
Whole-Genome Discovery of Transcription Factor
Binding Sites by Network-Level Conservation
Moshe Pritsker,1 Yir-Chung Liu,1,2 Michael A. Beer,1,2 and Saeed Tavazoie1,2,3
1Department of Molecular Biology, and 2The Lewis-Sigler Institute for Integrative Genomics, Princeton University,
Princeton, New Jersey 08544, USA

Comprehensive identification of DNA cis-regulatory elements is crucial for a predictive understanding of
transcriptional network dynamics. Strong evidence suggests that these DNA sequence motifs are highly conserved
between related species, reflecting strong selection on the network of regulatory interactions that underlie common
cellular behavior. Here, we exploit a systems-level aspect of this conservation—the network-level topology of these
interactions—to map transcription factor (TF) binding sites on a genomic scale. Using network-level conservation as
a constraint, our algorithm finds 71% of known TF binding sites in the yeast Saccharomyces cerevisiae, using only 12%
of the sequence of a phylogenetic neighbor. Most of the novel predicted motifs show strong features of known TF
binding sites, such as functional category and/or expression profile coherence of their corresponding genes.
Network-level conservation should provide a powerful constraint for the systematic mapping of TF binding sites in
the larger genomes of higher eukaryotes.

[Supplemental material is available online at www.genome.org.]

Efficient identification of DNA cis-regulatory elements is a cen-
tral challenge of post-genome biology. The confluence of whole-
genome DNA sequence data, high-throughput technologies, and
novel algorithms is rapidly advancing our ability to identify and
characterize transcriptional regulatory elements (Eisen et al.
1998; Tavazoie et al. 1999; Bussemaker et al. 2001; Lee et al.
2002). However, these approaches have inherent limitations. For
example, the success of hybrid methods which use gene-
expression clustering and cis-regulatory motif discovery is lim-
ited by the range of physiological perturbations used in the labo-
ratory. The same is true for in vivo approaches such as chip-based
chromatin immunoprecipitation (ChIP), where DNA–protein in-
teractions, by the very virtue of their regulatory role, only occur
under specific environmental conditions (Lee et al. 2002). These
limitations are even more severe for metazoan eukaryotes, where
the experimental data are more difficult to acquire.

An alternative approach for identifying functional regula-
tory elements is to infer them from noncoding DNA-sequence
conservation between closely related species. This strategy,
termed phylogenetic footprinting (Tagle et al. 1988; Gumucio et
al. 1992), has been successfully applied to single genomic loci
(Aparicio et al. 1995; Cliften et al. 2001). The availability of
whole-genome DNA sequence data for a large number of bacte-
rial species has facilitated the mapping of whole genomes for
such elements (McGuire et al. 2000; McCue et al. 2001; Li et al.
2002; Rajewsky et al. 2002). An elegant approach to mapping
conserved sites, which does not depend on global alignments
and which makes use of the phylogenetic relationship between
the species, was presented by Blanchette and Tompa (2002). The
recent sequencing of multiple yeast species has allowed the
whole-genome extension of these methods to simple eukaryotes,
and two recent studies have shown that a significant fraction of
known TF binding sites can be identified by looking for conser-
vation of small regions within multiple alignments of upstream
regulatory regions (Cliften et al. 2003; Kellis et al. 2003). An

assumption crucial to the success of these methods is that regu-
latory regions can be robustly aligned by multiple-sequence
alignment algorithms such as CLUSTAL W (Thompson et al.
1994). In the studies above, this requirement is generally satis-
fied—given the modest divergence of these species, and the use
of multiple sequences. However, more distant phylogenetic com-
parisons will generally not meet this requirement, given the rela-
tively short length of functional binding sites (∼10 bp) and the
large number of insertion/deletion events within regulatory re-
gions. These limitations are exacerbated as we aim to apply these
approaches to the much larger genomes of multicellular organ-
isms, where orthologous regulatory elements can be found tens
of kilobases away from the gene. For example, a cogent case can
be made for identifying conserved binding sites between distant
vertebrates with noncoding regions that are vastly diverged in
sequence and differ in size by an order of magnitude (e.g., Fugu
rubripes vs. H. sapiens; Gilligan et al. 2002). To address these limi-
tations, we present a novel whole-genome algorithm for finding
conserved TF binding sites. Our approach does not depend on
global alignments, or even the availability of sequences from
multiple species. We exploit the well established notion that
each transcription factor regulates the expression of many (20–
400) genes in the genome, and that the conservation of global
gene expression between two closely related species requires
most of these targets to maintain their regulation. This “network-
level” conservation represents a systems-level constraint on func-
tional TF binding sites. Here, we show strong evidence for this
conservation, and use it to generate high-confidence predictions
of TF binding sites on a genomic scale. Unlike previous ap-
proaches, our method requires only a fraction (12%) of the se-
quence of another species, and generates a large number of pre-
dictions with strong evidence for biological significance.

