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Abstract
Admixed populations such as African Americans and Hispanic Americans are often medically
underserved and bear a disproportionately high burden of disease. Owing to the diversity of their
genomes, these populations have both advantages and disadvantages for genetic studies of
complex phenotypes. Advances in statistical methodologies that can infer genetic contributions
from ancestral populations may yield new insights into the aetiology of disease and may
contribute to the applicability of genomic medicine to these admixed population groups.

Admixed populations, defined here as populations with recent ancestry from two or more
continents, have arisen in the past several hundred years as a consequence of historical
events such as the transatlantic slave trade, the colonization of the Americas and other long-
distance migrations. A substantial proportion of the US population is represented by
admixed populations, including African Americans, Hispanic Americans (for example,
Mexican Americans and Puerto Ricans) and Native Hawaiians1–4. Examples of admixed
populations outside the United States include Latinos from throughout Latin America, the
Uyghur population of Central Asia and a South African population who self-identify and are
described in the literature as ‘South African Coloured’ (REFS 4–6).
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Population admixture has brought together genomes from continental populations that have
diverged primarily because of genetic drift, but also because of different selective pressures.
Although genetic differences between populations represent only a small fraction of genetic
variation, many simple and complex diseases have a prevalence that varies sub-stantially
with genetic ancestry owing to genetic and/or environmental factors7,8. Recently,
therapeutic response in patients with acute lymphoblastic leukaemia has been reported to
vary with proportion of Native American ancestry9. Studies of natural selection suggest that
many genetic variants have been positively selected over the past several thousand years and
that many of these are unique to particular continental groups10. Thus, recently admixed
populations are likely to harbour a larger number of genetic variants that have functional
effects. Although this increased population diversity can be an advantage, admixture leads to
variation in genome-wide ancestry (FIG. 1a), which can confound association studies if it is
not properly accounted for11.

Importantly, admixture between different continental populations also creates mosaic
chromosomes containing segments of distinct ancestry, which we refer to as local ancestry
(FIG. 1b). A causal risk allele with large allele frequency differences between ancestral
populations — such as those that may exist for a disease with varying prevalence among
populations — leads to deviations in local ancestry at the causal locus. Thus, local ancestry
estimates can be used for admixture mapping, in which disease cases from an admixed
population are scanned for loci with unusual deviations in local ancestry7,12. Local ancestry
was historically inferred using ancestry-informative markers (AIMs)1,2, but the advent of
genome-wide association studies (GWASs) has led to new techniques for local ancestry
inference and raises some additional challenges, such as combining SNP and admixture
association signals, optimizing genotype imputation and fine-mapping causal variants13.
Below, we review the basic concepts, recent progress and future challenges spanning all of
these topics.

Methods using AIM panels
Local ancestry inference

Initial efforts to infer local ancestry in admixed chromosomes have relied on panels of
roughly 1,500–5,000 AIMs chosen to have high population differentiation between ancestral
populations and to be unlinked in each ancestral population1,2,14,15. These AIM panels are
designed to model two-way admixture, which is appropriate for African Americans and may
suffice for some Latino populations. Hidden Markov model (HMM) approaches for
inferring local ancestry from AIMs have produced reasonably accurate local ancestry
estimates and are implemented in several software packages, including ADMIXMAP,
ANCESTRYMAP and MALDsoft (reviewed in REFS 7,12). The local ancestry of disease
cases can be compared either to the local ancestry of controls at the same locus (case–
control approach) or to the local ancestry of the same disease cases elsewhere in the genome
(case-only approach)7,12. The case-only approach is generally more powerful, as there is no
statistical noise introduced from controls. However, its robustness against false-positive
admixture associations requires that no null loci exist with deviations in inferred local
ancestry due to selection since admixture, linkage disequilibrium (LD) between markers or
inaccurate ancestral populations16,17.

Admixture mapping
Admixture mapping studies using AIM panels, together with follow-up genotyping at a
denser scale (which is necessary to provide better localization of admixture signals than that
provided by the coarse scale of local-ancestry segments), have been successful in identifying
and localizing genetic risk loci affecting susceptibility to disease and other human
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traits3,18–22. Many of these studies relied heavily on the analysis of admixed populations, as
the underlying variants were rare or monomorphic in one or more ancestral populations. For
example, admixture mapping in African Americans provided a powerful and efficient
approach for identifying the genetic locus responsible for a form of neutropaenia21. This
locus was subsequently fine-mapped to a variant in Duffy blood group chemokine receptor
(DARC) that has an allele frequency close to 100% in sub-Saharan Africans and close to 0%
in other continental populations22. However, admixture mapping is not sufficiently powered
to identify genetic variants with similar frequencies across ancestral populations. Even in the
context of admixture mapping, AIM panels are less powerful than GWAS chip data as a
means to infer local ancestry, although AIM panels may provide a saving in cost (BOX 1).

