)), GPU.Layout
achieves an additional speedup of 16% over GPU.RegAlloc. The underlying causes of
GPU.Layout’s improved performance relative to GPU.RegAlloc are difficult to identify.
GPU.Layout does require less overhead to marshal the data into struct-of-arrays format than
GPU.RegAlloc requires to marshal the data into array-of-structs format, which may account
for a small fraction of the improvement in performance. Furthermore, we speculate that the
Quadro’s memory controller may provide some form of buffering that the struct-of-arrays
layout leverages more successfully than does the array-of- structs layout. Section 5.4 offers
additional insight into the relative merits of these two data layouts.

5.4 GPU.ConstMem

GPU.ConstMem (Figure 6(d)) achieves speedup of 6.4X over GPU.Layout by placing each
tile’s scan data in constant memory rather than global memory. GPU.ConstMem therefore

benefits from each SM’s 8 KB constant memory cache. At 4.6 minutes and 82.8 GFLOPS,
this version of FHd is 4.9X faster than the optimized CPU version.

The GPU.ConstMem and GPU.Layout configurations underscore an important trade-off
between optimizing latency to off-chip memory and optimizing latency to the constant
caches. As discussed above, the array-of-structs data layout in Figure 6(c) improves
performance relative to the struct-of-arrays data layout in Figure 6(b). However, as Figure 9
shows, the struct-of-arrays layout yields very bad performance if the scan data is placed in
constant memory, presumably because this layout leads to excessive conflicts in the constant
cache. In particular, as the tiling factor increases, the time required for these hybrid versions
(with scan data in constant memory but with struct-of-arrays layout) to compute FHd
steadily increases [33]. This phenomenon most likely occurs because elements of nearby
scan points (ky, ky, etc.) map to the same cache line, so that the warps continually contend
for the same cache lines. By contrast, the various versions of GPU.ConstMem actually
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require less time to compute FHd as the tiling factor increases; cache conflicts are clearly
much less common.

We now analyze the off-chip memory accesses on a single SM during the execution of three
thread blocks. With 7 global memory accesses per thread, 256 threads per thread block, and
3 thread blocks per SM, there are 5,376 accesses to global memory. Assuming no constant
memory cache evictions due to conflicts, there are also 1,280 accesses to constant memory
(256 data points per tile, with 5 floating-point values per data element), yielding a total of
6,656 off-chip memory accesses. The number of floating-point computations performed by
the 3 thread blocks is 3*256*256*38 = 7,471,104. Thus, the ratio of FP operations to off-
chip memory accesses has increased by over two orders of magnitude, from 3:1 to 1100:1.
However, GPU.ConstMem still achieves only 82.8 GFLOPS (roughly 20% to 25% of the
Quadro’s peak theoretical through-put), which implies the existence of another bottleneck.

5.5 GPU.FastTrig

GPU.FastTrig (Figure 6(e)) achieves acceleration of nearly 4X over GPU.ConstMem by
using the special functional units (SFUs) to compute each trigonometric operation as a
single operation in hardware. When compiled without the use_fast_math compiler option,
the algorithm uses implementations of sin and cos provided by an NVIDIA math library.
Assuming that the library computes sin and cos using a five-element Taylor series, the
trigonometric operations require 13 and 12 floating-point operations, respectively. By
contrast, when compiled with the use_fast_math option, each sin or cos computation
executes as a single floating-point operation on an SFU. The SFU achieves low latency at
the expense of some accuracy. In our experiments (not shown), the images reconstructed by
GPU.FastTrig always had lower or only slightly higher percent error than images
reconstructed by GPU.ConstMem. Thus, the SFU’s approximate implementations of sin and
cos often have negligible impact on the reconstruction’s accuracy. However, further
experimentation is necessary to determine whether there are experimental conditions under
which these instructions might decrease the quality of a reconstruction.

5.6 GPU.Tune

While GPU.FastTrig overcomes the potential bottlenecks related to off-chip memory
accesses and trigonometric computations, the algorithm still per-forms at only 125.5
GFLOPS, which is roughly one-third of the Quadro’s peak theoretical performance. To
determine the impact of experiment-driven code transformations, we conducted an
exhaustive search that varied the number of threads per block from 32 to 512 (by increments
of 32), the tiling factor from 32 to 2,048 (by powers of 2), and the loop unrolling factor from
1 to 8 (by powers of 2).3 Recent work has demonstrated that this type of experimental
tuning can be performed quickly and accurately using static analysis techniques, as long as
the code is parameterized correctly [33]. For reference, all previous configurations
(GPU.Base - GPU.FastTrig) performed no loop unrolling and set both the number of threads
per block and the tiling factor to 256. The exhaustive, experiment-driven search selects 128
threads per block, a tiling factor of 512, and a loop unrolling factor of 8. This configuration
increases the algorithm’s performance by 47%, with the runtime decreasing to 49 seconds
and the throughput increasing to 184 GFLOPS.