RESULTS

Identifying Candidate Motif Predictions
We gathered and assembled partial shotgun DNA sequence data
from 13 hemiascomycetous yeast species, kindly provided by the
Genolevures consortium (Souciet et al. 2000). We used reciprocal
best BLAST (Altschul et al. 1990) matches to identify pairs
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of orthologous genes between Saccharomyces cerevisiae and all
other species. The partial sequence data of Saccharomyces bayanus
provided us with 715 orthologous pairs of genes with 200 bp or
greater 5� upstream sequences. The regulatory (upstream) regions
of orthologous gene-pairs were then used to search for significant
motifs using the Gibbs-sampling algorithm (Lawrence et al. 1993;
Roth et al. 1998) in the AlignACE software package (Fig. 1A). On
average, each pair of orthologs yielded ∼17 motifs, providing
12,047 total primary predictions. Many identical or very similar
motifs were generated by AlignACE. To remove redundancy, and
to expand motif-containing sequences from pairs of orthologs to
larger sets, the motifs were clustered (Fig. 1B) using a previously
developed motif similarity measure called CompareACE (J.
Hughes et al. 2000; also see Methods). In order to develop a more
informative definition of each motif, a second round of motif
searching was performed on the combined set of upstream re-
gions which contributed motifs to each motif cluster (Fig. 1C).
We reasoned that this second iteration of motif searching would
yield a better definition of the underlying binding site because
multiple instances of the motif were present. The distribution of
orthologous pairs per search ranged from 2–58. As expected,
these searches identified many more motifs (∼40 per search) than
were found in the first round, yielding ∼80,000 total motif pre-
dictions. Among this large set of predictions were many motifs
representing known TF binding sites. However, a large fraction of
these motifs likely arose from nonfunctional local sequence con-
servation and had to be filtered out (Fig. 1D).

Constraining Motif Predictions by
Network-Level Conservation
A crucial component of our approach was to exploit network-
level conservation to identify high-confidence predictions (Fig.
1E,F). We reasoned that DNA-binding sites which fulfill ortholo-
gous regulatory function should be found upstream of the same
set of genes in the two organisms. Network-level conservation
demands that each motif prediction identify strong matches up-
stream of a significant number of common genes between the
two organisms (see Methods). The statistical significance of this
conservation was assessed by using the hypergeometric distribu-
tion (see Methods). We found a large number of motifs with
extremely high significance (P-values below 10�10) which had
particularly high similarity to known binding sites. At the top of
this set, we found strong matches to the two motifs named PAC
and RRPE, with P-values of 10�28 and 10�17, respectively. These
motifs, originally named M3a and M3b, were identified from
expression-clustering and motif analysis (Tavazoie et al. 1999)
and have been shown to co-occur upstream of a large number of
genes involved in transcribing and processing ribosomal RNAs
(Tavazoie et al. 1999; J. Hughes et al. 2000; Sudarsanam et al.
2002).

An important question was the distribution of hypergeo-
metric P-values for random motifs. We were curious to what ex-
tent the common ancestry of two species contributed to the gen-
eration of significant network-level conservation due to back-
ground nonfunctional sequence conservation alone. To this end,