Local ancestry using GWAS chip data
Approaches that do not model LD between markers

Genotyping using GWAS chips is an increasingly appealing alternative to AIM panels
owing to the decreasing cost of chips. A baseline approach to local ancestry inference using
GWAS chip data is to apply previous HMM-based methods to AIM panels consisting of
maximally informative subsets of GWAS chip SNPs that are unlinked in ancestral
populations23 (BOX 1). An alternative approach is to make ancestry predictions separately
within short (relative to ancestry segment length) overlapping windows and then combine
the results by majority vote. This approach was initially implemented in the LAMP
method24, which infers ancestry within each window using a likelihood model that assumes
no recombination since admixture and includes a pruning step to ensure that markers are
unlinked in ancestral populations. A new approach within the same framework, WINPOP25,
differs from LAMP in that it allows one ancestry transition within each window while
adaptively choosing window sizes according to the local genetic structure of the ancestral
populations. Our simulations indicate that WINPOP outperforms the baseline approach
(BOX 1). Other recently developed approaches use principal components analysis to infer
ancestry within each window4,26.

Approaches that model LD between markers
Local-ancestry inference methods that explicitly model LD in ancestral populations offer the
potential for higher accuracy, both because allowing linked markers enables information
from a larger set of SNPs to be used and because haplotypes are more differentiated between
populations than individual SNPs. The SABER method27 accounts for LD in ancestral
populations by using a Markov-hidden Markov model (MHMM) to model LD between
consecutive markers. This first implementation of a method that models LD in ancestral
populations was a key development in research on local-ancestry inference, although a
potential concern is that of incomplete modelling of LD between non-consecutive
markers17. Consequently, more recent HMM-based methods explicitly model entire
haplotypes using phased haplotypes from ancestral reference populations that are provided
as input. This approach has been implemented in HAPAA28 and HAPMIX29, both of which
use a nested HMM that includes a large-scale HMM involving transitions between ancestry
states7,12, as well as a small-scale HMM involving transitions between haplotypes within an
ancestral population30. The two methods are similar, but HAPMIX (in contrast to HAPAA)
permits small rates of miscopying from the ancestral haplotype, models unphased diploid
data from the admixed population within the HMM and computes estimates of uncertainty in
the inferred local-ancestry segments. However, a limitation of HAPMIX is that the current
implementation does not support multi-way admixture. Our simulations indicate that
HAPMIX performs well relative to other local-ancestry inference methods, albeit at a cost of
increased complexity and running time (BOX 1). Finally, another approach that makes use
of ancestral haplotypes, implemented in the GEDI-ADMX software31, is to assume
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homogeneous local ancestry within a window and to assign local ancestry according to the
set of ancestral reference haplotypes that yields the highest imputation performance within
each window.

Ongoing challenges
It is crucial that local-ancestry inference methods do not produce artefactual deviations —
which we define as systematic deviations in inferred average local ancestry at a locus that do
not reflect true local ancestry — because such deviations can lead to false-positive
admixture associations. We recently reported that analyses of >6,000 unrelated African
Americans using either ANCESTRYMAP or HAPMIX methods did not produce artefactual
deviations in average local ancestry32. However, we believe that considerable challenges
remain for other admixed populations, such as Latinos. Our simulations of two-way and
three-way admixed Latino populations25 have shown that WINPOP and other methods
provide estimates of local ancestry that are only somewhat less accurate than the results
shown in BOX 1 (this is as expected, because the accuracy of local-ancestry inference is a
function of genetic distance between ancestral populations25). However, our preliminary
analyses of real Latino data produced artefactual deviations in average local ancestry (D.
Reich, A.L.P. and colleagues, unpublished data). These deviations vary with the choice of
ancestral populations, which is consistent with the well-known difficulties in choosing
accurate ancestral populations for Latinos4,15. This is in contrast to African Americans, who
are extremely well-modelled as a linear combination of African (YRI, Yoruba in Ibadan,
Nigeria) and European (CEU, Utah residents with northern and western European ancestry
from the CEPH collection) populations29. A final concern is that existing methods for multi-
way, local-ancestry inferences show biases in their miscalled segments (for example, a true
Native American segment is more likely to be miscalled as European than as African),
which further complicates admixture scoring. Because of these challenges, admixture
mapping studies in Latino populations have generally focused on case–control admixture
association9,33 — but we caution that it is crucial to correct for genome-wide ancestry in
case–control admixture association statistics to avoid spurious associations11.