Although the code is now well-optimized and tuned, the achieved throughput is just under
50% of the Quadro’s peak throughput. To understand the remaining constraints on
performance, we examined GPU.Tune’s ptx code (the assembly-like code generated by nvcc
and consumed by the CUDA runtime). In short, the unrolled loop contains 3 integer

3Com‘igurations with non-power-of-2 loop unrolling factors routinely hang in CUDA 1.1 for unknown reasons.
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instructions at the top and 7 integer instructions at the bottom, with the original loop body
replicated 8 times in between. The original loop body consists of five loads (to constant
memory) and 14 FP instructions (11 simple arithmetic, 2 trigonometric, and 1 MAD). Thus,
the unrolled loop computes 120 FLOPS using 162 instructions (74% efficiency), while the
peak theoretical throughput requires 2 FLOPS per instruction (200% efficiency). Clearly,
GPU.Tune performs somewhat better than this analysis suggests it would, because 100%
efficiency is required to reach 50% of the Quadro’s peak throughput. We assume that the
CUDA runtime is responsible for this performance boost. For example, the ptx code uses 3
MUL and 2 ADD instructions to compute the quantity exp in Figure 5(c). As exp is
expressed in standard sum-of-products form, 1 MUL and 2 MAD instructions are clearly
preferred. This transformation alone would boost GPU.Tune’s efficiency to 82%.

5.7 GPU.Multi

In this final experiment, the voxels are divided into four distinct subsets, with one of four
Quadros computing FHd for each subset. This optimization decreases the time required to
compute FHd to 14.5 seconds and increases the throughput to over 600 GFLOPS. The
acceleration is slightly sub-linear because the overheads (1/O, data marshaling, etc.)
represent a significant fraction the time required to compute FHd. With FHd’s runtime
reduced to just 14.5 seconds, Amdahl’s law is beginning to assert itself.

5.8 Improvements in CUDA 1.1

With CUDA 1.1, the performance of the advanced MRI reconstruction is roughly 20% better
than with CUDA 1.0. Enhancements to nvcc’s register allocation policy are partially
responsible for the improved performance. As Table 1 shows, GPU.Tune uses 13 registers
per thread in CUDA 1.1 (when the loop is unrolled 8 times), compared to 19 registers per
thread in CUDA 1.0 (when the loop is unrolled only 5 times). Additional loop unrolling in
CUDA 1.0 is counter-productive, as the number of registers per thread steadily increases
from 19 to 29 as the loop unrolling factor increases from 5 to 8. Increasing the per-thread
register usage causes a corresponding decrease in utilization, because the number of threads
that can execute simultaneously is inversely proportional to the number of registers per
thread.

Likewise, enhancements to nvcc’s code generation also contribute to improved performance.
In CUDA 1.0, nvce generates four additional integer instructions each time the inner loop of
FHd is unrolled. These instructions compute the base address of the next data sample in
constant memory. Each load instruction then uses an integer offset to access the desired
element of the data sample (e.g., ky or ky). By contrast, in CUDA 1.1, the base address of
the next data sample is computed once at the top of the unrolled loop, and the integer off-
sets are adjusted so that each load accesses the correct data sample. Given that the original
loop body contains only 19 ptx instructions, the unnecessary overhead of 4 additional
instructions per loop iteration is significant.

6 Related Work

General-purpose computing on graphics processing units (often termed GPGPU or GPU
computing) supports a broad range of scientific and engineering applications, including
physical simulation, signal and image processing, database management, and data mining
[30]. Medical imaging was one of the first GPU computing applications. In 1994 Cabral et
al. observed that volume rendering essentially performs a generalized Radon transform,
while the filtered backprojection algorithm for computed tomography (CT) reconstruction
performs an inverse Radon transform. The CT reconstruction based on filtered
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backprojection achieved a speedup of two orders of magnitude on the SGI RealityEngine

[6].