Figure 1 Schematic representation of the algorithm. (A) Upstream sequences from orthologous pairs of genes are searched to identify motifs using
Gibbs-sampling. (B) Motif predictions are pooled and clustered by similarity. (C) The pairs of upstream sequences which yielded similar motifs (within
a motif cluster) are combined and searched again for motifs using a second round of Gibbs-sampling. (D) A large number of motif predictions which
need to be pruned. (E) To test for network-level conservation, the genes containing the top intergenic (5� upstream) matches to each motif are identified
in the two species. (F) The statistical significance of overlap between the two sets of genes is determined using the hypergeometric distribution.
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we randomly permuted the weight-matrix columns of a set of
10,000 identified motifs, and looked at the distribution of
hypergeometric P-values for network-level conservation. As can
be seen in Figure 2A, the bulk of this distribution lies to the
left of 3 (P > 10�3; the threshold we chose for significant net-
work-level conservation). This constraint automatically excluded
the majority of the original predictions, leaving 16% (∼12,000)
behind. After filtering out low-complexity motifs (poly A/T
sequences), we were left with 7673 motif predictions which
contained significant amounts of redundancy (many AlignACE
runs produced very similar motifs). These motifs were then
hierarchically clustered by motif similarity using the
CompareACE algorithm, yielding 1269 motif clusters which
ranged in size from 2–89 members each (see Methods). From each
of these clusters, a motif (chosen to have the most significant
network-level conservation; lowest P-value) was selected as
an exemplar. In deciding the parameters of motif clustering, we

had to balance competing demands: (1) reducing the total
number of motif predictions, and (2) not merging motifs which
may be biologically distinct. In the end, we chose to retain more
diversity, at the cost of maintaining a larger number of predic-
tions.

Validation
To assess the algorithm’s success in identifying real binding sites,
we compared our motif predictions against a set of 48 weight-
matrices which correspond to known S. cerevisiae binding sites.
We found that the algorithm identified 71% (34/48) of these sites
at a stringent level of similarity (CompareACE score above 0.75).
In many cases, a known binding site had high similarity to mul-
tiple predictions, reflecting residual redundancy in the set. From
this roughly threefold redundancy, we estimate that the 1269
motifs represent approximately 400 actual binding sites. Table 1
shows some of these motifs using their sequence logo represen-
tation (Schneider and Stephens 1990).

To get a better sense of the relationship between network-
level conservation P-value and propensity for being a real TF
binding site, we quantified the fraction of strong matches to
known motifs in a 2000 wide sliding window across the P-value
distribution of the entire set of ∼80,000 secondary motifs. As can
be seen in Figure 2B, there is a strong correlation between net-
work-level conservation P-value and the fraction of known TF
binding sites. In fact, at the most significant P-values, more than
15% of phylogenetically mapped motifs match known TF bind-
ing sites. Interestingly, the binding site for the global transcrip-
tion factor PHO4 was not among our predictions. We were in-
terested in whether our incomplete coverage of known binding
sites reflected lack of conservation, or whether some systematic
aspect of our approach excluded them from discovery. To this
end, each of the 48 known motifs was tested for network-level
conservation between S. cerevisiae and S. bayanus. The median
network-level conservation P-value for the entire set was 4.5 (see
Fig. 2A), with many motifs (e.g., RAP1, UME6, ABF1) scoring
much better (25% had P-values < 10�8). As expected, there was
significant concordance between the known motifs exhibiting
network-level conservation and those that our algorithm identi-
fied de novo. Consistent with our de novo approach, the binding
site for PHO4 was not significantly conserved between S. cerevi-
siae and S. bayanus. With the exception of the binding sites for
CAD1, MCM1, MIG1, SUM1, YAP1, and ZAP1, the algorithm
identified all known conserved binding sites, giving an overall
sensitivity of 82%.

Biological Significance of Binding Site Predictions

Functional Coherence
We and others have shown that, in general, transcriptionally
coregulated genes are statistically enriched for genes within the
same functional category, or biological function (Eisen et al.
1998; Spellman et al. 1998; Tavazoie et al. 1999). In the absence
of any further experimental work, data sets of gene function and
phenotype (e.g., MIPS, Mewes et al. 2002; G.O., Hill et al. 2002)
can be used as a preliminary and systematic means of assessing
biological significance of putative transcription factor binding
sites. By observing significant overlap between a set of motif-
containing genes and each of 476 gene-function and molecular
complex classes from MIPS, we were able to assign biological
significance, and in some cases, a putative biological role to 618
motif predictions. As expected, many of these motifs show func-
tional coherence in categories with previously unknown tran-
scriptional regulatory mechanisms. Table 2 shows some of these
motifs, in their sequence logo format.