GWASs in admixed populations
Combining SNP and admixture association

GWASs of >100,000 markers are an appealing alternative to admixture mapping owing to
both the limited power of admixture mapping to identify genetic risk variants with similar
frequencies across ancestral populations and to the decreasing cost of GWAS chips. GWASs
have traditionally focused on homogeneous populations such as Europeans; however,
GWASs in admixed populations offer the promise of probing additional genetic variation
and making discoveries that would have been missed by exclusively studying European
populations13. Accordingly, GWASs in African Americans, Latinos and other admixed
populations are now underway34–36. Although GWASs and admixture mapping have
historically been viewed as distinct approaches, SNP and admixture association signals
contain independent information and can complement each other37. We have recently
developed a new χ2 (1 degree of freedom (1 df)) test that combines these signals in the
context of case–control studies (MIXSCORE software)32. The MIXSCORE approach
requires local-ancestry estimates as input, which can be estimated by any method. The
combined χ2(1 df) statistic aggregates evidence of case–control SNP association and case-
only admixture association using the implied ancestry odds ratio (BOX 2). The combined
test shows a substantial gain in power compared to other approaches, with a particularly
large improvement for SNPs with large allele frequency differences between ancestral
populations (BOX 2). This approach is likely to be useful in GWASs of African Americans,
and future modifications may enable the incorporation of covariates. For other admixed
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populations, such as Latinos, ongoing challenges in local ancestry inference and resulting
case-only admixture statistics merit caution in the use of the combined test, and our current
recommendation is to compute case–control SNP association statistics with correction for
genome-wide ancestry.

Additional considerations
Imputation in admixed populations

A key consideration is how to best use genotyping and sequencing data from the
International HapMap Project and the 1000 Genomes Project to perform imputation in
admixed populations13,38.

One approach is to impute SNPs in the admixed population using a combined reference
panel of haplotypes from the ancestral populations36,38 or from all available reference
populations. Current studies suggest that using all of the available disparate population
information only increases the accuracy of imputation (J. Marchini and B. Howie, personal
communication; M.F.S., unpublished data). An alternative approach is to use local ancestry
to guide the choice of reference haplotypes, which, in limited analyses, has been shown to
give a marginal improvement in imputation accuracy32. Additional studies will be necessary
to determine the ideal method, which may depend on the choice of admixed population, the
accuracy of local-ancestry assignment and the size of the available reference panels. A final
concern for imputation in admixed populations is differences in imputation quality across
segments of different ancestries. For example, European chromosomes are imputed more
accurately than African chromosomes in African Americans, which can induce artificial
heterogeneity in effect size at imputed causal SNPs. This can occur even when the true
effect size is homogeneous across populations but can be addressed by adjusting the
observed effect sizes for differences in imputation quality32.

Fine-mapping of causal variants
An area of research in which admixed populations have yet to show their full potential is the
fine-mapping of causal variants at associated loci from GWASs. Populations of distinct
ancestry are valuable for localization of causal variants owing to their different LD
patterns39, and empirical fine-mapping studies have already taken advantage of LD
differences between continental populations to help localize causal variants40. However, the
development of fine-mapping statistics to optimally leverage different LD patterns at the
level of chromosomal segments in admixed populations remains an open research direction.
A pertinent question is whether causal variants have similar effect sizes in different
populations, as suggested by recent studies of some traits41,42. Fine-mapping studies in
admixed populations must account for the fact that, when not adjusting for local ancestry,
admixture LD can produce associations involving variants that are distant from the causal
variant43. The semantic point of whether such associations should be viewed as spurious
associations or as true associations arising from admixture LD is immaterial to the choice of
statistical test. We note that admixture association can actually be used to improve fine-
mapping resolution by checking whether the level of admixture association that would be
expected based on the population differentiation of a putatively causal SNP is actually
observed.

Potential effects of epistasis
It is possible that epistasis may have an impact on the effect size of a genetic variant,
depending on the genetic background of different population groups. At present, there is
little evidence of such effects in studies of human traits41,42, but studies in mice suggest that
epistasis may prove important to understanding complex-trait genetics44. In this case, it will
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be particularly important to study the genetics of complex disease in admixed populations in
which the epistatic interactions may be unique and, potentially, to identify novel
associations that would not be evident in the original populations.