A wide variety of CT reconstruction algorithms have since been accelerated on graphics
processors [25,46,8,26], and the Cell Broadband Engine [4,34]. Filtered backprojection
algorithms receive further attention in [25] and [46], while [8] studies the performance of
two iterative algorithms for CT reconstruction (the Maximum Likelihood Expectation
Maximization and Ordered Subset Expectation Maximization algorithms) on the GPU. In
[26] the GPU is used to accelerate Simultaneous Algebraic Reconstruction Technique
(SART), an algorithm that increases the quality of image reconstruction relative to the
conventional filtered backprojection algorithm under certain conditions. SART, which
requires significantly more computation than backprojection, becomes a viable clinical
option when executed on the GPU. Finally, [4] and [34] accelerate CT reconstructions based
on cone-beam backprojection on the Cell/BE.

By contrast, MRI reconstruction on the GPU has not been studied extensively. Research in
this area has focused on accelerating the fast Fourier transform (FFT), which is a key
component of many MRI reconstruction algorithms. Speedups on the order of 2x-9x have
been reported [41,35,21]. In [38], Sgrensen et al. use a GPU to accelerate a gridding
algorithm for MRI reconstruction, achieving a substantial speedup over the baseline
implementation. GPU-based parallel imaging shows promising results in [18]. Finally, the
acceleration of the advanced reconstruction algorithm described in this paper builds on our
earlier work with the same algorithm [40,39]. Baskaran et al. have independently observed
that the FHd algorithm can be efficiently mapped to the GPU using a parallelizing compiler

3.

7 Conclusions and Future Work

In many applications, magnetic resonance imaging is limited by high noise levels, imaging
artifacts, and long scan times. Advanced image reconstructions, which can operate on
arbitrary scan trajectories and incorporate anatomical constraints, can mitigate these
limitations at the expense of substantial computation. The computational resources,
architectural features, and programmability of the Quadro FX 5600 reduce the time for an
advanced reconstruction of non-uniform MRI scan data from nearly 23 minutes on a quad-
core CPU to just over one minute on the Quadro, making the reconstruction practical for
many clinical applications.

The single-precision floating-point arithmetic and approximate trigonometric operations that
help accelerate the advanced reconstruction may, under certain conditions, degrade the
quality of the reconstructed image. While we did not observe this phenomenon during our
reconstructions of the 3D phantom image, we view further investigation of the advanced
reconstruction algorithm’s sensitivity to numerical approximations as important future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Adapted with permission from [30] © John Owens et al.
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Fig. 3. MRI reconstruction techniques

In (a) the scanner samples k-space on a uniform grid and reconstructs the image in one step
via the FFT. In (b) the scanner samples k-space on a non-Cartesian (spiral) trajectory, then

interpolates the samples onto a uniform grid and reconstructs the image in one step via the

FFT. In (c) an advanced reconstruction algorithm is applied directly to the spiral scan data.
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(a) Gridded Reconstructions. Left to right: GRE, SE1, and SE2.

(b) Constrained Reconstructions. Left to right: GRE, SE1, and SE2.

(¢) Rescaled Gridded SE2 (d) Rescaled Constrained SE2

Fig. 4. Application of advanced MRI reconstruction to human brain data

(a) One slice from the gridding reconstructions from each of the three different images. (b)
The corresponding slice from the constrained reconstructions. The SE2 image is shown with
a modified colorscale in (c) and (d) to illustrate the significant SNR advantage of the
advanced reconstruction. The constrained reconstruction’s noise variance is more than 3
times lower than that of the gridded reconstruction.
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// calc |¢(km)|2

// at each sample point m
for (m = 0; m < M; m++) {
phiMag[m] = rPhi[m]*rPhi[m] +
iPhi[m]*iPhi[m];

// calc Q at each voxel n

for (n = 0; n < 8*N; n++) {
for (m = 0; m < M; m++) {
27k, X,
// e m*n
exp = 2*PI*(kx[m] * x[n] +
ky[m] * y[n] +
kz[m] * z[n]);
// ae’® = a*cos(c)+ia*sin(c)

rQ[n] += phiMag[m]*cos(exp);
iQ[n] += phiMag[m]*sin(exp);
}

// calc mu=¢*(km)d(km)

// at each sample point m
for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +
iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] -
iPhi[m]*rD[m];