Figure 2 Most significantly conserved motifs are highly enriched in
known TF binding sites. (A) The distribution of network-level conservation
significance (�Log10(p)) for a set of 10,000 random motifs. The median
value for the 48 known TF binding sites is 4.5 (vertical dashed line). A
representative set of conserved known TF binding sites is highlighted on
the tail of the distribution. (B) The fraction of strong matches to known TF
binding sites in a 2000 wide sliding window across the entire P-value
distribution of all the 80,000 secondary motifs.
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Expression Coherence
We used three independent sets of publicly available expression
data (Cho et al. 1998; T. Hughes et al. 2000; Causton et al. 2001)
to test whether the genes harboring any of our predicted binding
sites were significantly correlated with each other. Because many
genes are regulated by multiple TFs (Lee et al. 2002), the genes
which are defined by having any one of the TF binding sites are
unlikely to be strongly coexpressed. However, these genes are
coexpressed enough to exhibit statistically significant correlation
under the relevant conditions. Although the sets of mRNA ex-
pression data are severely limited in their physiological breadth,
they nevertheless span important cellular processes (Cho et al.
1998), stressful stimuli (Causton et al. 2001), and randomly
sampled genetic perturbations (T. Hughes et al. 2000). We used
the average correlation between all of the members of a set of
motif-containing genes to assess their transcriptional coexpres-
sion. Statistical significance was assessed by the distribution of
randomly permuted data. Nonparametric analysis of the distri-
butions gave consistent results. Out of a set of 1269 top predicted
motifs, we found 365 to give statistically significant correlations
in at least one of the three mRNA expression data sets. We expect
that this represents a lower limit on the number of motifs with

expression coherence, because the expression data cover a lim-
ited range of physiology. Interestingly, the 300-gene knockout
dataset (T. Hughes et al. 2000) produced the largest number of
significant motifs, perhaps reflecting a broader coverage of the
network due to the largely random nature of the perturbations.

Characteristic Features of Conserved Motifs

Conservation of Binding Affinity
There is evidence from bacterial and eukaryotic systems that
binding affinity is an important feature of TF binding sites, with
different affinities providing context-dependent differences in
function. We asked whether in addition to the presence of a
high-scoring binding site in an orthologous pair, there was evi-
dence that their weight-matrix scores (a proxy for binding affin-
ity; Stormo and Fields 1998) was also significantly similar, as
compared with the intra-genomic motif-score dispersion. In fact,
we found a highly significant correlation between network-level
conservation of a motif and the extent to which the motif score
was similar between its occurrences upstream of the orthologs.
We used scaled RMS-deviation of motif scores between ortholo-
gous pairs as an overall measure of motif-sequence deviation be-

Table 1. Identification of Known Binding Sites

Columns: (1) binding site (motif) name, (2) sequence-logo representation of known binding site, (3) sequence-logo representation of the best
phylogenetically mapped motif (* reverse complement), (4) P-value for network-level conservation (�Log10(p)) of the best matching phylogeneti-
cally mapped motif.
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tween the pairs (see Methods). To get significant statistics, our
analysis was limited to sets of orthologous pairs with six or more
members each. Figure 3A compares the distribution of this de-
viation measure for the entire set of initial ∼80,000 motif predic-
tions against a subset of the most highly conserved motifs (net-
work-level conservation P-value < 10�10). As can be seen, the
most conserved motifs have much lower score-dispersion. As ex-
pected, this is also true for the set of known TF binding sites
(median score dispersion of 0.1). Although limited to a single
phylogenetic neighbor, these observations support the hypoth-
esis that motif elements not only preserve their specific distribu-
tion of occurrences upstream of genes, but may also be under
strong selection to preserve their specific binding affinities.

Conservation of Position and Orientation
Two other characteristics of a TF binding site are its relative po-
sition and orientation with respect to the gene. There is accu-

mulating evidence that these characteristics play a key role in the
specific programming of regulatory logic within noncoding re-
gions. We used RMS-deviation of motif position (relative to
translational start) between the two pairs of orthologs as a mea-
sure of spatial dispersion. As can be seen in Figure 3B, there is
statistically significant reduction in spatial dispersion among the
most highly conserved motifs. Also, as expected, the set of
known TF binding sites have significantly lower spatial disper-
sion than background—as shown by their median value in Figure
3B. However, contrary to our expectations, highly conserved mo-
tifs (among them many known binding sites) still suffered large
spatial deviations (∼150–200 bp) in their positions. It is impor-
tant to note that the spatial dispersions may be overestimated
here, because we include any orthologous S. bayanus gene with
200 bp or more 5� upstream sequences. Complete genomic se-
quence data for multiple close relatives of S. cerevisiae should
tighten our estimates and establish the evolutionary dynamics of

Table 2. Novel Putative Binding Sites With Functional Category Enrichment

Columns: (1) sequence-logo representation of motif, (2) Network-level conservation P-value (�Log10)), (3) MIPS function and complexes categories
which are significantly enriched, (4) P-value for functional enrichment, determined from the hypergeometric distribution (�Log10(p); not corrected
for multiple testing).