Conclusion
We have highlighted recent progress in the development of methods to study complex-
disease genetics in admixed populations. The rapid expansion of public resources, including
genotype and sequence data from diverse ancestral populations and continued development
of statistical methodology, bodes well for the future of genetic studies in admixed
population groups. As we have discussed, the increased genetic diversity in admixed
populations may enhance the identification of genetic risk variants underlying disease
phenotypes. Thus, studies in admixed populations will complement studies in homogenous
populations with ancestry from a single continent.
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Glossary

Admixture
mapping

A technique for mapping a risk locus for a specific trait based on a
statistical signal of unusual local ancestry at the risk locus.

Ancestry-
informative
markers

(AIMs). Markers with large differences in allele frequency between
two or more populations that can be used to infer genetic ancestry.

Cline A continuum of genetic ancestry formed by migration or admixture
between two populations.

Genome-wide
ancestry

The overall genetic ancestry of an individual as determined from
SNP genotypes or other data distributed across autosomal
chromosomes.

Hidden Markov
model

(HMM). A generalization of a mixture model in which data are
generated as a function of unknown (hidden) states, with transitions
between states governed by a Markov process.

Imputation The inference of genotypes of markers that have not been directly
genotyped by making use of information from haplotype reference
panels such as the HapMap or 1000 Genomes panels.

Local ancestry The genetic ancestry of an individual at a particular chromosomal
location, defined as 0, 1 or 2 copies from each ancestral population
considered.

Multi-way
admixture

We use this term to indicate admixture between more than two
continental population groups, such as in Latinos who descend from
admixture between Europeans, Native Americans and West Africans.

Principal
components
analysis

A dimensionality reduction technique used to infer continuous axes
of variation in genetic data, often representing genetic ancestry.
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Two-way
admixture

In this article, this term indicates admixture between two continental
population groups, such as in African Americans who descend from
admixture between Europeans and West Africans.
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Box 1

Comparison of local-ancestry methods
Local ancestry can be estimated using various algorithms and marker sets. Ancestry-
informative marker (AIM) panels may provide a saving in cost relative to genome-wide
association study (GWAS) chip data, but they are less powerful for inferring local
ancestry. The cost–benefit trade-off may favour AIM panels if admixture association is
the only statistical signal of interest, but is likely to favour GWAS chip data if both SNP
association and admixture association are of interest, as in most studies. A comparison of
selected local-ancestry inference methods is presented in the table below.

We used haplotypes from European (HapMap 3, CEU (Utah residents with northern and
western European ancestry from the CEPH collection)) and West African (HapMap 3,
YRI (Yoruba in Ibadan, Nigeria)) chromosomes to simulate N = 200 African American
diploid samples assuming six generations of admixture with a continuous influx of
African and European chromosomes with 80%/20% proportion of African/European
ancestry. The analysis was restricted to 48,827 SNPs from chromosome 1 present on the
Affymetrix 6.0 array. The ANCESTRYMAP, WINPOP and HAPMIX methods were
compared. ANCESTRYMAP was run using 281 AIMs followed by interpolation of local
ancestries to all SNPs, based on recommendations for Affymetrix 6.0 data21.

The table provides a summary of characteristics and accuracy of different local-ancestry
inference methods. In it, we show the squared correlation (r2) between inferred and true
local ancestries, the proportion of alleles with correctly assigned ancestry (haploid
accuracy) as well as the proportion of genotypes for which both alleles have correctly
inferred ancestry (diploid accuracy). All three of these methods attain high accuracy;
HAPMIX attains the highest accuracy but at a cost of increased complexity and running
time.
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Box 2

Combining case–control SNP association and case-only admixture association
Below we describe four statistical tests that have been used in studies of admixed
populations. All four of these tests are implemented in the MIXSCORE software.

Armitage trend test (ATT)

This test is for case–control SNP association and computes a χ2 (1 degree of freedom (1
df)) statistic equal to

(1)

where N is the total number of individuals, G is a vector of genotypes, ϕ is a vector of
phenotypes and ρ denotes correlation. The test can be generalized to correct for either
genome-wide ancestry or local ancestry11. The ATT with correction for genome-wide
ancestry is the method of choice when conducting association studies in admixed
populations without harnessing the advantages of admixture association.