// calc FHd at each voxel n
for (n = 0; n < N; n++) {
for (m = 0; m < M; m++) {

27K, %,

// e
exp = 2*PI*(kx[m] * x[n] +
ky[m] * y[n] +
kz[m] * z[n]);

cArg = cos(exp);

sArg = sin(exp);
// (a+bi)e’® = a*cos(c)-b*sin(c)
// + i(b*cos(c)+a*sin(c))

rFhD[n] += rMu[m]*cArg -
iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +
rMu[m]*sArg;

// calc mu at each sample point m
__global___
void cmpMu(float* rPhi, iPhi, rD, iD, rMu, iMu, int M) {
int m = blockIdx.x * MU_THREADS_PER_BLOCK + threadIdx.x;
if (m < M) {
rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
iMu[m] = rPhi[m]*iD[m] - iPhi[m]*rD[m];
}
}

// calc FHd at one voxel n

__global__

void cmpFhD(float* gx, gy, gz, grFhD, giFhD) {
// find the index of the voxel assigned to this thread
int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

// register allocate voxel inputs and outputs
x = gx[n]; y =gyln]; 2z = gzln];
rFhD = grFhD[n]; iFhD = giFhD[n];

// loop over all the sample points in the current tile
for (int m = 0; m < SAMPLE_PTS_PER_TILE; m++) {
// s (sample data) is held in constant memory
float exp = 2 * PI * (s[m].kx * x +
s[m].ky * y +
s[m]l.kz * z);
cArg = cos(exp);
sArg = sin(exp);
rFhD += s[m].rMu*cArg - s[m].iMu*sArg;
iFhD += s[m].iMu*cArg + s[m].rMu*sArg;
}

grFhD[n] = rFhD;
giFhD[n] = iFhD;

(a) Q algorithm

(b) F"d algorithm

(¢) F"d algorithm in CUDA

Fig. 5. Data-parallel phases of advanced MRI reconstruction
Panels (a) and (b) show simplified C code for the algorithms that compute Q and FHd,

respectively. Panel (c) depicts the FHd algorithm in CUDA.
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Fig. 6.
Versions of the FHd algorithm on the GPU.
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(1) True (2) Gridded (3) CPU.DP
41.7% error 12.1% error
PSNR = 16.8 dB PSNR =27.6 dB

(4) CPU.SP (5) GPU.Base (6) GPU.RegAlloc
12.0% error 12.1 % error 12.1 % error
PSNR =27.6 dB PSNR =27.6 dB PSNR =27.6 dB

(7) GPU.Coalesce (8) GPU.ConstMem (9) GPU.FastTrig
12.1 % error 12.1% error 12.1 % error
PSNR =27.6 dB PSNR =27.6 dB PSNR =27.5dB

¢
S
v
9
g

(10) GPU.Tune (11) GPU.Multi (1) True (2) Gridded (3) GPU.Tune
12.1 % error 12.1 % error 46.6% error 16.4% error
PSNR =27.5 dB PSNR = 27.5 dB PSNR = 15.8 dB PSNR = 24.9 dB

(a) Noiseless data (b) Noisy data

Fig. 7. Phantom images

(a) Noiseless data: One 2D slice of the 3D image. The percent error and PSNR values in
each sub-figure caption are calculated over the entire 3D image. (b) Noisy data: Noisy data:
Three 2D slices of the 3D image. The percent error and PSNR values in each sub-figure
caption are calculated over the entire 3D image.
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Fig. 8. Performance of advanced MRI reconstruction
(a) The reconstruction time includes the time to compute FHd and the time to run 60
iterations of the linear solver. The number at the bottom of each bar is the reconstruction
time in minutes. (b) Performance of FHd computation. The first six configurations

(CPU.DP-GPU.ConstMem) compute the trigonometric functions in software, using
approximately 13 and 12 FLOPS for the sin and cos operations, respectively. The remaining
configurations compute the trigonometric operations in hardware; therefore, each sin or cos
accounts for a single FLOP.
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Fig. 9. Constant cache conflicts

The three dashed lines represent hybrid versions of GPU.Layout and GPU.ConstMem, such
that the scan data is placed in constant memory using the struct-of-arrays layout depicted in
Figure 6(c). Each dashed line corresponds to a different loop unrolling factor. Likewise, the
four solid lines correspond to versions of GPU.ConstMem with different loop unrolling
factors. Con-figurations with loop unrolling factor of 2 are excluded from the hybrid
versions because some of those configurations hang for unknown reasons.
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