Finding cis -Elements by Network-Level Conservation

Genome Research 103
www.genome.org



these spatial dispersions. For example, do they arise from many
small insertion/deletion events, or a few large ones? We also ob-
served a strong tendency for the conservation of motif orienta-
tion relative to a gene’s direction of transcription. The signifi-

cance of conserved motif orientations was assessed against a null
model, expressed as a binomial distribution, in which the two
possible orientations were equally probable. Figure 3C shows the
distribution of P-values for conservation of orientation. As can be
seen, the orientation of the most highly conserved motifs are
much better preserved (more significant P-values) than the entire
set of primary predictions. Also, as shown by the median P-value
of the set of known TF binding sites, their orientations are very
highly conserved over background.

More Divergent Yeast Species
We were interested in how well more distant yeast species would
perform in our phylogenetic footprinting scheme. Again, we
used partial sequence data, of comparable coverage, from Zygo-
saccharomyces rouxii, Kluyveromyces lactis, and Pichia angusta
(Souciet et al. 2000). By applying our algorithm to these species,
we found significantly fewer conserved motif predictions, with
many fewer known binding sites among them. As can be seen in
Figure 4, the conservation of known binding sites across these
species is roughly related to their phylogenetic distance from S.
cerevisiae,with S. bayanus performing far better than the rest. Two
binding sites (for RPN4 and RRPE) showed strong conservation
across all four species (separated by ∼150 Myrs). RPN4 is a DNA-
binding protein recently identified as a transcriptional regulator
of the proteasome complex (Jelinsky et al. 2000; Xie and Var-
shavsky 2001). RRPE is one of the motifs—which together with
PAC—is thought to regulate the expression of genes involved in
rRNA synthesis and processing (Tavazoie et al. 1999; J. Hughes et
al. 2000; Sudarsanam et al. 2002). PAC, along with RAP1, GCN4,
HSF1, SWI4, and CIN5 belongs to the next most highly con-
served group of binding sites, being present in the three closest S.
cerevisiae species, S. bayanus, K. lactis, and Z. rouxii. Interestingly,
multiple motifs which were not conserved in S. bayanus showed
strong conservation in one of the more distant species. The bind-
ing sites for LYS14 and GAL4 showed strong conservation in K.
lactis only. More surprisingly, the binding site for PHO4, a major
global transcription factor in S. cerevisiae, was only preserved in
the most distantly related yeast, P. angusta. Although partial se-
quence data and the resulting sparse coverage of the genome are
a major impediment to detecting all phylogenetically conserved
binding sites, ecological niche specialization and concomitant
loss of selection on the regulatory system is an appealing inter-
pretation of these findings, at least in the case of some of the
binding sites.

Global Organization of Transcription Networks
Although incomplete, the large set of binding site predictions
allowed us the opportunity to explore global statistical features of
transcriptional networks in the hope that they provide insights
into the general principles of their organization. An important
feature of these networks is their connectivity distribution, sim-
ply determined as the number of incoming connections per
gene. For this analysis, we chose 700 of our predictions with
significant functional or expression pattern coherence. As dis-
cussed previously, this set contains many redundant forms of the
same actual binding site, such that connectivities are overesti-
mated by a factor of ∼3. Although the number of genes regulated
by any particular TF can vary from tens to hundreds, in the ab-
sence of experimental data, we chose to set this number equal
(ranging from 50 to 300 in each case) across all of our binding site
predictions. Our findings did not depend on the exact value of
this parameter.

We found that the connectivity distribution was signifi-
cantly different from that predicted for randomly connected net-
works. As can be seen in Figure 5A, there was an unexpectedly
large number of genes with high connectivity, reflecting vast