Case-only admixture association (ADM)

A χ2(1 df) likelihood ratio test can be used to assess the hypothesis of ancestry odds ratio
Ω different from 1. The log-likelihood is defined as

(2)

where θ is the genome-wide European ancestry proportion in disease cases and NEur
(NAfr) denotes the number of copies of European (African) local ancestry at the candidate
locus in disease cases. A χ2(1 df) statistic is defined as twice the difference in log-
likelihood between the causal model and the null model (Ω = 1). It is straightforward to
generalize the test to incorporate a different value of genome-wide ancestry in each
admixed individual7,32, and we note that the case-only statistic is more powerful than
comparing local ancestry in cases versus controls, as there is no statistical noise
introduced from controls7.

Sum of case–control SNP association and case-only admixture association (SUM)

SNP association and case-only admixture association tests can be summed to produce a
χ2(2 df) statistic; however, in this case it is important that the SNP association test be
corrected for local ancestry to ensure that the two signals are independent and the correct
null distribution is obtained32,36. An alternative approach to summing SNP and
admixture association statistics while preserving the correct null distribution is to model
the 2 × 2 covariance of case–control SNP association and case–control admixture
association signals37.

Combined case-only admixture and SNP case–control association (MIX)

The combined test relies on the relationship between the SNP odds ratio

(3)

Seldin et al. Page 11

Nat Rev Genet. Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where p+(p−) denotes the allele frequency of the SNP in cases (controls) and the ancestry
odds ratio

(4)

where γ+(γ−) denotes the proportion of European local ancestry at the candidate locus in
cases (controls). Assuming a single causal variant with the same odds ratio R for either
European and African local ancestry, the implied ancestry odds ratio is equal to

(5)

where pEur(pAfr) denotes the allele of the SNP in European (African) controls.

It follows that a χ2(1 df) likelihood ratio test can be used to assess the joint hypothesis of
odds ratio R and implied ancestry odds ratio Ω(R) different from 1. The log-likelihood is
defined as

(6)

where Ladmx(Ω(R)) is as defined above and LEur(R) and LAfr(R) are case–control SNP
likelihood ratios specific to European or African local ancestry, which allow for different
allele frequencies pEur and pAfr in controls but assume the same SNP odds ratio R for
each local ancestry.

Comparison of scoring statistics

We computed the power of each method to attain genome-wide significance, which is
defined based on a P value threshold of 5 × 10−8 for ATT, SUM and MIX and 1 × 10−5

for ADM (which has a decreased multiple hypothesis testing burden based on the lengths
of chromosomal segments)32,36 (see the figure). Our results are based on simulations of
causal SNPs that are either randomly differentiated or highly differentiated (allele
frequency difference >40% between Europeans and Africans). The simulations were
performed starting with 100,000 random autosomal SNPs extracted from real genotypes
in 6,209 African Americans32. Using a causal model with a genotypic odds ratio of 1.5, a
total of 1,000 cases and 1,000 controls were simulated. As shown in the figure, MIX
versus ATT produces a modest increase in power (41.3% versus 38%; 9% improvement)
for randomly differentiated SNPs and a large increase in power (69.0% versus 55.3%;
25% improvement) for highly differentiated SNPs.
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Figure 1. Admixture leads to variation in genome-wide and local ancestry
a ∣ The variation in genome-wide ancestry in individuals from admixed populations is
illustrated by using EIGENSOFT software to apply principal components analysis to
admixed individuals. The samples were derived from HapMap 3 and the Human Genome
Diversity Project (HGDP). The HapMap 3 samples included: West African (YRI, Yoruba in
Ibadan, Nigeria), European (CEU, Utah residents with northern and western European
ancestry from the CEPH collection), African American (ASW, African ancestry in
Southwest USA) and Mexican American (MXL, Mexican ancestry in Los Angeles,
California). For Native Americans, HGDP samples were used. Analyses were restricted to
the intersection of HapMap 3 and HGDP marker sets. The results confirm that most African
Americans lie on a cline of African and European ancestry with an average of 80% African
and 20% European ancestry1,2,29. The results also confirm that Mexican Americans lie on a
cline of European and Native American ancestry with low levels of African ancestry: an
average of 50% European, 45% Native American and 5% African ancestry4,14,15. We
caution that the positions of Native American individuals on this plot are complicated by
recent European admixture (especially in Pima and Maya) and by population-specific drift
(especially in Colombian, Karitiana and Surui populations). b ∣ Here, the variation in local
ancestry in African Americans is illustrated by showing an individual (NA19919) from the
ASW population as analysed by HAPMIX software29 to estimate local ancestry on
chromosome 1. The lengths of chromosomal segments of 0, 1 or 2 copies of European
ancestry are consistent with previous estimates of an average of six generations since
admixture in this population1,2,29. We note that Latino populations have an average of 10–
15 generations since admixture, leading to shorter chromosomal segments4,14,15.
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