Figure 3 Evolutionary conservation of motif attributes. (A) Distribution
of normalized RMS-deviation of motif scores for all 80,000 secondary
motifs (dashed line) compared to the top motif predictions (network-
level conservation P-value < 10�10; solid line). (B) Distribution of RMS-
deviation in spatial position upstream of translational start for all the
motifs (dashed line) compared to the most highly conserved (P < 10�10;
solid line). (C) Distribution of P-values (binomial) for conservation of motif
orientation for all of the 80,000 secondary motif predictions (dashed
line), compared to the most highly conserved (P < 10�10; solid line).
Vertical dashed line is the median value for strong matches to the 48
known TF binding sites.
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potential for combinatorial regulation. We were interested in
whether the distribution of connectivities was significantly dif-
ferent among genes of different functional classes. In particular,
we wondered whether the subnetwork of TF–TF gene interactions
had statistically higher connectivity. In fact, as can be seen in
Figure 5B, the distribution of connectivities for the TF–TF sub-
network is noticeably shifted to the right. Interestingly, the regu-
latory (upstream) regions of these genes have expanded in size—
perhaps in order to accommodate more TF binding sites. In the
case of these TF genes, this higher connectivity arises from a
combination of larger regulatory regions, and higher density of
binding sites. These observations are consistent with recent in
vivo results from chromatin immunoprecipitation of yeast tran-
scription factors (Lee et al. 2002). Our findings suggest an exten-
sive and highly connected network of TFs at the top of the regu-
latory hierarchy. Such organization may be a general feature of
cellular networks for integrating signals, computing processes,
and orchestrating cellular behavior.

DISCUSSION
In this report we describe the application of a novel whole-
genome phylogenetic footprinting algorithm for mapping and
characterizing conserved transcriptional regulatory elements in
yeast. The top 1269 motif predictions show significant conserva-
tion between S. cerevisiae and S. bayanus, and the majority of
these motifs show strong evidence of biological significance
(with respect to both gene functional classes and mRNA expres-
sion coherence). It is also evident that selection has maintained
more than just their genomic distributions, but has also statisti-
cally preserved their positions, motif scores (proxy for binding
affinity), and orientations. These preliminary findings, with the
partial sequence data of S. bayanus, suggest that mechanistic con-
straints, such as those involved in combinatorial interactions,
may be deduced directly from comparative genomic analysis of
regulatory regions.

We have shown that a network-level conservation criterion
can significantly enhance our ability to identify real TF binding
sites. The recent whole-genome phylogenetic footprinting ap-
proaches require global alignments of multiple, nearly complete
sequenced genomes from closely related species (Cliften et al.
2003; Kellis et al. 2003). Here, we have introduced a general
scheme for phylogenetic mapping of TF binding sites, making no
assumptions about the conservation of binding sites within glo-
bal alignments. We achieve results (in terms of finding known
and novel putative TF binding sites) quite similar to those de-
scribed in the two recent reports (Cliften et al. 2003; Kellis et al.
2003). However, instead of multiple, nearly complete genomes,
we use only a fraction of the sequence of another species. The

success of our approach relies on the in-
creasingly accepted view that most TFs
regulate the expression of many (∼30–200)
genes in the genome. The homologous
function of the whole regulatory system de-
mands that the genes regulated by a TF in
one organism should also be regulated by
the same TF in the closely related and physi-
ologically similar phylogenetic neighbor.
This is the essence of our network-level con-
servation constraint. Although this condi-
tion is not satisfied in every case, for ex-
ample where the TF only regulates a small
number of genes, the majority of known
TFs in S. cerevisiae show this characteristic
when phylogenetically mapped against S.
bayanus.

Many factors could influence our abil-
ity to map binding sites. The algorithm for finding the candidate
motifs likely influences our success. For example, the Gibbs-
sampling algorithm may not be as sensitive to detection of some
motifs. We expect that sequence coverage is a strong determinant
of success, especially for TFs that regulate a small number of
genes in the genome. However, given that only 12% of the se-
quence of S. bayanus yields an estimated 70% of binding sites, we
expect near-complete coverage of a single genome to achieve
close to comprehensive identification of all TF binding sites.
Metabolic and physiologic similarity is also a major factor. Al-
though S. cerevisiae and S. bayanus are very similar organisms,
nevertheless, our failure to detect some of the ∼30% of known
binding sites may reflect physiological divergence and niche spe-
cialization, followed by concomitant inactivation of the TF, and
the erosion of its binding sites. This process may explain why the
binding sites for LYS14 and GAL4 were not detected as conserved
in S. bayanus, but were found in the more distant S. lactis and S.
rouxii. The lack of conservation of PHO4 binding site in S. baya-
nus was especially surprising, especially in light of the central
importance of this factor for the regulation of phosphate balance
(Oshima 1997). An alternative model for explaining incomplete
conservation of known sites is that the binding sites for some of
these TFs have diverged too far to be detected as conserved by our
approach. Many of these questions, including the choice of al-
ternative models of regulatory network evolution, will benefit
significantly from complete genomes of multiple closely related
species (Cliften et al. 2003; Kellis et al. 2003). It is important to
note that our approach here has focused on identification of
genome-wide conserved binding sites. Given the large and accu-
mulating amount of yeast sequence data, future work will un-
doubtedly focus on specific evolutionary models by which regu-
latory regions evolve.

The relative expansion of noncoding regions in higher eu-
karyotes makes phylogenetic footprinting much more difficult
than in bacteria or yeast. This characteristic, compounded with
relative sparsity of related genomes for each organism, makes
alternative approaches for whole-genome phylogenetic foot-
printing a high priority. We have shown that network-level con-
servation (conservation of intragenomic occurrences of binding
sites) is a powerful constraint for pulling out real binding sites
from a large set of predictions. This approach will be especially
relevant to higher eukaryotes, where whole-genome approaches
may identify an overwhelmingly large number of predictions
which need to be efficiently prioritized for experimental valida-
tion.

All of the motifs, and corresponding evidence regarding
their biological significance, are included in the Supplemental
material available at www.genome.org, and can also be down-

Figure 4 Conservation of 48 known S. cerevisiae binding sites across four yeast species. Fraction
of conserved binding sites at network-level conservation; P-values of <0.05 and <0.01 (not cor-
rected for multiple testing).
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loaded from our Web site: (www.molbio.princeton.edu/labs/
tavazoie/Supplementary%20Data.htm).

METHODS

Sequence Assembly and Mapping of Orthologous Genes
For each yeast, the sequence data (EMBL accession numbers
AL392203 to AL441602; Souciet et al. 2000) were assembled into
contigs using Phrap (www.phrap.org) under default parameters.
To map orthologous gene pairs, all of the S. cerevisiae protein-
coding sequences were compared against the assembled contigs
of each species using BLASTX (Altschul et al. 1990). Reciprocal
best matches, with E-values below 10�10, were considered or-
thologous ORFs. In our case, because one of the genomes is only
partially sequenced, orthology mapping may identify paralogs
instead. Although this may affect the overall sensitivity of our
approach, it does not invalidate the general statistical framework.
Orthologous upstream sequences 200 bp or longer were used for

subsequent analysis. The four species with comparable sequence
coverage, S. bayanus (4.7 Mb total sequence), Z. rouxii (4.5 Mb), K.
lactis (5.6 Mb), and P. angusta (4.7 Mb) provided 715, 412, 625,
and 369 orthologous pairs, respectively.

Motif Searching and Comparison
We used the Gibbs-sampling algorithm (Lawrence et al. 1993;
Neuwald et al. 1995), implemented in the AlignACE software
package (Roth et al. 1998; Tavazoie et al. 1999; J. Hughes et al.
2000) to search for motif patterns within unaligned input se-
quences. In the first round of motif discovery, upstream se-
quences longer than 200 bp (from pairs of orthologous genes of
the two species) were used to search for an expected number of
10 motifs of 10-bp width. In the case of S. bayanus, this consti-
tuted 715 AlignACE searches producing a total of 12,047 motif
predictions. To generate a larger set of upstream regions contain-
ing a motif, this set was hierarchically clustered by motif simi-
larity using the CompareACE algorithm (J. Hughes et al. 2000).
The CompareACE algorithm uses a similarity score based on the
Pearson correlation coefficient of nucleotide frequencies between
the two motifs. Only the six most informative positions of each
motif are used, and the final score is the maximum value of
correlation coefficients over all possible alignments. Here, we
used a similarity cutoff of 0.75 to define clusters which ranged in
size from 2–58 members each. All of the original input upstream
regions from each cluster were then used for the next round of
motif searching, resulting in 1919 AlignACE runs. Because there
are many more instances of each motif in this second iteration of
Gibbs-sampling, more informative motif definitions are gener-
ated. The roughly 80,000 motifs so generated are then pruned in
the next step by the requirement for network-level conservation.

Network-Level Conservation Criterion
Due to likely errors in orthology mapping, and allowing for some
evolutionary divergence in binding sites, our requirement for
network-level conservation was not absolute. We asked for a sta-
tistically significant overlap between the sets of orthologous genes
containing a high-scoring match to a particular weight-matrix
(motif prediction). For each of the two species, the top 30 and 60
genome-wide upstream motif occurrences were found using the
standard weight-matrix scoring scheme implemented in
ScanACE (J. Hughes et al. 2000). Two different depths were used
because our estimate for the number of actual binding sites in the
genome ranged from 200–400 for each TF. Given that due to
partial sequence data, S. bayanus had only 12% of its upstream
regions available to us, we felt 30 and 60 covered a reasonable
range of actual binding sites within the 715 orthologous sets of
genes. To look for significant intra-genomic conservation of
binding sites, we used the hypergeometric distribution (Tavazoie
et al. 1999) to assess the significance of overlap between the set of
genes which harbor the top scoring motifs in the two species
(network-level conservation P-value). We determined the back-
ground distribution of these P-values for 10,000 randomized
(random permutation of columns) predicted weight matrices.

Validation

Known Transcription Factor Binding Sites
We assembled a set of weight matrices corresponding to 45 well
characterized S. cerevisiae TFs. These matrices were constructed
from a mix of experimentally determined binding sites, aug-
mented with extensive expression and chromatin IP-derived data
(Lee et al. 2002). To this list, we added three weight matrices
(PAC, RRPE, A/T_repeat) which had strong computational evi-
dence for being real TF binding sites. We estimate this set to
represent binding sites for 15%–25% of all TFs in S. cerevisiae. The
entire set can be downloaded from our Web site (www.molbio.
princeton.edu/labs/tavazoie).

Functional Coherence
The MIPS functional category and molecular complexes groups
(Mewes et al. 2002) were used to test whether a set of genes

Figure 5 Connectivity distribution. (A) Distribution of the number of
binding sites per upstream region for the 700 known and putative TF
binding sites (solid line), and the same distribution for a randomly per-
muted connectivity matrix (dashed line). (B) The distribution for non-TF
genes (dashed line), and for TF genes (solid line).
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containing a motif within their upstream regions were statisti-
cally enriched for genes of similar function, or contained signifi-
cant members of a molecular complex. Each of the 1269 putative
binding site motifs was used to find its top 200 upstream occur-
rences throughout the genome. For each motif, its corresponding
genes were then tested for overlap with any of the 476 functional
and molecular complex groups. Statistically significant overlap
was assessed by the hypergeometric distribution (Tavazoie et al.
1999). The reported P-values are not corrected for multiple test-
ing.

Expression Coherence
To look for evidence of transcriptional coexpression, we looked
for significant positive shifts (as measured by the mean) in the
distribution of correlation coefficients of a set of motif-
containing genes. We used oligonucleotide array (Cho et al.
1998; Causton et al. 2001), and cDNA microarray expression data
(T. Hughes et al. 2000) from previously published work. All of the
1269 top motif predictions were tested for significant expression
coherence (P-values of 10�2 and 10�3; not corrected for multiple
hypotheses) across all three data sets. Significance was assessed
by repeating the procedure on 1000 randomly permuted data
sets. Nonparametric analysis of shifts in the distribution was also
performed and was found to give similar results.

Statistical Characterization of Motif Attributes
We calculated root mean square deviation (RMSD) of a motif’s
score (as quantified by the ScanACE weight matrix score) be-
tween its top occurrences in an orthologous pair, across all of the
orthologous pairs in which the motif co-occurred. To account for
motif-to-motif differences in the range of motif scores, this RMS-
deviation was normalized by the square root of the product of
the mean motif scores in the two species:

RMSDS = � 1
N �

i= 1

N

�Si1 − Si2�2�
1

2
RMSDn

S =
RMSDS

�S1 � S2� 2
1

Here, N is the total number of orthologous pairs in which a motif
is found to co-occur. Si1 and Si2 are the specific motif scores of
the top two matches in a pair of orthologous upstream regions,
and bars over variables denote their average.

A similar analysis was performed to quantify inter-ortholog
dispersion in the position of a motif across all of the pairs of
upstream regions in which the motif co-occurred.

RMSDX = � 1
N �

i= 1

N

�Xi1 − Xi2�2�
1

2

Again, N is the total number of orthologous pairs in which the
motif is found to co-occur.

Xi1 and Xi2 are the positions of the motifs relative to the
start of translation in a pair of orthologous upstream regions.

To quantify the extent of orientation-conservation between
a motif’s inter-ortholog co-occurrences, we simply calculated the
binomial probability of obtaining the observed conservation by
chance, assuming equal odds (P = 0.5).
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